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GW signal detection

We did it!
Let’s do a press conference!



GW signal detection

• Online process (seconds to minutes)
• Produce triggers.
• Characterize detector.
• Apply vetoes.
• Online detection pipelines:

• CWB
• LAL
• and many more….

• Send public alerts

• Offline process (days to months)
• Detector calibration
• Detect and mitigate glitches
• Detailed parameter estimation
• Astrophysical implications

Abbott et al. Classical and Quantum Gravity, Volume 37, Issue 5, id.055002 (2020)



Proof of concept
• Test with non-white Gaussian noise.
• Proof that the algorithm works with GW signals.

Application to real data
• Test with non-white non-Gaussian noise.
• Proof that the algorithm works with GW real data.

Test with standard pipelines
• Use in combination with standard pipelines.
• Proof that the algorithm improves the results.
• Proof that include new features

GW data analysis steps



Mathematical Framework



Signal denoising approach

Total Variation Sparse representation

x: signal
n: noise

Smooth solution
Preserve edges

Sparse solution
Redundant dictionary

u = argmin
u

⇢
R(u) +
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Fidelity term. Measures the similarity 
of the solution to the data. 

� :

Regularization term. The constrain we 
want to impose to the data. 

Regularization parameter. Controls 
the relative weight of both sides.



Introduction to Total 
Variation Methods

Credit: IPAM/UCLA 



Introduction to TV methods

Solution: Find a function u whose L2-norm distance to y is noise standard deviation.

Least Squares
Fourier Transform

Gibbs Phenomena
Indeterminate solution

Issues overcome using an auxiliary energy prior to regularize the least-squares problem, solving a 
constrained variational problem:

subject to 



▪ Variational problem can be formulated as an unconstrained problem (Tikhonov 
regularization):

▪ Wiener filter

▪ Good characteristics:
▪ Elliptic PDE.
▪ Easy to solve due to differentiability and strict convexity. 

▪ Issues in the presence of noise:
▪ Amplification of high frequencies
▪ The recovered smooth solution shows spurious oscillations near steep gradients or edges.

Wiener filter

u = argmin
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▪ Produces Singular distributions.

▪ Preserves edges and avoids spurious oscillations (ringing).

▪ Promotes zeros for small gradients.

▪ Convex problem.

▪ Fine scales are destroyed by the effect of TV norm.

▪ A good estimation of     results in an ill-conditioned Euler – Lagrange equation.

▪ Associated Euler-Lagrange equation is elliptic and non-degenerate.

▪ Approximate solution can be obtained by e.g. a nonlinear Gauss-Seidel iterative procedure.

r · ru

|ru| + �(f � u) = 0

�

Rudin-Osher-Fatemi model

1



▪ Efficient implementation of L1 regularized problems.

▪ Decouples into L1 and L2 portions.

shrink(x, �) =
x

|x| ⇤max(|x|� �, 0) ,

uk+1 = min
u

�||dkx �rxu� bkx||

min
u,d

|d|+H(u) +
�

2
||d� (u)||22

dk+1 = min
d

|d|+ �||d� uk+1 � bk||22 dk+1
j = shrink(uj + bkj , 1/�)

Direct Computation (Gauss-Seidel)

Split-Bregman method

Goldstein T. & Osher S.
SIAM J. Imaging Sci., 2, 209



Introduction to 
Dictionary Learning



NP Hard

Not convex

Sparse representation of signals

Add the constraint to assure sparsity:

CSIRO Research

https://research.csiro.au/data61/dictionary-learning-for-vision/


▪ The problem can be transformed into a convex variational formulation.

▪ We have used an efficient implementation called SB-Lasso.

• Based in Split-Bregman algorithm.
• Decouples the problem into L1 and L2 terms.
• Solve them alternatively until convergence is reached.

Tibsibirani R. JSOR, B, Vol 58. 1996 

Goldstein T. & Osher S.
SIAM J. Imaging Sci., 2, 209

The LASSO



▪ We want to design the dictionary to fit a given set of signals                  
GW templates

▪ Given a set of signal patches: 

▪ We use block-coordinate descend method.
• Solve      and each      iteratively. 

Dictionary Learning problem

↵ = argmin
↵,D

1

n

mX

i=1

||D↵i � xi||22 + �||↵i||1,



Aplication to GW signals



Gravitational-wave 
signal catalogs

Burst from core-collapse supernova Binary Black Hole merger

• 128 Waveforms.
• Short duration ~10 ms.

• 174 Waveforms.
• Long duration ~ 1s.

Credit: H. Dimmelmeier at al. 
Credit: A.H. Mroué at al. 



▪ Detector noise is not stationary, and its standard deviation is unknown.

▪ We must determine the optimal value of the regularization parameter that 
produces the best results. Heuristic search when the standard deviation of the 
noise is not known. 

▪ Find an optimal value for     is required.

▪ We use the Mean Square Error (MSE) and Structural similarity index (SSIM) to 
validate the results.

� ||u� f ||2L2
= �2

SSIM(x, y) =
2µxµy + e1
µ2
xµ

2
y + e1

2�xy + e2
�x�y + e2

Search Optimal Regularization Parameter



Gaussian noise
SNR = 20

TF, A. Marquina, J.A. Font and J.M Ibañez, 2014

Original

SB

rROF

TV methods
CCSN BBH



TV methods
CCSN - AdLIGO data

Not very strong dependence on
the regularization parameter.

TF, E. Cuoco, A. Marquina, J.A. Font and J.M. Ibañez (2018) 



GW150914

TV methods



Integration with CWB
Barneo P.J., TF, Font J.A., Drago M., Portell J., Andrade M., and Marquina A. in preparation

GW150914
CWB CWB + rROF

SNR
25.2

SNR
27.1

Preliminary



Catalog of GW signals Initial dictionary
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Perform dictionary learning

Select random patches

Learned dictionary 

Learning process



Dictionary denoising process
▪ We start by considering a finite number of training signals: m patches of length n.

▪ To obtain the trained dictionary, we add the dictionary matrix D as a variable in 
the minimization problem: 

▪ Dictionary updated using a block-coordinate descent method (Mairal et al 2009, 
Tseng 2001). 

▪ CCSN and BBH gravitational wave catalogs. 80% of waveforms to train the 
dictionary, 15% for method validation, and 5% to test algorithm. 

▪ Signals shifted to be aligned with minimum peak (CCSN) or maximum peak in the 
merger (BBH). 2048 samples to train the dictionary

The i-th coefficient contains the 
coefficients of the sparse representation 
of each atom in the dictionary.

↵ = argmin
↵,D

1

n

mX

i=1

||D↵i � xi||22 + �||↵i||1,



Noisy signal

Denoised signal

Dictionary denoising process



❖ Test with no signal.

❖ Lasso set coefficients to 0 when the 
signal is very different from catalog 
atoms.

❖ The selection of     is key to avoid 
spurious signal reconstruction. 

❖ In a more realistic scenario the 
presence of instrumental glitches 
could produce a false 
reconstruction.

Dictionary denoising process
No signal



Dictionary denoising process

SSIM = 0.98

MSE = 0.018⇥ 10�3 MSE = 0.271⇥ 10�3

SSIM = 0.67

SNR = 20

Peaks well recovered.
Ring down weak peaks set to zero

Small oscillations are lost.
Broad morphology still captured.

CCSN

TF, A. Marquina, J.A. Font and J.M. Ibañez (2017) 



More challenging scenario.                      SNR= 10

Dictionary denoising process
CCSN



E. Abdikamalov, S. Gossan, A. M. DeMaio, and C. D. Ott, Phys. Rev. D, 90, 044001 (2014).

❖ We test the method 
with a signal from 
other catalog.

❖ Similar structure 
(burst).

❖ Accurate results.

❖ Some peaks missing.

Dictionary learning results
Signal from different catalog



❖Random signal from test set.

❖Random time of arrival.

❖SNR = 20.

We are only interested in merger part. Use other D to recover the chirp area.

Dictionary learning results
BBH 



❖ Test the dictionary when dealing 
with signals different from the type 
they are designed for.

❖ Use both dictionaries independently.

❖ Each dictionary discriminates well 
between the type of signal.

Dictionary learning results
Combination of signals



Dictionary denoising process
GW150914



Aditional results



CCSN mechanism extraction with LASSO
§ We try to reproduce the analysis done in Logue* + 2012
§ The idea is to determine the main mechanism of emission of GW.

§ Magnetorotational mechanism.
§ Neutrino mechanism.
§ Glitch model (non physic).

§ We use signal from three CCSN catalogs embedded in Gaussian noise.
§ Use non-trained dictionaries to determine to which dictionary belongs a random signal.

Magnetorotational Neutrino Glitch

Murphy + 2009Dimmelmaier + 2008

Saiz-Pérez, A ; TF; Font, José A: arXiv:2110.12941

* Logue J., Ott C. D., Heng I. S., Kalmus P., Scargill J. H. C., 2012, Phys. Rev. D, 86, 044023

https://ui.adsabs.harvard.edu/
https://ui.adsabs.harvard.edu/
https://ui.adsabs.harvard.edu/link_gateway/2021arXiv211012941S/arxiv:2110.12941


Classification of the core-collapse supernova explosion mechanism with
learned dictionaries



CCSN mechanism extraction with DL

SMEE

100 % of magneto-rotational
95 % neutrino

95 % of magneto-rotational
80 % neutrino



▪ In the LVC there exist diverse strategies to classify glitches in the detectors:
▪ Powell et al (2015, 2017):

• PCAT: Principal Component Analysis for Transients. Uses PC coefficients to classify glitches using a Gaussian
Mixture Model.

• PC-LIB: Based on LAL-Inference. Computes Bayes factor for glitch selection. Supervised classification.

• WDF-ML: Wavelet Detection Filter + (unsupervised) ML algorithm (GMM).

▪ Zevin et al (2017): Gravity Spy, Zooniverse Platform. Citizen science + ML.

▪ Mukund et al (2017): Difference Boosting Neural Network (supervised Bayesian classifier).

▪ George et al (2018): Deep Learning + Transfer Learning.

▪ Razzano & Cuoco (2018): Convolutional Neural Networks to classify glitches from their spectrograms
(time-frequency evolution)

▪ Llorens-Monteagudo et al (2018): Dictionary learning.

▪ Farr et al: Transient glitch mitigation in Advanced LIGO data PRD 104, Issue 10 (2021)

▪ Ben Farr Talk http://www.ipam.ucla.edu/abstract/?tid=17039&pcode=GWAWS3

▪ Others

Glitch denoising and classification with dictionary learning

http://www.ipam.ucla.edu/abstract/?tid=17039&pcode=GWAWS3


Glitch denoising and classification with dictionary learning

§ Simulated glitches embedded in Gaussian noise to simulate the background noise of advanced

LIGO in its broadband configuration.

§ Data set of 3000 simulated glitches of three different waveform morphologies, comprising 1000

glitches per morphology.

§ 3 simple types of glitch morphologies (following Powell et al, 2015)



Glitch denoising and classification with dictionary learning

Performance barely decreases with SNR (down to SNR~10).    
Most misclassified glitches have highest and lowest frequencies. More affected by noise 
than intermediate frequencies.

Confusion matrix

Out of 3000 glitches, 2879 (96%) are correctly classified.

Llorens-Monteagudo+ (2018) 



Blip denoising via dictionary learning
Goal: Try to create a model to remove glitches from noise.



Blip denoising via dictionary learning
TF and al. Physical Review D, Volume 102, Issue 2, article id.023011, 2020



Blip denoising via dictionary learning



Blip denoising via dictionary learning



Blip denoising via dictionary learning



Blip denoising via dictionary learning



Glitch denoising via dictionary learning

TF, E. Cuoco, A. Marquina and J.A. Font + (in preparation) 

Koi Fish
Preliminary



Glitch denoising via dictionary learning

TF, E. Cuoco, A. Marquina and J.A. Font + (in preparation) 

Koi Fish
Preliminary



Glitch denoising via dictionary learning

TF, E. Cuoco, A. Marquina and J.A. Font + (in preparation) 

Scattered Light Preliminary



Glitch denoising via dictionary learning

TF, E. Cuoco, A. Marquina and J.A. Font + (in preparation) 

Scattered Light Preliminary



Glitch denoising via dictionary learning

TF, E. Cuoco, A. Marquina and J.A. Font + (in preparation) 

Scattered Light Preliminary



Summary and Conclusions

§ We have discussed variational methods for minimization problems based on the TV-norm in the 

context of gravitational-wave signals.

§ Novel strategy in the field.

§ We have shown that TV algorithms can be useful in the field of Gravitational-Wave Astronomy 

as a tool to remove noise.

§ Integration of rROF with CWB. Next step integrate with Bilby.

§ We have shown that denoising based in Dictionary Learning produces very good results in the 

case of Gaussian noise.

§ We have obtained promising results combining the denoising with a classification based in 

LASSO.

§ Next step with real data for both signals and glitches is in progress.



Thank you for your 
atention


