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Gravitational wave searches

CBC signal

i

Burst signals

}

Continuous waves

Stochastic signals
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Continuous gravitational waves

The key source of CW is thought to be rapidly rotating neutron stars
which are not symmetric around their rotation axis.
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[Graham Woan - https://dcc.ligo.org/G2001983]



» Spin down from neutron star

» Doppler shift from earth orbit 20002
and rotation
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Current searches

Known frequency fdot and sky position
Templated matched filtering

Directed
Known sky position

Nothing known prior to search.
Mostly short coherence times - combined incoherently
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> Targeted searches can use matched filter waveforms as they have
prior knowledge of sky position and frequency evolution
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» For all-sky searches one would need O(10'*) templates to suffi-
ciently cover the sky for 1 year of observation. Not accounting for
fif ..

» This is not feasible, so semi-coherent searches are used

» Split the data up into small segments then analyse them coherently
> results can then be incoherently combined
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Semi-coherent techniques used in all-sky searches include

» Time domain F-stat - uses a matched filter over short duration
segments O(days), then finds coincidences between segments

» Hough searches based on sets of FFTs
» Sky hough - Generates the hough transform on sky parameters for
given frequencies
» Frequency hough - Generates the hough transform for  and f for
data demodulated for Doppler shifts

» SOAP - identifies the most probable frequency track in set of FFT
power spectra
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SOAP

» SOAP is a rapid all sky search for continuous gravitational waves
based on the Viterbi algorithm. 10.1103/PhysRevD.100.023006

» |t identifies the track through a spectrogram which gives the high-
est sum of some statistic.
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https://link.aps.org/doi/10.1103/PhysRevD.100.023006

Viterbi algorithm

The Viterbi algorithm rapidly identifies an optimum set of states. Finds
the optimal path with 3 x N; x N, calculations rather than N; x 3"
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Viterbi algorithm

The Viterbi algorithm rapidly identifies an optimum set of states. Finds
the optimal path with 3 x N; x N, calculations rather than N, x 3™
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Viterbi algorithm

The Viterbi algorithm rapidly identifies an optimum set of states. Finds
the optimal path with 3 x N; x N, calculations rather than Ny x 3™
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Viterbi algorithm

The Viterbi algorithm rapidly identifies an optimum set of states. Finds
the optimal path with 3 x N; x N, calculations rather than Ny x 3™
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Viterbi algorithm

The Viterbi algorithm rapidly identifies an optimum set of states. Finds
the optimal path with 3 x Ny x N, calculations rather than N, x 3"
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Viterbi algorithm

The Viterbi algorithm rapidly identifies an optimum set of states. Finds
the optimal path with 3 x Ny x N, calculations rather than N, x 3"
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The inputs and outputs of the search are then the Viterbi statistic,
Viterbi track and Viterbi map
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By taking the sum of the values along the Viterbi track, one can build
a detection statistic.
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Multiple detectors

» SOAP searches for a consistent track between the detectors using
a Bayesian ‘line aware statistic’

Odds = psignal/(pnoise + pline) (1)
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Instrumental lines

Instrumental lines are
still a large issue for
SOAP

> If they appear in
both detectors

> In single detectors
the track can follow
the edge of a line
where it finds con-
sistent high power
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Convolutional neural networks

To address the issue of noise contamination in the output statis-
tics, we can combine the output information of the Viterbi search.
10.1103/PhysRevD.102.083024

Viterbi statistic
Sum of statistics along path

Downsampled Viterbi map
Map of normalised Viterbi statistic in each time-frequency bin

Downsampled spectrograms

Downsample the input spectrograms such that the spectrograms are
1/6 of original size
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https://link.aps.org/doi/10.1103/PhysRevD.102.083024

Network structure

» The final statistic is
made of the outputs
separate networks
combined together.

» Train the Vitmap and
Spectrogram networks
separately

» Then strip the output
layers of each and join
to final output

» Retrain network

Vitmap network Spectrogram network

Layer size
(156x89)
2x(156x89)

Convolutional 8x(156x89)
8, 5x5 filters

xaonny
8x8

i

Convolutional Convolutional
sxcisaany

8, 33 filters

8x(2x1)

Network combinations

vitmap + spect vitmap + vitstat vitmap+spect+vitstat

- W T
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Training data

> We split real detector sub-
bands into two categories odd
and even
»> ‘even’ sub-bands are 100.0,
100.2, 1004 ......
> ‘odd’ sub-bands are
100.1,100.3,100.5 ......

» This allows us to train and test
on different sets of data

» We can ‘augment’ the data

» For each piece of noise we
can duplicate and inject a CW
signal into one

20
Time [day index]
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» Full pipeline generates
training, testing and
search data for each
odd and even bands

> Trained networks test
and search on opposite
band category

2
Divide ST to running me-
dian and get power spectrum.

3
Narrowband SET

run SOAP search.

8
ownsample spectzograms
and vitmaps.
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Example of sensitivity to signals injected into LIGO’s second observing
run O2 with 1% false alarm
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» Time taken for

different parts of
the search

Data generation
is easily paral-
lelised

5000 - 10000
times faster
than existing
all-sky searches

Generating data on single CPU

Time [hrs]
Narrow-banding ~9
Training data ~ 240
Testing data ~ 75
Search data ~ 40

Training CNN on single GPU

Training time [hrs]  Loading time [hrs]

Viterbi statistic 0.03 0.2
Viterbi map 0.8 0.7
spectrogram 9 1
Viterbi map

+ Viterbi statistic 1 0.7
Viterbi map
+ spectrogram 1.4 1.6
Viterbi map
+ Viterbi statistic
+ spectrogram 1.5 2
Testing CNN on real data on GPU
Testing [s] Loading [s]
All CNN 5 60 — 160
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Parameter estimation

» Once we have a detection, we
would then like to know astro- ™
physical parameters about the Faoos
source. -

» We would like to estimate the g I
sky position, frequency and —
frequency derivative. e e

> It becomes very difficult to .
define a likelihood for these -
tracks.
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Conditional Variational Autoencoders

» We looked into likelihood free methods

» Conditional Variational Auto Encoders
> Initially used for CBC parameter estimation to generate Bayesian
posteriors
> Vltamin paper accepted into nature
> Gabbard et al https://arxiv.org/abs/1909.06296

» This technique minimises the cross-entropy between the true pos-
terior p and a posterior estimate ry

H(p.r) = — / p(x | y) log ro(x | y)dx @)
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» The structure of the CVAE al-
lows the posterior to be es-
timated without the network
ever seeing a true posterior

» The cross entropy can be
rewritten as

Np
1
H 5 N Z [7 log Vﬁz(xn ‘ Zmyn)

n=1

+KL [q¢(za | Xn, Yn)[10, (Zn | ya)]] -

(3)

Train

Test

Hyy

Hry

Xsamp
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To compare this technique to traditional samplers (nested samplers,
mcmc samplers) We do with by adding Gaussian noise to the CW
frequency evolution (not physical)
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Viterbi tracks

» To train on Viterbi tracks we run the SOAP search on many
spectrograms containing continuous gravitational wave signals
(~ 1 x 10°)

» There are two main outputs to the network

» The four Doppler parameters «, d,f, f
> The probability that a sample from the track is associated with an
astrophysical signal

» It returns samples from the posterior distribution on these 360 + 4
parameters
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Summary

» To identify a CW signal we need to search through a large param-
eter space and large amount of data.

» Semi-coherent techniques can be used to make all-sky analyses
feasible

» SOAP is a semi coherent pipeline which can rapidly identify can-
didates

» CNNs help improve the search sensitivity to neutron star signals
by classifying SOAP outputs and inputs

» CVAEs allow us to return some astrophysical parameters about
the source
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