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COVID 19

As of May 30, 2020, the total case of COVID 19 has reached:
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COVID 19 in US
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Goals

Fight against COVID-19 by optimal transport and mean field games.
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Classic Epidemic Model

The classical Epidemic model is the SIR model (Kermack and
McKendrick, 1927) 8

>>>>><

>>>>>:

dS

dt
= ��SI

dI

dt
= �SI � �I

dR

dt
= �I

where S, I,R : [0, T ] ! [0, 1] represent the density of the susceptible
population, infected population, and recovered population, respectively,
given time t. The nonnegative constants � and � represent the rates of
susceptible becoming infected and infected becoming recovered.
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Spatial SIR

To model the spatial e↵ect of virus spreading ,the spatial SIR model is
considered:8
>>>>>>><

>>>>>>>:

@t⇢S(t, x) + �⇢S(t, x)

Z

⌦
K(x, y)⇢I(t, y)dy �

⌘2
S

2
�⇢S(t, x) = 0

@t⇢I(t, x)� �⇢I(x)

Z

⌦
K(x, y)⇢S(t, y)dy + �⇢I(t, x)�

⌘2
I

2
�⇢I(t, x) = 0

@t⇢R(t, x)� �⇢I(t, x)�
⌘2
R

2
�⇢R(t, x) = 0

Here ⌦ is a given spatial domain and K(x, y) is a symmetric positive
definite kernel modeling the physical distancing. E.g.

R
Kd⇢I is the

exposure to infectious agents.
6



Optimal control of population behaviors

Optimal control of population behaviors have been widely considered in
optimal transport and mean field games. Long story short, it refers to an
optimal control problem in density space:

min Running cost of a population

s.t.
Evolution of population dynamics

E.g.
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MFG Related

I Introduced by Jovanovic & Rosenthal[JR88], M. Huang, P. Caines,
R. Malhamé [HMC06] and P.-L. Lions, J.-M. Lasry [LL06a, LL06b]
to model huge populations of identical agents playing
non-cooperative di↵erential games.

I Wide applications to various fields: in economics, Finance, crowd
motion, industrial engineering, data science, material dynamics, and
more [GNP15, BDFMW13, LLLL16, AL19].

I Computational methods developed to solve high dimensional
problems. [BC15, BnAKS18, EHL18, LFL+20, ROL+19, LJL+20].

Figure: Divers with Schooling Fish
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Related Study on COVID-19

I Study traveling waves to understand the propagation of epidemics.
In [BRR20], they introduce a SIRT model to study the e↵ects of the

presence of a road on the spatial propagation the epidemic.

I Optimal control with control measures on medicare (vaccination)

I Machine Learning, Data Driven + Epidemic model

Figure: Social Distancing
https://www.wfla.com/news/by-the-numbers/tampa-bay-counties-earn-d-and-f-grades-for-social-distancing/
https://s.hdnux.com/photos/01/12/06/10/19423760/5/1024x1024.jpg

Understand connection between the society (global) and the individuals
(local) .
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Spatial SIR variational problems

Construct the following variational problem to balance virus spreading
and “social” cost.

min
⇢i,vi

E(⇢I(T, ·)) +

Z
T

0

Z

⌦

X

i=S,I,R

↵i

2
⇢ikvik

2 +
c

2
(⇢S + ⇢I + ⇢R)

2dxdt

subject to
8
>>>>>>>>><

>>>>>>>>>:

@t⇢S +r · (⇢SvS) + �⇢S⇢I �
⌘2
S

2
�⇢S = 0

@t⇢I +r · (⇢IvR)� �⇢S⇢I + �⇢I �
⌘2
I

2
�⇢I = 0

@t⇢R +r · (⇢RvR)� �⇢I �
⌘2
R

2
�⇢R = 0

⇢S(0, ·), ⇢I(0, ·), ⇢R(0, ·) are given.
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Mean-field game SIR systems

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

@t�S �
↵S

2
|r�S |

2 +
⌘2
S

2
��S + c(⇢S + ⇢I + ⇢R)

+ � (K ⇤ (�I⇢I)� �SK ⇤ ⇢I) = 0

@t�I �
↵I

2
|r�I |

2 +
⌘2
I

2
��I + c(⇢S + ⇢I + ⇢R)

+ � (�IK ⇤ ⇢S �K ⇤ (�S⇢S)) + �⇢(�R � �I) = 0

@t�R �
↵R

2
|r�R|

2 +
⌘2
R

2
��R + c(⇢S + ⇢I + ⇢R) = 0

@t⇢S �
1

↵S

r · (⇢Sr�S) + �⇢SK ⇤ ⇢I �
⌘2
S

2
�⇢S = 0

@t⇢I �
1

↵I

r · (⇢r�I)� �⇢IK ⇤ ⇢S + �⇢I �
⌘2
I

2
�⇢I = 0

@t⇢R �
1

↵R

r · (⇢Rr�R)� �⇢I �
⌘2
R

2
�⇢R = 0.
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Review on PDHG method

Consider a saddle point problem

min
x

sup
y

{L(x, y) := hAx, yi+ g(x)� f⇤(y)} .

Here, f and g are convex functions with respect to a variable x, A is a
continuous linear operator. For each iteration, the algorithm finds the
minimizer x⇤ by gradient descent method and the maximizer y⇤ by
gradient ascent method. Thus, the minimizer and maximizer are
calculated by iterating

(
xk+1 = argmin

x
L(x, yk) + 1

2⌧ kx� xk
k
2

yk+1 = argmax
y
L(xk+1, y) + 1

2�ky � ykk2

where ⌧ and � are step sizes for the algorithm.
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Review on G-Proximal

Here G-Prox PDHG is a modified version of PDHG that solves the
minimization problem by choosing the most appropriate norms for
updating x and y. Choosing the appropriate norms allows us to choose
larger step sizes. Hence, we get a faster convergence rate. In details,

(
xk+1 = argmin

x
L(x, yk) + 1

2⌧ kx� xk
k
2
H

yk+1 = argmax
y
L(xk+1, y) + 1

2�ky � ykk2
G

where H and G are some Hilbert spaces with the inner product

(u1, u2)G = (Au1, Au2)H.
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Algorithm: Primal-Dual updates

In particular, we use G-Prox PDHG to solve the variational SIR model by

x = (⇢S , ⇢I , ⇢R,mS ,mI ,mR), g(x) = F (⇢i,mi)i=S,I,R,

f(Ax) =

(
0 if Ax = (0, 0, �⇢I)

1 otherwise.

Ax = (@t⇢S +r ·mS �
⌘2
S

2
�⇢S + �⇢SK ⇤ ⇢I ,

@t⇢I +r ·mI �
⌘2

2
�⇢I � �⇢IK ⇤ ⇢S + �⇢I ,

@t⇢R +r ·mR �
⌘2

2
�⇢R).
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Variational formulation

Denote mi = ⇢ivi. Define the Lagrangian functional for Mean field game
SIR problem by

L((⇢i,mi,�i)i=S,I,R)

=P (⇢i,mi)i=S,I,R �

Z
T

0

Z

⌦

X

i=S,I,R

�i

✓
@t⇢i +r ·mi �

⌘2
i

2
�⇢i

◆
dxdt

+

Z
T

0

Z

⌦
��I⇢IK ⇤ ⇢S � ��S⇢SK ⇤ ⇢I + �⇢I(�R � �I)dxdt.

Using this Lagrangian functional, we convert the minimization problem
into a saddle problem.

inf
(⇢i,mi)i=S,I,R

sup
(�i)i=S,I,R

L((⇢i,mi,�i)i=S,I,R).
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Algorithm

Algorithm: PDHG for mean field game SIR system
Input: ⇢i(0, ·) (i = S, I, R)
Output: ⇢i,mi,�i (i = S, I, R) for x 2 ⌦, t 2 [0, T ]

While relative error > tolerance

⇢(k+1)
i

= argmin
⇢
L(⇢,m(k)

i
,�(k)

i
) + 1

2⌧i
k⇢� ⇢(k)

i
k
2
L2

m(k+1)
i

= argmin
m
L(⇢(k+1),m,�(k)

i
) + 1

2⌧i
km�m(k)

i
k
2
L2

�
(k+ 1

2 )
i

= argmax
�
L(⇢(k+1),m(k+1)

i
,�)� 1

2�i
k�� �(k)

i
k
2
H2

�(k+1)
i

= 2�
(k+ 1

2 )
i

� �(k)
i

end
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Examples I
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Small recovery rate



Example II
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Large recovery rate



Example III
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Small recovery rate



Example IV
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Large recovery rate



Discussions

Importance of spatial SIR variational problems.

I Consider more status of populations, going beyond S, I, R.

I Construct discrete spatial domain model, including airport, train
station, hospital, school etc.

I Propose inverse mean field SIR problems. Learning parameters in
the model by daily life data.

I Combine mean field game SIR models with AI and machine learning
algorithms, including APAC, Neural variational ODE, Neural
Fokker-Planck equations, etc.
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