HJB Equations in Wassertein Space and Viscosity Solutions

Jianfeng ZHANG (University of Southern California)

Joint work with Cong WU

Hamilton-Jacobi PDEs Culminating Workshop

IPAM, 6/8-6/10, 2020

Roughly speaking

- Standard HJB : u(t,x), $x \in \mathbb{R}^d$
- ullet HJB on Wassertein space : $V(t,\mu)$, $\mu\in\mathcal{P}_2({\rm I\!R}^d)$
- In this talk, d = 1.

Example 1: mean field control problem

Example 2: Control under probability distortion

Example 3: Stochastic control with information delay

Outline

- Motivations/Applications
 - Example 1 : mean field control problem
 - Example 2 : Control under probability distortion
 - Example 3 : Stochastic control with information delay
- 2 HJB equation in Wasserstein space
 - Basic calculus in Wasserstein space
 - HJB equations for the examples
- 3 Viscosity solutions
 - Existing approaches
 - Our approach

Some applications

- Mean field game and systemic risk
 - ♦ Caines-Huang-Malhame (2006), Lasry-Lions (2007)
 - $\diamond \cdots \cdots$
 - ♦ Cardaliaguet, Bensoussan-Frehse-Yam, Carmona-Delarue
- Stochastic control with partial observation
 - ♦ Bandini-Cosso-Fuhrman-Pham (2018, 2019)
 - ♦ Saparito-Z. (2019)
- Time inconsistent problems
 - ♦ Wu-Z. (2020)

Example 1: Mean field dynamics

• A large controlled interacting system : $i = 1, \dots, N$,

$$X_t^{i,\alpha^i} = x_i + \int_0^t \sigma(s, X_s^{i,\alpha^i}, \frac{1}{N} \sum_{j=1}^N \delta_{X_s^{j,\alpha^j}}, \alpha_s^i) dB_s^i.$$

- \diamond Typically we use closed-loop controls α^i
- ullet A limit dynamics as $N o \infty$: McKean Vlasov SDE

$$X_t^{\alpha} = X_0 + \int_0^t \sigma(s, X_s^{\alpha}, \mathcal{L}_{X_s^{\alpha}}, \alpha_s) dB_s.$$

Example 1 : Mean field control problem

Mean field control problem (central optimization) :

$$\sup_{\alpha} \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{E} \Big[g \big(\boldsymbol{X}_{T}^{i,\alpha}, \frac{1}{N} \sum_{j=1}^{N} \delta_{\boldsymbol{X}_{T}^{j,\alpha}} \big) \Big] \rightarrow \sup_{\alpha} \boldsymbol{E} \Big[g \big(\boldsymbol{X}_{T}^{\alpha}, \boldsymbol{\mathcal{L}}_{\boldsymbol{X}_{T}^{\alpha}} \big) \Big] =: V_{0}$$

- $\bullet \ \mathsf{Dynamic \ value} : \ {\color{red} V(t,\mu)} := \sup_{\alpha_{[t,T]}} {\color{red} E\Big[g\big(X_T^{t,\mu,\alpha},\mathcal{L}_{X_T^{t,\mu,\alpha}}\big)\Big]}.$
- DPP : $V_0 = \sup_{\alpha_{[0,t]}} V(t, \mathcal{L}_{X_t^{\alpha}}).$ • DPP + Ito \Longrightarrow HJB
- Note: mean field game problem has quite different structure
- ♦ The value for mean field control problem is always unique, and typically satisfies the comparison principle
- Mean field games may have multiple values, and even if it is unique, typically the value does not satisfy the comparison principle

Example 2 : Probability distortion

• Standard expectation : given a r.v. $\xi \ge 0$,

$$\boldsymbol{E}[\xi] := \int_0^\infty \mathbb{P}(\xi \ge y) dy = \int_0^\infty y \, f_{\xi}(y) dy.$$

Nonlinear expectation under probability distortion (Zhou etc) :

$$\mathcal{E}[\xi] := \int_0^\infty \mathbf{w} \big(\mathbb{P}(\xi \ge y) \big) dy = \int_0^\infty y \, f_\xi(y) \mathbf{w'} \big(\mathbb{P}(\xi \ge y) \big) dy.$$

- ullet Distortion function ${\color{red} w}:[0,1] \rightarrow [0,1]$
 - \diamond strictly increasing, with w(0) = 0, w(1) = 1.
 - \diamond typically inverse-S shaped : w'(0), w'(1) >> 1

Example 2: time inconsistency

- ullet Markovian state process : $X_t = x_0 + \int_0^t \sigma(s,X_s)dB_s$
- Conditional expectation under probability distortion : $g \ge 0$,

$$\mathcal{E}ig[g(X_T)ig|\mathcal{F}_tig] := \int_0^\infty rac{\mathsf{w}} \Big(\mathbb{P}ig(g(X_T) \geq yig|\mathcal{F}_tig)\Big) dy.$$

- ullet Time inconsistency : $\mathcal{E}[\xi] \neq \mathcal{E}\Big[\mathcal{E}\big[g(X_T)|\mathcal{F}_t\big]\Big].$
- Note: given the Markovian structure, we have

$$\mathcal{E}\big[g(X_T)\big|\mathcal{F}_t\big]=u(t,X_t),$$

where u(t,x) is deterministic, but does not satisfy a PDE due to the time inconsistency.

Example 2 : Control problem under probability distortion

- ullet Increasing the "dimension" : $U(t, \xi) := \mathcal{E} ig[g(X_T^{t, \xi}) ig]$
 - $\diamond U$ is deterministic and law invariant :

$$\mathcal{L}_{\xi} = \mathcal{L}_{\tilde{\xi}} \Longrightarrow U(t,\xi) = U(t,\tilde{\xi}) \Longrightarrow V(t,\mathcal{L}_{\xi}) := U(t,\xi).$$

- \diamond V is time consistent : $V(t_1,\mathcal{L}_{X_{t_1}}) = V(t_2,\mathcal{L}_{X_{t_2}}).$
- Control problem under probability distortion (Wu-Z. (2020)) :

$$V(t,\mathcal{L}_{\xi}) := \sup_{\alpha_{[t,T]}} \mathcal{E}\Big[g(X_T^{t,\xi,\alpha})\Big], \quad X_s^{t,\xi,\alpha} = \xi + \int_t^s \sigma(r,X_r^{t,\xi,\alpha},\alpha_r)dB_r.$$

$$\diamond \mathsf{DPP}: V(0,\delta_{\mathsf{x_0}}) = \mathsf{sup}_{\alpha_{[0,t]}} \, V(t,\mathcal{L}_{X_{\bullet}^{\mathsf{o},\mathsf{x_0},\alpha}})$$

 \diamond Justification of value $V(t, \mathcal{L}_{X_t^{\alpha}})$ for t > 0?

Example 3: Control with information delay

- ullet Controlled state process : $X^{lpha}_t = x_0 + \int_0^t \sigma(s, X^{lpha}_s, lpha_s) dB_s$
 - \diamond delayed information : $\alpha_t \in \mathcal{F}_{t-\delta}$
 - \diamond For simplicity assume $T \leq \delta$, then $\alpha \in \mathcal{A}_0$ is deterministic
- Value fun. : $v(t,x) := \sup_{\alpha \in \mathcal{A}_0} \mathbf{E} \Big[g(X_T^{t,x,\alpha}) + \int_t^T f(X_s^{t,x,\alpha},\alpha_s) ds \Big].$
- DPP fails : $v(0, x_0) \neq \sup_{\alpha \in A_0} E\left[v(t, X_t^{\alpha}) + \int_0^t f(X_s^{\alpha}, \alpha_s)ds\right]$
 - ⋄ v does not satisfy HJB or any PDE
- \diamond When $\alpha \in \mathcal{A}$, the value function u satisfies HJB and $\alpha_t^* = \alpha^*(t, X_t^*)$ which is random
 - \diamond An intelligent guess : for $\alpha \in \mathcal{A}_0$, $\alpha_t^* = \alpha_t^*(t, \mathcal{L}_{X_t^*})$

Example 3: Stochastic optim. with deterministic control

• The value function (Saparito-Z. (2019)) :

$$V(t,\mu) := U(t,\xi) := \sup_{\alpha \in \mathcal{A}_0} E\Big[g(X_T^{t,\xi,\alpha}) + \int_t^T f(X_s^{t,\xi,\alpha},\alpha_s)ds\Big].$$

$$\bullet \ \mathsf{DPP} : \ V(0,\delta_{\mathsf{x}_0}) = \sup_{\alpha \in \mathcal{A}_0} \left[V(t, \mathcal{L}_{\mathsf{X}_t^\alpha}) + \boldsymbol{E} \big[\int_0^t f(X_s^\alpha, \alpha_s) ds \big] \right]$$

• V will satisfy an HJB equation in Wasserstein space :

$$\alpha_t^* = \alpha^*(t, \mathcal{L}_{X_t^*}), \quad X_t^* = x_0 + \int_0^t \sigma(s, X_s^*, \alpha^*(s, \mathcal{L}_{X_s^*})) dB_s.$$

- ♦ Benes and Karatzas (1983)
- ♦ Bandini-Cosso-Fuhrman-Pham (2018, 2019)

Example 4: Nonlinear optim. with deterministic control

• Note : $V(0, \delta_{x_0}) = \sup_{\alpha \in A_0} Y_0^{\alpha}$, where

$$Y_t^{\alpha} = g(X_T^{\alpha}) + \int_t^T f(X_s^{\alpha}, \alpha_s) ds - \int_t^T Z_s^{\alpha} dB_s.$$

• Nonlinear BSDE : (assuming f = f(y))

$$Y_t^{\alpha} = g(X_T^{\alpha}) + \int_t^T f(Y_s^{\alpha}) ds - \int_t^T Z_s^{\alpha} dB_s.$$

• Dynamic version :

$$Y_s^{t,\xi,\alpha} = g(X_T^{t,\xi,\alpha}) + \int_s^T f(Y_r^{t,\xi,\alpha}) dr - \int_s^T Z_r^{t,\xi,\alpha} dB_r.$$

• Candidate value function :

 $\diamond\ U(t,\xi):=\sup_{lpha\in\mathcal{A}_0}Y^{t,\xi,lpha}_t$: it is random and not law invariant

$$\diamond V(t,\mu) := U(t,\xi) := \sup_{\alpha \in \mathcal{A}_0} m{E}[Y_t^{t,\xi,\alpha}] : \mathsf{DPP}[\mathsf{fails}]$$

Example 4 : The solution : path dependence

• Given a process $\xi = \xi_{[0,t]}: X_s^{t,\xi,\alpha} := \xi_s, \ s \in [0,t],$

$$\begin{split} X_s^{t,\xi,\alpha} &= \xi_t + \int_t^s \sigma(r,X_r^{t,\xi,\alpha},\alpha_r) dB_r, \quad s \in [t,T]; \\ Y_s^{t,\xi,\alpha} &= g(X_T^{t,\xi,\alpha}) + \int_s^T f(Y_r^{t,\xi,\alpha}) dr - \int_s^T Z_r^{t,\xi,\alpha} dB_r, \quad s \in [0,T]. \end{split}$$

- ullet Value function : $V(t, \mathcal{L}_{\xi_{[0,t]}}) := U(t, \xi_{[0,t]}) := \sup_{\alpha \in \mathcal{A}_0} Y_0^{t,\xi,\alpha}$
- DPP(Wu-Z. (2020)) : $V(0, \delta_{x_0}) = \sup_{\alpha \in \mathcal{A}_0} V(t, \frac{\mathcal{L}_{X_{[0,t]}^{\alpha}}}{\lambda_{x_0}})$.
 - $\diamond~V$ satisfies a path dependent HJB in Wasserstein space
 - $\diamond \alpha_t^* = \alpha^*(t, \mathcal{L}_{X_{[0,t]}^*})$, with path dependent McKean-Vlasov SDE :

$$X_t^* = x_0 + \int_0^t \sigma(s, X_s^*, \alpha^*(s, \mathcal{L}_{X_{[0,s]}^*})) dB_s.$$

Outline

- Motivations/Applications
 - Example 1 : mean field control problem
 - Example 2 : Control under probability distortion
 - Example 3 : Stochastic control with information delay
- 2 HJB equation in Wasserstein space
 - Basic calculus in Wasserstein space
 - HJB equations for the examples
- 3 Viscosity solutions
 - Existing approaches
 - Our approach

From DPP to PDE

- Value function : $u(t,x) := E[g(x + B_T B_t)]$
- Flow property (DPP) : $u(t, B_t) = \mathbf{E} \left[u(t + \delta, B_{t+\delta}) | \mathcal{F}_t \right]$
- Ito formula : $du(t, B_t) = \left[\frac{\partial_t u}{\partial_t u} + \frac{1}{2} \frac{\partial_{xx} u}{\partial_{xx}} \right] (t, B_t) dt + \partial_x u(t, B_t) dB_t$
- DPP (or martingale property) : $\partial_t u + \frac{1}{2} \partial_{xx} u = 0$
- Three ingredients to derive the PDE
 - DPP or flow property
 - Appropriate notion of derivatives
 - ♦ Ito formula

Wasserstein derivatives

- Let $V: [0, T] \times \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$
- $\partial_t V(t,\mu) := \lim_{\varepsilon \downarrow 0} \frac{V(t+\varepsilon,\mu) V(t,\mu)}{\varepsilon}$.
- $ullet \ \partial_{\mu} V: [0,T] imes \mathcal{P}_2(\mathbb{R}) imes \mathbb{R} o \mathbb{R}: ext{for any } \eta \in \mathbb{L}^2(\mathcal{F}_t),$

$$\boldsymbol{E}\Big[\partial_{\mu}V(t,\mu,\boldsymbol{\xi})\;\eta\;\Big]=\lim_{\varepsilon\to0}\frac{V(t,\mathcal{L}_{\xi+\varepsilon\eta})-V(t,\mu)}{\varepsilon},\quad \mathcal{L}_{\xi}=\mu.$$

- classical result due to Lions, Cardaliaguet
- ♦ See Wu-Z. (2017) for an elementary proof
- ♦ See also Gangbo-Tudorascu (2018)

Itô formula

- Assume $V \in C^{1,1,1}([0,T] \times \mathcal{P}_2(\mathbb{R});\mathbb{R})$: smooth and
- For any $dX_t = b_t dt + \sigma_t dB_t$,

$$\begin{split} &\frac{d}{dt}V(t,\mathcal{L}_{X_t}) = \frac{\partial_t V(t,\mathcal{L}_{X_t})}{\partial_\mu V(t,\mathcal{L}_{X_t},X_t)b_t + \frac{1}{2}\frac{\partial_x \partial_\mu V(t,\mathcal{L}_{X_t},X_t)\sigma_t^2}{\partial_t^2}]. \end{split}$$

- $\diamond V$ is deterministic, so there is no dB_t term
- ♦ Buckdahn-Li-Peng-Rainer (2017), Chassagneux-Crisan-Delarue (2020)
 - ♦ Wu-Z. (2020) extended it to the path dependent case

Example 1: mean field control problem

The control problem :

$$dX^{\alpha}_t = \sigma(X^{\alpha}_t, \mathcal{L}_{X^{\alpha}_t}, \alpha_t) dB_t, \quad V(t, \mu) := \sup_{\alpha} \boldsymbol{E}[g(X^{t, \xi, \alpha}_T, \mathcal{L}_{X^{t, \xi, \alpha}_T})].$$

ullet DPP + Ito : denoting $X^lpha_s:=X^{t,\xi,lpha}_s$ and $\mu^lpha_s:=\mathcal{L}_{X^lpha_s},$

$$0 = \sup_{\alpha} \left[V(t + \delta, \mu_{t+\delta}^{\alpha}) - V(t, \mu) \right]$$

$$= \sup_{\alpha} \int_{t}^{t+\delta} \left[\partial_{t} V(s, \mu_{s}^{\alpha}) + \frac{1}{2} \boldsymbol{E} \left[\partial_{x} \partial_{\mu} V(s, \mu_{s}^{\alpha}, X_{s}^{\alpha}) \sigma^{2} (X_{s}^{\alpha}, \mu_{s}^{\alpha}, \alpha_{s}) \right] \right] ds.$$

• HJB : $V(T, \mu) = E[g(\xi, \mu)],$

$$\partial_t V(t,\mu) + \frac{1}{2} \mathbf{E} \Big[\sup_{x \in \mathbb{R}} \Big[\partial_x \partial_\mu V(t,\mu,\xi) \sigma^2(\xi,\mu,\mathbf{a}) \Big] \Big] = 0.$$

$$\diamond$$
 $a^*=a^*(t,\xi,\mu) \implies lpha_t^*=a^*(t,X_t^*,\mathcal{L}_{X_t^*})$

Example 2: Control under probability distortion

• The control problem :

$$\begin{split} dX_t^\alpha &= \sigma(X_t^\alpha, \alpha_t) dB_t, \\ V(t, \mu) &:= \sup_\alpha \mathcal{E}[g(X_T^{t, \xi, \alpha})] := \sup_\alpha \int_0^\infty \frac{\mathbf{w} \big(\mathbb{P}(g(X_T^{t, \xi, \alpha}) \geq y) \big) dy. \end{split}$$

• HJB : $V(T, \mu) = \mathcal{E}[g(\xi)]$,

$$\partial_t V(t,\mu) + \frac{1}{2} \mathbf{E} \Big[\sup_{\mathbf{a}} \Big[\partial_x \partial_\mu V(t,\mu,\xi) \sigma^2(\xi,\mathbf{a}) \Big] \Big] = 0.$$

- \diamond The same HJB as in Example 1, but with different $V(T,\mu)$
- \diamond When there is no control, the nonlinear expectation corresponds to a linear equation with nonlinear terminal $V(T, \mu)$

Example 3: Stochastic optim. with deterministic control

• The control problem : $\alpha \in \mathcal{A}_0$ deterministic,

$$dX_t^{\alpha} = \sigma(X_t^{\alpha}, \alpha_t) dB_t,$$

$$V(t, \mu) := \sup_{\alpha \in \mathcal{A}_0} E\Big[g(X_T^{t,\xi,\alpha}) + \int_t^T f(X_s^{t,\xi,\alpha}, \alpha_s) ds\Big].$$

• HJB : $V(T, \mu) = E[g(\xi)]$,

$$\partial_t V(t,\mu) + \sup_{a} \frac{1}{2} \mathbf{E} \Big[\partial_x \partial_\mu V(t,\mu,\xi) \sigma^2(\xi,a) \Big] = 0.$$

♦ Unlike the previous HJB, the sup_a is outside of *E* here.

$$\diamond a^* = a^*(t,\mu) \implies \alpha_t^* = a^*(t,\mathcal{L}_{X_t^*})$$

Outline

- Motivations/Applications
 - Example 1 : mean field control problem
 - Example 2 : Control under probability distortion
 - Example 3 : Stochastic control with information delay
- 2 HJB equation in Wasserstein space
 - Basic calculus in Wasserstein space
 - HJB equations for the examples
- Viscosity solutions
 - Existing approaches
 - Our approach

Viscosity solutions of standard PDEs

Parabolic PDE (with terminal condition) :

$$\mathcal{L}u(t,x) := \partial_t u(t,x) + G(t,x,u,\partial_x u,\partial_{xx} u) = 0.$$

• Test function : $D_{\delta}(t,x) := [t,t+\delta] \times \overline{O}_{\delta}(x)$,

$$\underline{A}u(t,x) := \bigcup_{0<\delta \le T-t} \left\{ \varphi \in C^{1,2}(D_{\delta}(t,x)) : \right.$$
$$[\varphi - u](t,x) = 0 = \sup_{(t',x') \in D_{\delta}(t,x)} [\varphi - u](t',x') \right\}$$

• $u \in C^0([0,T] \times \mathbb{R})$ is a viscosity subsolution of the PDE if

$$\mathcal{L}\varphi(t,x) \geq 0$$
 for all $\varphi \in \underline{\mathcal{A}}u(t,x)$.

• The compactness of $D_{\delta}(t,x)$ is crucial for the viscosity theory.

The Wasserstein space

- ullet Underlying state space : ${
 m I\!R}$
- ullet $\mathcal{P}_2(\mathbb{R})$: square integrable probability measures on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$
- State space : $\Theta := [0, T] \times \mathcal{P}_2(\mathbb{R})$
- ullet Wasserstein distance : for $\mu, \nu \in \mathcal{P}_2(\mathbb{R})$ and coupling $\mathcal{P}(\mu, \nu)$

$$\mathcal{W}_2(\mu,\nu) := \inf_{\pi \in \mathcal{P}(\mu,\nu)} \Big(\int_{\mathbb{R} \times \mathbb{R}} |x-y|^2 \pi(dx,dy) \Big)^{\frac{1}{2}}$$

- \diamond $(\mathcal{P}_2(\mathbb{R}), \mathcal{W}_2)$ is Polish, namely complete and separable
- $\diamond \overline{O}_{\delta}(\mu) := \{ \nu : \mathcal{W}_2(\mu, \nu) \leq \delta \}$ is not compact

Viscosity solutions: naive approach

- HJB equation : $\mathcal{L}V(t,\mu)=0$
- Test function : $D_{\delta}(t,\mu) := [t,t+\delta] \times \overline{O}_{\delta}(\mu)$,

$$\underline{\mathcal{A}}V(t,\mu) := \bigcup_{0<\delta\leq T-t} \Big\{ \varphi\in C^{1,1,1}(D_{\delta}(t,\mu)) : \Big\}$$

$$[\varphi - V](t, \mu) = 0 = \sup_{(s, \nu) \in D_{\delta}(t, \mu)} [\varphi - V](s, \nu)$$

• $V \in C^0(\Theta)$ is a viscosity subsolution if

$$\mathcal{L}\varphi(t,\mu) \geq 0$$
 for all $\varphi \in \underline{\mathcal{A}}V(t,\mu)$.

• $D_{\delta}(t,\mu)$ is not compact, no hope for comparison principle.

An alternative approach: lifting the function

- ullet Lift the function $U(t,\xi):=V(t,\mathcal{L}_\xi)$ for ξ in Hilbert space $\mathbb{L}^2(\mathcal{F})$
- Apply the viscosity theory on Hilbert space (Pham-Wei (2018))
- Good news: both existence and comparison principle hold
- Bad news :
- ♦ A classical solution (in Wasserstein space) may not be a viscosity solution (in Hilbert space), see a counterexample by Buckdahn-Li-Peng-Rainer (2017) in 2nd order case
- ♦ The theory is not available in the path dependent case (again due to the lack of compactness in the path space, even in finite dimensional case)

Our approach

Recall DPP + Ito ⇒ HJB

$$\mathsf{DPP}: \quad V(t,\mu) = \sup_{\alpha} V(t+\delta, \mathcal{L}_{X_{t+\delta}^{t,\xi,\alpha}})$$

Apply Ito on $\varphi(s, \mathcal{L}_{X_s^{t,\xi,\alpha}})$, only need $\varphi \leq V$ on the set $(s, \mathcal{L}_{X_s^{t,\xi,\alpha}})$ for all $s \in [t, t + \delta]$ and all α .

• A new neighborhood : for L > 0,

$$\mathcal{P}_{\delta}^{L}(t,\mu) := \left\{ (s, \mathcal{L}_{X_{s}}) : s \in [t, t + \delta], |b| \leq L, |\sigma| \leq L, \right.$$
$$X_{s} := \xi + \int_{t}^{s} b_{r} dr + \int_{t}^{s} \sigma_{r} dB_{r}, \quad \mathcal{L}_{\xi} = \mu \right\}$$

$$\diamond \ \forall \delta > 0$$
, $\exists \delta' > 0$ such that $\mathcal{P}_{\delta'}^{L}(t,\mu) \subset \overline{O}_{\delta}(t,\mu)$

 $\diamond \mathcal{P}^{L}_{\delta}(t,\mu)$ is compact under \mathcal{W}_{2}

Definition

• Test function :

$$\underline{\mathcal{A}}^{L}V(t,\mu) := \bigcup_{0<\delta\leq T-t} \left\{ \varphi \in C^{1,1,1}(\mathcal{P}_{\delta}^{L}(t,\mu)) : \right. \\ \left. [\varphi - V](t,\mu) = 0 = \sup_{(s,\nu)\in\mathcal{P}_{\delta}^{L}(t,\mu)} [\varphi - V](s,\nu) \right\}$$

• $V \in C^0(\Theta)$ is an *L*-viscosity subsolution if

$$\mathcal{L}\varphi(t,\mu) \geq 0$$
 for all $\varphi \in \underline{\mathcal{A}}^L V(t,\mu)$.

- \diamond For $L_1 < L_2$, L_1 -viscosity subsol. $\Longrightarrow L_2$ -viscosity subsol.
- \diamond *L*-viscosity subsol. \Longrightarrow viscosity subsol. in naive sense, so our definition helps for uniqueness

Basic results

- Consistency with classical solution
- Equivalent definition via jets
- Existence by representation
- Stability
- Partial comparison (between viscosity subsolution and classical supersolution)

Comparison principle

- Theorem : If mollified equations have classical solutions, then comparison principle holds.
- Some examples with classical solutions :
 - Linear equations (with possible nonlinear terminal)
- \diamond First order conditions (under convexity conditions) : Gangbo-Meszaros (2020), \cdots
- ♦ HJB derived from stochastic optimization with deterministic controls : under convexity conditions (Saparito-Z. (2019))

$$\partial_t V(t,\mu) + \frac{1}{2} \mathbf{E}^{\mu} \Big[\partial_x \partial_\mu V(t,\mu,\xi) \Big] + F \Big(t, \mathbf{E}^{\mu} [\partial_\mu V(t,\mu,\xi)] \Big) = 0.$$

♦ General HJB/Isaacs equations:???

Thank you very much for your attention!