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Talk Outline

The Ising game is an attempt to uncover and understand phenomena in
MFG in analogy to analysis from statistical physics.

In the spirit of (but not directly related) to the Dyson and Coulomb games
[Carmona-Cerenzia-P 2018].

Organization of talk:

‘Spin’ and discrete MFG
Ising model interlude
Spin games and the Ising game
Ising game MFG system solution
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Spins and long time behavior
‘Spin’ markov process,
Σt ∈ {±1} flips according to
rate A(Σt) > 0.

Distribution µt ∈ P({±1})
evolves by

d
dt µt({σ}) = A(−σ)µt({−σ})− A(σ)µt({σ}).

Ergodic limit

lim
T→∞

1
T E

[ ∫ T

0
f (Σt)dt

]
=
∑

σ∈±1
f (σ)µ̄({σ})

stationary measure µ̄ solves

A(1)µ̄({1}) = A(−1)µ̄({−1}),
µ̄({1}) + µ̄({−1}) = 1.
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Discrete N-player Games Literature

N-spins, Σ = (Σ1, . . . ,ΣN), with controlled dynamics, (A1, . . . ,AN),
in a Nash equilibrium.

Gomes-Mohr-Souza [2012], Carmona-Delarue [2018] - Vol I, Sec 7,
General theory
Kolokoltsov-Bensoussan [2016] - Phase transitions in ergodic game,
‘cyber-security’ model
Bayraktar-Cohen [2017], Cecchin-Dai Pra-Fischer-Pelino [2019]
Bayraktar-Zhang [2019] - Nonuniqueness of (time-dependent) mean
field limit. Convergence to ‘entropy solution’ of master equation.
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Ising Interlude
The Ising model [Lenz (1920),
Ising (1925)], N magnetic
dipoles with ‘spin’, σi ∈ {±1}.
Total energy:

HN(σ) =
N∑

i=1

[
−Hi σ

i− 1
N

N∑
j=1

JN
ij σ

i σj
]
.

Fixed positions on a lattice
x i ∈ Td , and JN

ij = JN(x i , x j).
Most studied when JN(x i , x j)
is only nonzero for lattice
neighbors.
Thermal equilibrium:

µN(σ) = 1
ZN exp

{
−βHN(σ)

}
.

(Prescribe Ai )
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Ising Phase Transitions

Free energy per particle in thermodynamic limit:

f (β) = lim
N→∞

β−1 N−1 log
( ∑

σ∈{−1,1}N

exp
{
− βHN(σ)

})

Phase transitions correspond to singularities in f . Until (Kramers
1937) it was disputed whether such singularities existed because many
assumed f would be analytic.
The Ising model with nearest neighbor interactions does not have a
phase transition for 0 < β < +∞ when d = 1 (Ising 1925) but does
when d ≥ 2 (d = 2 solved by Onsager 1944, d = 3 unproven).
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Ising Mean Field

Mean field approximation:

1
N

N∑
j=1

JN
ij σ

i σj ≈ σi
∫
Td

J(x i , y) s(y)dy ,

where s(x i ) ≈ E
[
Σi] - consistency equation.

We get

f (β) = β−1
∫
Td

log
(

2 cosh
(
β (H(x) +

∫
Td

J(x , y) s∗(y) dy
))

dx ,

where consistency equation becomes

s∗(x) = tanh
(
β
(
H(x) +

∫
Td

J(x , y) s∗(y) dy
))
.
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Ising Mean Field Solution

Simplest model when H = 0 and J are constant. Then s is constant
and

s = tanh
(
β J s

)
.

s = 0 is always a solution. A bifurcation occurs when H = 0 and
β J = 1. The ferromagnetic phase exists when β J > 1.
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Spin Games

We now consider that each spin, Σi
t ∈ {±1} a random variable,

corresponds to a player, that chooses the rate the spin flips Ai (Σt) to
minimize the

ergodic cost of player i : lim
T→∞

1
T E

[ ∫ T

0

(
L
(
Ai (Σt)

)
+ f N,i (Σt)

)
dt
]
.

Nash equilbria when, for each i , (Ai (σ))σ∈{±1}N minimizes the
ergodic cost with (Aj(σ))σ∈{±1}N fixed for j 6= i .
Player positions on a lattice, x i ∈ Td . Interaction cost has a ‘mean
field’ formulation for the empirical measure

mσ = 1
N

N∑
i=1

δσi δx i ∈ P({±1} × Td ).

Mean field interactions:
f N,i (σ) = f (σi , x i ,mσ).
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The Ising Game
The Ising game control cost is:

L(A) = β−1A
(

log(A)− 1
)
.

Minimized at A = 1.
This incentivises neutrality.

The interaction cost has the form:

f N,i (σ) =
external bias︷ ︸︸ ︷
−H(x i )σi +

conformity︷ ︸︸ ︷
− 1

N

N∑
j=1

J(x i , x j)σi σj

Mean field cost, empirical measure m ∈ P({−1, 1} × Td ):

f (σ, x ,m) = −H(x)σ −
∫
Td

J(x , y)σ
(
m(1, dy)−m(−1, dy)

)
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Ising MFG System

The Legendre transform of L is
h(p) = β−1eβ p.

The MFG system is the discrete / integral equations
0 = l(x) + h

(
u(−σ, x)− u(σ, x)

)
− f (σ, x ,m)

a(σ, x) = h′
(
σ, x , u(−σ, x)− u(σ, x)

)
a(−1, x)m̂(−1, x) = a(1, x)m̂(1, x)

1 = m̂(1, x) + m̂(−1, x).

In the variables s(x) = m̂(1, x)− m̂(−1, x) and
b(x) = u(1, x)− u(−1, x) this simplifies to:

β−1 sinh
(
β b(x)

)
= H(x) +

∫
Td

J(x , y)s(y)dy

s(x) = tanh
(
β b(x)

)
.
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Ising MFG system solution
More explicitly, let H = 0 and J(x , y) = J , so s and b are constant.

β−1 sinh
(
β b
)

= J s
s = tanh

(
β b
)
.

There is always a solution with s∗ = b∗ = 0, A(1) = A(−1) = 1, cost:
l = −β−1.
The other solutions exist when β J > 1, cost: l = −J and

s∗ = ±
√

1− β−2J−2, A(±1) = β J(1∓ s∗).
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Ising Master Equation

The master equation for v(σ, x ,m) is

0 = l(x) +
∑
γ∈S

∫
Td

[
A
(
γ, y ,m

)
∂v(σ, x ,m)(γ, y)

]
m(γ, dy)

+ h
(
v(−σ, x ,m)− v(σ, x ,m)

)
− f

(
σ, x ,m

)
,

where ∂v is like a discrete Wasserstein gradient.
A(γ, y ,m) = h′(v(−γ, y ,m)− v(γ, y ,m)).
Fix H and J constant, s =

∫
Td m(1, dx)−

∫
Td m(−1, dx), this reduces

to a nonlinear transport equation for b(s) = v(1, x ,m)− v(−1, x ,m):

0 = −β−1 sinh
(
β b(s)

)
+ 1

4
[

sinh
(
β b(s)

)
−s cosh

(
β b(s)

)]
b′(s)+H+J s.
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Ising Potential Game

It is easier to solve as a potential game. v(σ, x ,m) = DV (m)(σ, x)
where V solves

0 =λ+
∑

σ∈{±1}

∫
Td

h
(
∂V (m)(σ, x)

)
m(σ, dx)− F (m)

and DF (m)(σ, x) = f (σ, x ,m).

Using that b(s) = ∂V (m)(σ, x) we find the solution has the form:

sinh(β b(s)) =
s B ±

√
B2 − β−2(1− s2)
β−1(1− s2) ,

where B =
(
− H s − J s2

2 − λ
)
and λ (the ergodic constant for the

potential game) has to be determined.
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Analysis of master equation solution

Theorem (””)
When H 6= 0 or β J < 1 there is a unique continuous solution that is C1.
When H = 0 and β J = 1 there is a unique continuous solution that is not
C1.
When H = 0 and β J > 1 there are two continuous solutions (not C1) and
a unique ‘correct’ solution that is discontinuous.
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Concluding Remarks

Spin systems are a mathematically rich field. We are just scratching
the surface of spin games.

Nearest neighbor spin systems exhibit different ‘universality’ at the
phase transition in 2 and 3 dimensions. Is the same true for spin
games?
(The Dyson and Coulomb games [Carmona-Cerenzia-P] finds the
“universal local limit” behavior of the N player game can still be
relevant to and reflected in the convergence of the equations
characterizing Nash optimality)
Techniques from spin systems (which we have not used) include:
transfer matrix, renormalization group, cluster expansion, ...

Thank you!
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