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Fundamental problem

Find and understand roots of a
polynomial

zn + a1z
n−1 + · · · + an−1z + an



Algebraic Functions
18th/19th century perspective

View

(a1, . . . , an) 7→ {z | zn + a1z
n−1 + · · ·+ an = 0}

as a (multi-valued) function in the ai s.

More generally: ai ∈ C(X ).
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When nature hands you an algebraic function . . .

You want to do two things:

1. Construct the simplest formula you can.

2. Prove no simpler formula is possible.
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Example

Consider U2(b, c) := {z | z2 + bz + c = 0}.

Theorem (Babylonians)

Let
√
a := {z | z2 − a = 0}. Then

U2(b, c) =
−b +

√
b2 − 4c

2
.

Theorem (Pythagoreans)

There is no formula for the function U2(b, c) using only rational
functions.
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There is no formula for the general quintic in radicals.

Theorem (Bring, 1786)
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√
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√
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Example 3

Theorem (Klein-Burkhardt)

There is a formula for a line on a general smooth cubic surface
using only d

√
− and the 3-variable algebraic function which assigns

to a general abelian surface a 3-torsion point.

Theorem (Farb-Kisin-W)

The problems of finding a line on a cubic surface and a 3-torsion
point on an abelian surface are equivalent.
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functions of the roots (“natural irrationalities”) and algebraic
functions of 1-variable.
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Solutions of Higher Algebraic Equations

“Formerly the “solution of an algebraic equation” used to
mean its solution by radicals. . . Even at the present
time, such ideas are still sometimes found prevailing; and
yet, ever since the year 1858, a very different point of view
should have been adopted.” (Felix Klein, 1893)
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Natural v. accessory irrationalities
Rules of the game

Definition
Given an algebraic function Φ, then an alg. function Ψ is

1. a natural irrationality for Φ if EΦ
// X factors as

EΦ
// EΨ

// X .

2. an accessory irrationality for Φ if

π1(EΨ) // π1(X ) // Mon(EΦ
// X )

is surjective.
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you must adjoin an accessory square root.
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Hilbert’s 13th Problem

“At the present time, there appear very many topological
papers, but when it comes to fundamental problems, we
have hardly gone beyond Poincaré, or strictly speaking,
Riemann, this in spite of the fact that such progress would
be of great significance, for among other things, the theory
of algebraic functions of two variables.”

(Max Dehn, 1928)



Resolvent degree
Classical formulation

RD(n) := min{d | ∃ formula for roots of general deg. n poly

in alg. fns of ≤ d variables}



Resolvent degree
State of current knowledge

Theorem

1. RD(5) = 1 (Bring, Klein).

2. RD(6) ≤ 2 (Hamilton, Klein).

3. RD(7) ≤ 3 (Hamilton, Klein).

4. RD(8) ≤ 4 (Hamilton).

5. RD(9) ≤ 4 (Hilbert).

We don’t know!
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Conjecture (Hilbert)

1. RD(6) = 2.

2. RD(7) = 3.

3. RD(8) = 4.

4. RD(9) = 4.

More generally:

Conjecture

As n //∞, RD(n) //∞.

We don’t know!
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Is RD(n) ≡ 1?
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History of H13
Kolmogorov and Arnold

Theorem (Arnol’d–Kolmogorov, 1957)

Let f : [0, 1]n // R be a continous function. Then there exist
functions gi , φij : [0, 1] // R such that

f (x1, . . . , xn) =
2n+1∑
i=1

gi (
n∑

j=1

φij(xj)).

“Continuous functions of more than one variable do not exist.”
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AK and H13

“Arnold and Kolmogorov’s [theorem] killed Hilbert’s prob-
lem.” (Jacques Dixmier, 1993)



AK and H13

“The problem remains open, and by the highest standards,
the range of issues is in fact as broad as it was at the
beginning of the 20th century.”

(Anatolii Georgievich Vitushkin, 2004)



AK and H13

“I think the representation [of Hilbert’s degree 7] remains
impossible even . . . by non-holomorphic complex func-
tions which are topologically equivalent to algebraic ones.”

(Vladimir Arnold, 2006)



Understanding H13

- (at least) four problems posed by Hilbert’s 13th:

a) local continuous

XAK: No obstruction!

b) analytic

? Hilbert: obstr. exist; unknown if apply here.

c) algebraic

? Wide open

d) global topological

? Wide open

(AK ∼ Darboux’s theorem in symplectic topology.)
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Goals of this workshop

1. Bring researchers together from algebra, arithmetic/algebraic
geometry, complex analysis/geometry, and topology to focus
on these problems.

2. Focus both on what’s known:

- ed, ed(−; p),
- upper bounds on RD,
- torsion indices, and more generally,
- arithmetic and topological aspects of core examples

3. And also on what’s unknown:

- lower bounds on RD,
- ed of simple finite groups,
- analytic and topological versions of Hilbert’s 13th problem,
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Thank you for coming!



Enjoy the workshop!


