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Overview
• Introduction to gravitational wave burst searches 

• Coherent Waveburst 

• Gaussian Mixture Modelling 

• Application to O3a all-sky burst searh 

• Summary, discussion & future work 

• Bonus (if time permits): Generative adversarial networks for Burst waveform 
generation
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ML4GW@GLA
• Machine learning for gravitational waves at Glasgow: 
• Convolutional neural networks (CNNs) for binary black 

holes and continuous wave searches 
- H. Gabbard et al. PRL 2018, arXiv:1712.06041 
- J. Bayley et al., PRD 2020, arXiv:2007.08207 

• Rapid inference with conditional variational 
autoencoders (VItamin) 
- H. Gabbard et al., accepted Nature Physics, arXiv:1909.06296 

• Speed up of nested sampling with normalising flows 
(Nessai) 
- M.J. Williams et al., PRD 2021, arXiv:2102.11056 

• Gaussian process regression for waveform characterisation 
- D. Williams et al., PRD 2020, arXiv:1903.09204 

• Generative Adversarial Networks (GANs) for generating burst signals 
- J. McGinn et al., CQG 2021, arXiv:2103.01641 

• Gaussian mixture models for gravitational wave burst searches (this talk) 
- Gayathri V. et al., PRD 2020, arXiv:2008.01262
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Global gravitational wave network
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Gravitational wave signal types
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Source types

!7!7

Compact Binary 
Coalescence

StochasticContinuous

Burst
modelled& unmodelled&

short&

long&



Generic transient (burst) analysis
• Searches for gravitational-wave bursts do not require knowledge about the 

phase evolution (waveform) of the expected signal 
• Burst searches aim to cover a broad parameter space which can overlap 

with well-modelled signals (eg. binary black holes) 
- Calderon Bustillo et al., PRD (2018) & Romas-Buades et al., PRD (2020) have shown 

that burst searches can be more sensitive than template-based searches for GWs 
from high-mass BBH systems, especially if there is significant orbital eccentricity.   

- potential for discovering new sources of gravitational waves 
• Steps of a typical generic burst search: 

- weight data by the noise at each frequency (whitening) 
- make time-frequency representation of the data 
- identify correlated excess power in multiple detectors 
- estimate false alarm rate of observations 

• Some burst searches target GWs expected from particular sources or are 
informed by non-GW observations of astrophysical phenomena
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Burst searches
• Correlation between data from 

multiple detectors should be at a 
maximum when the data is shifted 
to correspond to the time delay 
corresponding to the sky location 

• To estimate the background, large, 
unphysical time-shifts are applied 
to the data
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animation: https://github.com/reedessick/pedagogy
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Burst searches
• Lets formulate our data so that
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Null stream
• x
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Coherent Waveburst
• Coherent Waveburst (cWB) is an algorithm for detecting generic 

gravitational-wave transients 
- made the first detection of gravitational waves from binary black holes (GW150914) 

• The cWB algorithm identifies coherent excess power in multiple detectors 
• Excess power must be consistent with detector response (amplitude, time-delay,…) for 

a gravitational wave signal originating from somewhere in the sky 
- excess noise from environmental sources are not likely to have consistent signal 

features, time delay,… 
• To determine the background, cWB is run on data with an unphysical time shift  
• When a significant cluster of excess power is identified, it is stored as a trigger. 
• Each trigger is characterised by a large range of attributes in an effort to capture the 

various properties of the identified excess power
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cWB trigger attributes (!!)
mass0 mass1 spin0 spin1 spin2 spin3 spin4 spin5 time0 lag0 lag1 lag2 slag0 slag1 slag2 rho0 
rho1 gnet anet netcc0 netcc1 netcc2 netcc3 neted0 neted1 neted2 neted3 neted4 likelihood 
norm penalty ECOR factor Qveto0 Qveto1 frequency0 frequency1 dtL dtH reconstructed_snr 
null0 null1 strain0 strain1 hrss0 hrss1 noise0 noise1 duration0 duration1 volume0 volume1 
size0 size1 ecor bandwidth0 bandwidth1 snr0 snr1 xSNR0 xSNR1 sSNR0 sSNR1 iSNR0 iSNR1 ioSNR0 
ioSNR1 oSNR0 oSNR1 Lveto0 Lveto1 Lveto2 chirp0 chirp1 chirp2 chirp3 chirp4 chirp5



Coherent Waveburst
• For each search, coherent Waveburst will generate a list of background 

triggers from the time-shifted data and a list of “zero-lag” triggers (which 
may contain gravitational wave signals). 

• Coherent Waveburst is used for a range of searches, including searches for 
binary black holes, searches for gravitational waves associated with 
supernovae, searches for long-duration bursts,… 

• The “standard” coherent Waveburst procedure is to characterise triggers 
by binning and thresholding in an effort to distinguish gravitational wave 
signals from spurious transients. (post processing)  

• This process is typically optimised manually, often by looking at scatter 
plots of various attributes, and Receiver Operator Characteristic (ROC) 
curves. 

• In the absence of well-modelled signal morphologies, the search 
sensitivities are characterised by ad hoc waveforms (more later)
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Gaussian Mixture Models
• We wanted to develop an approach that minimises the need to binning and 

thresholding. 
• We adopted a Gaussian Mixture Model (GMM) approach. 
• Gaussian Mixture Models uses a combination of Gaussian distributions to 

model the parameter space covered by a set of data points 
• We construct one GMM to model the attribute space covered by simulated 

signals and another GMM to model the time-shifted background triggers. 
• Once the models are constructed, we can calculate the likelihood that a 

trigger belongs to the signal or noise model. 
• Note that the GMM step is only applied at the post processing stage.  
• Publish demonstration here: Gayathri et al. PRD (2020) arXiv:2008.01262 
• There has also been work using boosted decision-tree approach (XGBoost) 

for better discrimination of binary black hole signals from background:  
T. Mishra et al. PRD (2021) arXiv:2105.04739
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Gaussian Mixture Models
• Gaussian Mixture Models (GMM) uses a combination of Gaussian 

distributions to model the parameter space covered by a set of data points 
• The process of selecting the properties of the Gaussian distributions is 

iterative and unsupervised 
• For a model with K Gaussian distributions, each of weight wi, the probability 

that the data x belongs to the model is 

• Now, let x be the trigger attributes for 1 event. So, a trigger list of n events 
is X = {x1, x2,…xn} and the corresponding likelihood is
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Gaussian Mixture Models
• The log-likelihood is thus 

• Maximising the log-likelihood, we find 

• In practice, Expectation Maximization solve for the maximum likelihood. 
• This gives us the locations      and widths      of the Gaussians which we 

use to fit the data. 

• Reminder: we create one GMM model for the signal space and another for 
the background space, then calculate the likelihood that triggers belong to 
either of these models.
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Gaussian Mixture Model example
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1.3 Using Gaussian mixture models

Figure 1.1: The left panel shows the data points using which the model was constructed.

The four colours correspond to the four di↵erent Gaussians from which the samples were

drawn. The right panel shows a plot for the BIC score for di↵erent number of clusters. In

this case the BIC score is minimum for the model with four clusters.

# Mean GMM mean

1. (1.8, 4.4) (1.0, 4.6)

2. (13.2, 7.5) (13.4, 7.7)

3. (9.1, 10.9) (8.9, 11.03)

4. (2.05, 14.3) (2.2, 14.3)

5. (5.04, 6.2) (4.9, 5.8)

Table 1.1: The table shows the means

of the Gaussians from which the samples

were drawn and the ones obtained after fit-

ting, in the second and third columns re-

spectively.

Figure 1.2: The above plot shows the el-

lipses corresponding to the Gaussians ob-

tained after fitting.
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Gaussian Mixture Models
• The Bayesian Information Criterion (BIC) is used to determine the optimal 

number of Gaussian distributions to fit the data set  
 
 
L is the maximized value of the likelihood function, k is the number of 
parameters estimated by the model and n is the number of data points in 
the sample 

 19

1.2 Gaussian Mixture

1.2 Gaussian Mixture

Scikit-learn has di↵erent classes for implementing Gaussian mixture models. The

GaussianMixture object implements the EM algorithm mentioned in the previous

section for fitting data to a mixture of Gaussians.

The fit() method of the GaussianMixture object estimates the model parameters

when given a data set. This requires the user to specify the number of clusters in the

model. The predict() method predicts the labels of the data samples using the trained

model.

A drawback of this algorithm is that it cannot predict the optimal number of com-

ponents needed to describe the undelying structure of the data. One way of overcoming

this is to use the Bayesian information criterion (BIC) or the Akaike information crite-

rion (AIC) for model selection. We can assign a BIC/AIC score to a model and select

the number of clusters with the lowest score. The AIC and BIC are defined as

BIC = k ⇤ ln(n)� 2ln(L̂),

AIC = 2k � 2ln(L̂)

where L̂ is the maximized value of the likelihood function, k is the number of parameters

estimated by the model and n is the number of data points in the sample. A lower BIC

score corresponds to a better model. The penalty term in the AIC is smaller than that

in the BIC, hence AIC usually prefers more number of clusters than the BIC.

1.3 Using Gaussian mixture models

The code in appendix ?? generates a random number of 2D Gaussian distributions

with random means and covariance matrices and draws random samples from each of

these distributions and stacks them together to form a data set. Then it fits a mixture

of Gaussians on the data set. This is done for a range of clusters and the BIC score

is computed for each choice. Fig. 1.1 shows the data points clustered according to the

Gaussians from which they were drawn and the BIC score for models with di↵erent

number of clusters.

Fig. ?? shows the data points as clustered by GMM. Table ?? compares the means

of the Gaussians obtained by GMM fitting to the ones from which data points were

sampled.
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GMM for O3a data
• Perform cWB+GMM search over cWB all-sky short duration low frequency 

burst analysis over O3a with HL network (R. Abbott et al.,  arXiv:
2107.03701v1) and report confident events.  

• Consider cWB all-sky short duration low frequency burst  analysis over O3a 
with HL network (select events with rho0 >5.5 and netcc0 >0.5). 

• We choose 12 attributes to characterise each trigger: rho0, netcc0, netcc2, 
neted0, norm, penalty, Qveto0, Qveto1, ecor, Lveto0, Lveto1, Lveto2. 

• We excluded frequency and duration because it is a function of the injected 
signal population and the Burst MDCs are currently not astrophysically 
motivated. 

• We reparametrize the cWB attributes such that it can fit with optimum 
Gaussians using  functions like log and inverse sigmoid. 
- Combine two attributes to produce Lratio: Lveto1/Lveto0. 
- Reparametrized the attributes  netcc0, netcc2 and Lveto2 and Lratio with inverse 

sigmoid function and penalty, rho0, neted, ecor and Qvetos with logarithmic function.
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Re-parameterization

 21
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iFAR in years

Event ⌘

c

Q

veto

c

c0 �

2
N

norm

T M(M�) cWB+GMM cWB

GW190408 181802 8.59 0.92 0.96 0.13 5.09 -0.41 43.0+4.2
�3.0 0.30 25.14

GW190412 11.69 4.16 0.95 0.06 5.4 13.21 38.4+3.8
�3.7 15.62 14.86

GW190421 213856 6.46 0.31 0.97 -0.07 4.41 -0.38 72.9+13.4
�9.2 0.30 0.04

GW190426 190642 5.52 0.45 0.88 0.08 4.07 -4.85 184.4+41.7
�36.6 0.02 0.01

GW190503 185404 7.34 0.34 0.93 -0.02 4.76 1.65 71.7+9.4
�8.3 0.84 0.70

GW190513 205428 7.05 1.67 0.86 0.15 3.77 -2.99 53.9+8.6
�5.9 0.07 0.28

GW190517 055101 6.08 0.19 0.88 -0.15 3.05 -2.79 63.5+9.6
�9.6 0.08 0.01

GW190519 153544 10.13 0.53 0.89 0.01 7.63 18.04 106.6+13.5
�14.8 33.83 7.78

GW190521 9.24 0.60 0.92 -0.16 10.53 32.45 163.9+39.2
�23.5 > 200 65.38

GW190521 074359 14.19 0.56 0.96 -0.08 8.44 72.77 74.7+7.0
�4.8 > 200 326.88

GW190602 175927 7.25 0.43 0.95 -0.13 6.5 0.73 116.3+19.0
�15.6 0.54 0.51

GW190706 222641 9.29 0.79 0.83 -0.10 7.36 24.93 104.1+20.2
�13.9 > 200 65.38

GW190727 060333 5.86 0.35 0.96 0.17 4.96 -2.94 67.1+11.7
�8.0 0.07 0.006

GW190728 064510 6.50 3.94 0.87 -0.13 2.55 -4.93 20.6+4.5
�1.3 0.02 0.051

GW190828 063405 10.27 0.84 0.82 0.10 5.01 8.78 58.0+7.7
�4.8 7.52 163.44

GW190915 235702 8.07 0.42 0.95 0.06 4.29 5.29 59.9+7.5
�6.4 3.07 5.36

GW190929 012149 5.97 0.22 0.85 0.103 3.44 -6.20 104.3+34.9
�25.2 0.01 0.009

TABLE III: Table of CBC candidate events identified by cWB in GWTC-2 and GWTC-2.1. The columns shows
e↵ective correlated signal-to-noise ⌘

c

, energy distribution of the event over di↵erent time segments Q
veto0, network

correlation coe�cients C
c0, residual noise energy measure �2, ratio between the reconstructed energy and the total

energy N
norm

and source total mass M reported in GWTC-2 [1] and GWTC-2.1[2]. The two rightmost columns
report event significances for the cWB plus GMM search and the standard cWB all-sky search.

Appendix A: Re-parameterization of attributes

Given the cWB trigger attributes, E
c

, ⌘
c

, c
c0, c

c2,
N

ED

, N
norm

, �2, Q
veto0 ,Q

veto1, L
veto0, L

veto1 and
L
veto2. We re-parametrize some of the attributes which

do not follow a well bahaved Gaussian distribution. In
Table.IV, we show the re-parametrized attributes along
with their original form. We further show the reduction
in the number of Gaussians after the re-parameterization
of the attributes.

TABLE IV: Details of Reparametrization

Original Re-parametrized

attribute set attribute set

⌘

c

log

10

(⌘
c

)

c

c0

logit(c
c0

)

c

c2

logit(c
c2

)

N

ED

log

10

(N
ED

+ 103)

E

c

log

10

(E
c

)

N

norm

N

norm

�

2

�

2

Q

veto0

log

10

(Q
veto0

+ 1)

Q

veto1

log

10

(Q
veto1

)

L

ratio

logit(L
ratio

)

L

veto2

logit(L
veto2

⇥ 0.99)

Model No. of optimum Gaussians in GMM

Original Re-parametrized

attribute set attribute set

Signal 113 90

Noise 115 82
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energy N
norm

and source total mass M reported in GWTC-2 [1] and GWTC-2.1[2]. The two rightmost columns
report event significances for the cWB plus GMM search and the standard cWB all-sky search.
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Training and training
• Around 1000 years of background are generated by time-shifting the HL 

network zero lag livetime of 102.56 days data. 
• O3a background and simulation data divided into 3 datasets 
• Tuning data: (10% of the full data) - Used to determine optimum attribute 

subset, by minimising BIC value on Signal Injections. 
• Training data:  (70% of the full data) - Training data used to obtain means, 

variances and weights of the GMM. (Training the model  parameters). 
• Testing data: (20% of the full data) - We are unable to estimate event 

significance estimate to beyond 1 per 200 years (0.2 x 1000 years)
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Modelling the signal space
• We consider the same set of simulated signals as the O3a all-sky burst 

search (described in R. Abbott et al., arXiv:2107.03701) 
- A set of ad hoc waveforms sine-Gaussian wavelets (SG), Gaussian pulses (GA), and 

band-limited white-noise bursts (WNB). 
- The simulation tuning/training/testing data is split in the same proportions as the 

background data 

• Waveforms from core-collapse supernovae distributed uniform-in-distance.
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Gravitational 
wave bursts 

• Burst group uses ad hoc waveforms for development and 
sensitivity estimation.

• The ad hoc models are based on mostly analytic waveform 
models; We aim to create a tool to allow Burst searches to 
probe the parameter space between these waveform 
models.

3



Constructing a detection statistic
• For given model parameters and number of Gaussian, the maximum log 

likelihood statistics for each trigger given by -   

• The GMM detection statistic for 
each trigger as follows - 
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For data consist of two 
distinct classes, signals (s) 
and noisy background 
glitches (g). 



Improved sensitivity with GMM
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       sine-Gaussian with Q =9

https://wiki.ligo.org/Bursts/O3-Cwb-LF

White Noise Burst

Gaussian Pulse

GMM method mitigates 
"blip-type" glitches 
during O3 run.

cWB+GMM: vary T

standard cWB: vary rho

https://wiki.ligo.org/Bursts/O3-Cwb-LF


Improved sensitivity with GMM
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standard cWB 
threshold



Robustness test
• Tested on CCSNe injections, which not included in the training data set to 

proves the robustness against the  different morphologies of waveforms 
and distribution. 

• Training data: Set of waveforms (Gaussian Pulse, sine-Gaussian wavelets 
and White Noise Burst).
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O3a BBH observations
• Analyzed the low frequency  [16,1024] Hz region of HL network. 

• Found 15 known BBHs (same as 
cWB all sky search). 

• The loudest event excluding known 
CBC are at UTC 2019-09-30 
23:46:52 has an iFAR of 0.33 years 
(0.008 years in cWB) and at UTC 
2019-05-11 04:12:15 with and iFAR 
of  0.15 years (0.002 years in cWB ). 

• The loudest events excluding the known CBC  in cWB search are occurred 
at UTC 2019-09-28 02:11:45 and  UTC 2019-08-04 08:35:43 has an iFAR of 
0.53 years and 0.19 years respectively. Those two events in cWB plus 
GMM search shows an iFAR of 0.006 and 0.05 respectively.
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O3a BBH observations
• We consider only 200 years 

of background, since we 
used 20% of O3a 
background as test data. 

• GMM method is more 
sensitive to BBH Events 
with total source mass > 60  
solar mass when compared 
to the cWB all sky O3a 
search,  

• GW190412m has 
significantly asymmetric 
component masses and is 
an exception.
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8

iFAR in years

Event ⌘

c

Q

veto

c

c0 �

2
N

norm

T M(M�) cWB+GMM cWB

GW190408 181802 8.59 0.92 0.96 0.13 5.09 -0.41 43.0+4.2
�3.0 0.30 25.14

GW190412 11.69 4.16 0.95 0.06 5.4 13.21 38.4+3.8
�3.7 15.62 14.86

GW190421 213856 6.46 0.31 0.97 -0.07 4.41 -0.38 72.9+13.4
�9.2 0.30 0.04

GW190426 190642 5.52 0.45 0.88 0.08 4.07 -4.85 184.4+41.7
�36.6 0.02 0.01

GW190503 185404 7.34 0.34 0.93 -0.02 4.76 1.65 71.7+9.4
�8.3 0.84 0.70

GW190513 205428 7.05 1.67 0.86 0.15 3.77 -2.99 53.9+8.6
�5.9 0.07 0.28

GW190517 055101 6.08 0.19 0.88 -0.15 3.05 -2.79 63.5+9.6
�9.6 0.08 0.01

GW190519 153544 10.13 0.53 0.89 0.01 7.63 18.04 106.6+13.5
�14.8 33.83 7.78

GW190521 9.24 0.60 0.92 -0.16 10.53 32.45 163.9+39.2
�23.5 > 200 65.38

GW190521 074359 14.19 0.56 0.96 -0.08 8.44 72.77 74.7+7.0
�4.8 > 200 326.88

GW190602 175927 7.25 0.43 0.95 -0.13 6.5 0.73 116.3+19.0
�15.6 0.54 0.51

GW190706 222641 9.29 0.79 0.83 -0.10 7.36 24.93 104.1+20.2
�13.9 > 200 65.38

GW190727 060333 5.86 0.35 0.96 0.17 4.96 -2.94 67.1+11.7
�8.0 0.07 0.006

GW190728 064510 6.50 3.94 0.87 -0.13 2.55 -4.93 20.6+4.5
�1.3 0.02 0.051

GW190828 063405 10.27 0.84 0.82 0.10 5.01 8.78 58.0+7.7
�4.8 7.52 163.44

GW190915 235702 8.07 0.42 0.95 0.06 4.29 5.29 59.9+7.5
�6.4 3.07 5.36

GW190929 012149 5.97 0.22 0.85 0.103 3.44 -6.20 104.3+34.9
�25.2 0.01 0.009

TABLE III: Table of CBC candidate events identified by cWB in GWTC-2 and GWTC-2.1. The columns shows
e↵ective correlated signal-to-noise ⌘

c

, energy distribution of the event over di↵erent time segments Q
veto0, network

correlation coe�cients C
c0, residual noise energy measure �2, ratio between the reconstructed energy and the total

energy N
norm

and source total mass M reported in GWTC-2 [1] and GWTC-2.1[2]. The two rightmost columns
report event significances for the cWB plus GMM search and the standard cWB all-sky search.
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do not follow a well bahaved Gaussian distribution. In
Table.IV, we show the re-parametrized attributes along
with their original form. We further show the reduction
in the number of Gaussians after the re-parameterization
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Some thoughts + future work
• By using GMM to model our trigger attribute 

space, we were able to increase the sensitivity of 
the cWB all-sky burst search. 

• We are now implementing this for the O4 analysis 
• It is possible to use the GMM approach for 

specific signal classes. 
• The properties of the simulated signals used to 

train the GMM (and burst searches in general) 
should be carefully considered. 

• Exploring the use of a neural network to classify signal/background triggers. 
• In our approach, cWB encodes our data into a set of attributes. What if we 

use different encoders; could we come up with a more optimal encoding of 
the data for burst searches? 

• Autoencoders for burst searches (anomaly detection): F. Morawski et al., 
MLST (2021) arXiv:2103.07688
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https://xkcd-excuse.com



Extra slides
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Results

❏ cWB + GMM improves in detection efficiency for GA 
which falls in the dirty bin containing a population of 
very short and very loud (blip-type) glitches. 

❏ GMM method mitigates "blip-type" glitches during O3 
run.

       sine-Gaussian 
with Q =3 

https://wiki.ligo.org/Bursts/O3-Cwb-LF

Gaussian 
Pulse

https://wiki.ligo.org/Bursts/O3-Cwb-LF
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Results
       sine-Gaussian 
with Q =9 
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Results

sine-Gaussian with 
Q =100 

White Noise 
Burst



Generative Adversarial Networks
• Generative Adversarial Networks (GANs) pit two neural networks against 

each other. 
• The generator network (G) tries to generate data that resembles the 

(desired) training data. 
• The discriminator (D) is a classifier network that labels input data as being 

from the generator (“fake”) or from the training data (“real”).
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Condition the 
inputs

• Vanilla GAN has no control over what it 
can generate

• cGAN add labels to different classes 
of data. e.g. able to generate and 
recognize dogs or cats or tennis ball

• Exploring the class space gives 
variation between the classes

• Exploring the latent space gives 
variation within the class

Vanilla GAN Conditional GAN

7

update if 
fake is 
missed

update if 
fake is 

identified

training 
data



Image generation
• Recent works have been incredibly successful in image generation. 

• With conditioning, it is also possible to control the combination of features 
from each class. 
- eg. If GAN is trained on images of cats and pizza, it can create a pizza-cat.
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https://thispersondoesnotexist.com



Gravitational-wave bursts
• For Burst (generic transient) searches, we typically do not have accurately 

modelled signal predictions. 
• We use ad hoc waveforms to characterise the sensitivity of Burst searches. 
• A well-trained Burst search should be able to span the parameter space 

between the defined ad hoc waveforms. 
• We use GANs to explore the waveform morphologies of “mixed” Burst 

waveforms.
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Gravitational 
wave bursts 

• Burst group uses ad hoc waveforms for development and 
sensitivity estimation.

• The ad hoc models are based on mostly analytic waveform 
models; We aim to create a tool to allow Burst searches to 
probe the parameter space between these waveform 
models.

3



Conditional GANs
• We use a conditional GAN (cGAN) where each waveform morphology is 

assigned a label. 
• “One hot encoding” is used for each waveform 
• There is also a latent space within each class which allows the waveforms 

to vary
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Condition the 
inputs

• Vanilla GAN has no control over what it 
can generate

• cGAN add labels to different classes 
of data. e.g. able to generate and 
recognize dogs or cats or tennis ball

• Exploring the class space gives 
variation between the classes

• Exploring the latent space gives 
variation within the class

Vanilla GAN Conditional GAN

7

How we label the 
data

• “one-hot encode”

• A “1” value is placed in one 
entry and “0” values for the 
other.

[1,0,0,0,0]          [0,1,0,0,0]           [0,0,1,0,0]          [0,0,0,1,0]          [0,0,0,01]

Labels 

9

https://arxiv.org/abs/2103.01641



Training data
• Binary Black Hole parameters - masses: power law [30, 70] Msol, dL: fixed, 

zero spin, other parameters: usual astrophysical priors.  
• All waveforms sampled at 1024 Hz.
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Training data
• * Binary Black Hole parameters - masses: power law 

[30, 70] Msol, d_L: fixed, zero spin, other parameters: 

usual astrophysical priors. All sampled at 1024 Hz.

Signal type Duration Frequency (Hz) Decay (s) Central time 
epoch (s)

Sine-Gaussian 1s 70 - 250 0.004 - 0.03 0.4 - 0.6

White-noise burst 1s 70 - 250 0.004 - 0.03 0.4 - 0.6

Gaussian Pulse 1s - 0.004 - 0.03 0.4 - 0.6

Ring-down 1s 70 - 250 0.004 - 0.03 0.4 - 0.6

BBH* 1s - - 0.4 - 0.6

8



Multiple generations from one class
• The latent variable (z) for each waveform class is a 100-number array 
• By fixing the class vector but changing the latent variable, we can produce 

signals from the same class with different physical properties.
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GAN Generations

Time [s]

Sine-Gaussian [1,0,0,0,0]
Random latent vectors for each signal class.
The signal properties (eg. frequency, decay time etc.) are embedded into the latent space

11

Sine-Gaussian class [1,0,0,0,0]

https://arxiv.org/abs/2103.01641



Interpolating between classes
• Assuming that the cGAN has a ‘smooth’ space between all five classes, we 

explore the signal morphologies by interpolating between class labels: 
• Sine gaussian [1, 0]   →   Ringdown [0, 1] 

         [1, 0] →      [0.8, 0.2] → [0.6, 0.4] → [0.4, 0.6] → [0.2, 0.8]      →     [0, 1]

Modelled signal                ‘Unmodelled signal’                      Modelled signal

 41

Interpolating between two 
points in the class space

14

https://arxiv.org/abs/2103.01641



Interpolating between classes
• We can consider random mixtures of classes instead of interpolation 
• Vertex  - Points that lie at the corners of the 5-dimensional class space.  

Closest to training data. 
• Simplex – Sampled points on a simplex, 5-dimensional hyperplane which 

links all vertices. It is a subspace of Uniform generations. 
• Uniform - sampling uniformly within the 5-dimensional one-hot encoding 

hyper-cube.
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https://arxiv.org/abs/2103.01641



Interpolating between classes
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GAN generations
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Ring-down Gaussian blip

White-noise burst Binary black hole

Time [s] Time [s]

Time [s] Time [s]



Characterising waveform generations
• A basic search pipeline using a CNN in order to compare the sensitivity of 

such a search using different GAN generated waveforms in Gaussian noise 
- 3 different CNN networks; one trained on Vertex generations, another on Simplex 

generations and the last on Uniform generations 
• We are interested in the relative sensitivity as a function of the types of 

waveforms used for training the network. 
• Set a threshold corresponding to a false alarm probability of 10-3  

• Reminder: Vertex generations correspond to the standard set of waveforms 
used in Burst searches
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https://arxiv.org/abs/2103.01641



Characterising waveform generations
• Vertex model only manages full detection when tested on vertex data and misses even 

the strongest signals from Uniform generations
• Of the two methods of generating unmodelled signals, the Uniform generation produces 

more general morphologies that do not negatively effect the performance on the 
modelled signals. 

• CNN-based burst searches will be more sensitive to a wider parameter space if trained 
on signals generated from entire cGAN burst waveform space.
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Vertex generations Uniform generations

https://arxiv.org/abs/2103.01641


