HJB Equations in Wassertein Space and Viscosity
Solutions

Jianfeng ZHANG (University of Southern California)

Joint work with Cong WU

Hamilton-Jacobi PDEs Culminating Workshop

IPAM, 6/8-6/10, 2020

Jianfeng ZHANG (USC) HJB Equations in Wassertein Space



Roughly speaking

e Standard HJB : u(t,x), x € R?
e HJB on Wassertein space : V/(t, 1), u € P2(IRY)

e In this talk, d = 1.
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Some applications

e Mean field game and systemic risk

o Caines-Huang-Malhame (2006), Lasry-Lions (2007)

¢ Cardaliaguet, Bensoussan-Frehse-Yam, Carmona-Delarue

e Stochastic control with partial observation
o Bandini-Cosso-Fuhrman-Pham (2018, 2019)
© Saparito-Z. (2019)

e Time inconsistent problems

o Wu-Z. (2020)
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Example 1 : Mean field dynamics

e A large controlled interacting system : i =1,--- N,

. I' t .
X :x,-—i—/ o(s, X', Z xivod 2 @ 1)dBL.
0

=2

o Typically we use closed-loop controls o

e A limit dynamics as N — oo : McKean Vlasov SDE

t
Xta = XO +/ U(S,X_?,ﬁxsn,as)dss.
0
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Example 1 : Mean field control problem

e Mean field control problem (central optimization) :

N N
1 1 .
sl;pﬁ g E[g(Xfa7N§ 5X¢“)} %sipE{g(XT,LIX,T,V)} =V
Jj=1

i=1
e Dynamic value : V(t,p) := SUPay, 1y E[g(X%”’a, Ex;p,a)].

e DPP : \y = SupoC[0 q V(t,ﬁxta).
o DPP + Ito = HJB

e Note : mean field game problem has quite different structure

¢ The value for mean field control problem is always unique, and
typically satisfies the comparison principle

© Mean field games may have multiple values, and even if it is
unique, typically the value does not satisfy the comparison principle
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Example 2 : Probability distortion

e Standard expectation : given a r.v. £ > 0,

E = [Pz = [ yE0)d.
e Nonlinear expectation under probability distortion (Zhou etc) :
eleli= [T wlPez oy = [y Rl (Pe = )y,

e Distortion function w : [0, 1] — [0, 1]
o strictly increasing, with w(0) =0, w(1) = 1.

¢ typically inverse-S shaped : w/(0),w/(1) >>1
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Example 2 : time inconsistency

t
e Markovian state process : X; = xg +/ o(s, Xs)dBs
0
e Conditional expectation under probability distortion : g > 0,
£g(Xr)|F] ;:/0 W(]P(g(XT) zyyft)>dy.

e Time inconsistency : £[¢] # 5[5 [g(XT)]}"tH.
e Note : given the Markovian structure, we have
g[g(XT)’ft] = U(t,Xt),

where u(t, x) is deterministic, but does not satisfy a PDE due to
the time inconsistency.
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Example 2 : Control problem under probability distortion

e Increasing the "dimension" : U(t,¢) := E[g(X;-’g)]
o U is deterministic and law invariant :
Le = Lz = U(1,€) = U(t,§) = V(1,Le) = U(1,€).
o Vis time consistent : V(t1, Lx,, ) = V(t2, Lx,,)-
e Control problem under probability distortion (Wu-Z. (2020)) :

s
V(t, Ef) ‘= sup g[g(x;_,f,a)]’ Xst’&a = £+/ U(r7X:,§7aaar)dBr-

A, T) t
o DPP : V(0,dy,) = SUPay, V(t, EXO,XO,Q)

o Justification of value V/(t, Lxo) for t > 07
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Example 3 : Control with information delay

t
e Controlled state process : X* = xg +/ o(s, X$', as)dBs
0

¢ delayed information : a; € Fi_s

o For simplicity assume T < 6, then a € Ay is deterministic

-
e Value fun. : v(t,x) := sup E{ (X7 +/ (Xst’x’o‘,oas)ds}.
acAo

e DPP fails : v(0,xp) # sup E (t, X) / (XS, as ds]
acEAp

© v does not satisfy HJB or any PDE

o When a € A, the value function u satisfies HJB and
af = a*(t, X{) which is random

o An intelligent guess : for o € Ao, af = a*(t, Lx;)
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Example 3 : Stochastic optim. with deterministic control

e The value function (Saparito-Z. (2019)) :

-
V(t,p) == U(t,§) :== sup E[g(X?é’a) +/ f(X_f’f’a,as)ds]

acAp t

t
¢ DPP : V(0,0,) = sup [V(t,ﬁxta)JrE[/ f(Xso‘,as)dsH
aEAp 0

e V will satisfy an HJB equation in Wasserstein space :
t
ap =a(t,Lx:), X{=x0 +/ o(s, X5, (s, Lx:))dBs.
0

© Benes and Karatzas (1983)
© Bandini-Cosso-Fuhrman-Pham (2018, 2019)
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Example 4 : Nonlinear optim. with deterministic control

e Note : V/(0,dx,) = sup,e, Yo' Where

T T
Yo = (X%)+/ f(xg,as)ds—/ ZodBs.
t t

e Nonlinear BSDE : (assuming f = f(y))

T T
Yt‘":g(X%)+/ f(YS“)ds—/ ZdB.
t

t

e Dynamic version :

T T
YESe = g(XF5Y) + / FY55)dr — / Z}4"dB,.

S S

e Candidate value function :
o U(t,§) == supyea, Y5 - it is random and not law invariant

o V(t, ) = U(t,§) := supye 4, E[Y/}*“] : DPP fails
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Example 4 : The solution : path dependence

e Given a process § = {[g ¢ : x4 .= &, s € 10,1,

S
X606t [ olr X0, )dBr, € (6T
t
T T
YIS = g(XE0) + / FOY5Y)dr — / ZH*dB,, se[0,T]
s S
e Value function : V/(t, L, ) := U(t,{[0,1]) := SUPae4, Ytga

e DPP(Wu-Z. (2020)) : V/(0,6x,) = supaea, V(t, Lxo ).

[0,t]

¢ V satisfies a path dependent HJB in Wasserstein space
o af = a’(t, EX[B t]), with path dependent McKean-Vlasov SDE :

t
Xt* :X0+/ U(S,X:,Oz*(s,ﬁx[ﬂas]))st
0 ,
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From DPP to PDE

e Value function : u(t,x) := E[g(x + Bt — Bt)]

e Flow property (DPP) : u(t, B;) = E[u(t + 0, Bey.5)|Ft)
o Ito formula : du(t, B;) = [atu + 20,0] (¢, Be)dt + du(t, By)dBy

e DPP (or martingale property) : 0:u + %OXXU =0

e Three ingredients to derive the PDE
& DPP or flow property
© Appropriate notion of derivatives

¢ Ito formula
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Wasserstein derivatives

oLet V: [0, T] x Po(R) > IR

e 0:V(t,u) :=lim V(tten) = V(t,,u)_
el0 5

© 0,V :[0,T] x P2(R) x R — IR : for any € L?(F,),

V(t,Leien) — V(t,
E au\/(t,/l,f)n — ||m (7 £+ 7]) ( :LL)’ Efz,u

e—0 IS

o classical result due to Lions, Cardaliaguet
o See Wu-Z. (2017) for an elementary proof
o See also Gangbo-Tudorascu (2018)
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Itd formula

e Assume V € CHL1([0, T] x P»(IR); R) : smooth and ...

e For any dX; = b:dt + o+dB;,

%V(t,ﬁxt) = 0:V(t,Lx,)

1
+E |0, V(8 Lxes Xe)be + 50x0, V(£ L. Xt)af] .

o V is deterministic, so there is no dB; term

o Buckdahn-Li-Peng-Rainer (2017), Chassagneux-Crisan-Delarue
(2020)

o Wu-Z. (2020) extended it to the path dependent case
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Example 1 : mean field control problem

e The control problem :

dXta = U(Xta7 ﬁXtU,Oét)dBt, V(t7u) -=sup E[g(X;J£7a7 Ex;:fa“ )]
e DPP + Ito : denoting X& := X;’g’a and g = Lxa,
0 =sup [V(t+d,u¢5) — V(t, )]
«
t+0 1 )
—sup [ [0V (s.02) + S E[0.0, V(5.3 X023 i )] | .
@ t
o HIB: V(T,un) = E[g(§, 1)),
1
OcV(t, 1) + S E [sup[0,0, V (£, 1, )0 (€, . 2)] | = 0.

o at = 3*(ta§;M) == O‘: = a*(ta thk?EXt*)
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Example 2 : Control under probability distortion

e The control problem :

dXy = o(X{', ar)dBy,

e HIB: V(T, 1) = E[g(&)].
B V(t, ) + %E [sgp[@xau V(t, 1, €)o2 (€, a)H —0.

o The same HJB as in Example 1, but with different V(T )

& When there is no control, the nonlinear expectation
corresponds to a linear equation with nonlinear terminal V/(T, i)
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Example 3 : Stochastic optim. with deterministic control

e The control problem : o € Ag deterministic,
dXta = O'(Xta, O[t)dBt,

T
V(t, 1) ;= sup E[g(X;-’g’a)—i—/ f(Xst’é’a,as)ds}.

aEAp t

e HIB: V(T,u) = E[g(¢)],
B V(t, ) + Sgp;E [axau V(t, 1, €)o2 (€, a)} —0.

© Unlike the previous HJB, the sup, is outside of E here.

oat = a*(ta M) = CVI - a*(tv £Xt")
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Viscosity solutions of standard PDEs

e Parabolic PDE (with terminal condition) :

Lu(t,x) := 0ru(t, x) + G(t,x, u, Oxu, Oxxt) = 0.
e Test function : Ds(t,x) := [t, t + ] x Os(x),

Au(t.x) = Upser—e {0 € CH(Ds(2,%)) ;
[ — ul(t X) = 0 = SUP(e ey el — ul(¥'X) |
e uc CO0, T] x R) is a viscosity subsolution of the PDE if
Lo(t,x) >0 forall p € Au(t,x).

e The compactness of Ds(t, x) is crucial for the viscosity theory.
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The Wasserstein space

e Underlying state space : IR
e P>(IR) : square integrable probability measures on (IR, B(IR))
e State space : © := [0, T] x P2(IR)

e Wasserstein distance : for u,v € P2(IR) and coupling P(u, )

1
o 12 2
Walu)i=_inf ([ x—yPr(ax.dy)

o (P2(IR), Wh) is Polish, namely complete and separable
o Os(p) := {v : Wa(u,v) < 6} is not compact
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Viscosity solutions : naive approach

e HJB equation : LV(t,u) =0
e Test function : Ds(t, 1) :=[t,t + 6] x Os(p),
AV(t,1) = Upeser—e {9 € CHA(Ds(t, ) :
[ — VI(£ 1) = 0 = 5Up(s ey e [ — VI 1) |
e V € C°O) is a viscosity subsolution if
Lo(t,p) >0 forall o € AV(t, ).

e Ds(t, 1) is not compact, no hope for comparison principle.
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An alternative approach : lifting the function

o Lift the function U(t,&) := V/(t, L¢) for & in Hilbert space IL?(F)
e Apply the viscosity theory on Hilbert space (Pham-Wei (2018))
e Good news : both existence and comparison principle hold

e Bad news :

o A classical solution (in Wasserstein space) may not be a
viscosity solution (in Hilbert space), see a counterexample by
Buckdahn-Li-Peng-Rainer (2017) in 2nd order case

o The theory is not available in the path dependent case (again
due to the lack of compactness in the path space, even in finite
dimensional case)
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Our approach

e Recall DPP + Ito = HJB
DPP:  V(t,u) =supV(t+0,Lc0)
o t+6

Apply Ito on ¢(s, Ly c.0), only need ¢ < V on the set (s, L, c.0)
for all s € [t,t + 0] and all a.

e A new neighborhood : for L > 0,

Pt ) = {(s.£x) i s € [t, ¢+ 0], b < L, Jo] < L,
X, ::5+/ b,dr+/ o,dB,, ﬁgzu}
t t

o V8 >0, 38’ > 0 such that PL(t, ) C Os(t,p)

o 775L(t, () is compact under W,
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Definition

e Test function :

Aviep) = |J {ee UPH):
0<o<T—t

[p- V() =0= sup  [p—VI(s,)}
(s,v)EPE(t,1)

e V € C°(O) is an L-viscosity subsolution if
Lo(t, ) >0 forall o € ALV(t, ).

o For Ly < Ly, Ly-viscosity subsol. = L,-viscosity subsol.

© L-viscosity subsol. = viscosity subsol. in naive sense, so our
definition helps for uniqueness
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Basic results

e Consistency with classical solution
e Equivalent definition via jets

e Existence by representation

e Stability

e Partial comparison (between viscosity subsolution and classical
supersolution)
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Comparison principle

e Theorem : If mollified equations have classical solutions, then
comparison principle holds.
e Some examples with classical solutions :

o Linear equations (with possible nonlinear terminal)

o First order conditions (under convexity conditions) :
Gangbo-Meszaros (2020), - - -

© HJB derived from stochastic optimization with deterministic
controls : under convexity conditions (Saparito-Z. (2019))

d:V(t.p) + %E“ |00,V (t1,)| + F (£ E"[0,V(t,1,€)]) = 0.

o General HJB/Isaacs equations : 777

Jianfeng ZHANG (USC) HJB Equations in Wassertein Space



Existing approaches

. . . h
Viscosity solutions Ol e

Thank you very much for your attention !
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