UCLA IPAM GWAWS4 workshop 01.12.2021

Machine learning for accurate gravitational waves modelling

Leïla Haegel

Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France

- Gravitational waves (GW) templates are essential
 - Most sensitive gravitational waves detection pipelines are based on modelled searches
 - Parameter estimation requires template banks (Markov-chain based)
 - Waveform modelling is complex
 - Detection of binary system: large parameter space (min 15 parameters)
 - Merger: strong-field regime of general relativity (GR), non-linear physics
 - Parameter estimation bottleneck: no propagation of waveform systematics
 - Machine learning has potential
 - Different applications according to purposes
 - Review in this talk

Content

• Current modelling approaches

- Point estimates with machine learning: remnant properties
- Point estimates with machine learning: waveform coefficients
- Waveform generation with machine learning

Anatomy of a gravitational waveform

GW150914-like signal:

GW computation: numerical relativity simulations

Numerical relativity (NR) simulations

- Use 3+1 decomposition of spacetime to perform evolution (à la ADM)
- Black hole singularity is excised or analytically factored (puncture)
- Issue with well-posedness: first GW simulation in 2005
- Accuracy depends on mesh refinement

GW computation: numerical relativity catalogs

Several numerical relativity catalogs

- 3 are active and open-access
- Table from SXS simulation catalog

Catalog	Started	Updating?	$Simulation_S$	m_1/m_2 range	$ \chi_1 $ range	$ \chi_2 $ range	$P_{\mathrm{recessing}?}$	$M{ m edian} N_{ m cyc}$	Public?
NINJA [98,115]	2008	X	63	1 - 10	0–0.95	$0\!-\!0.95$	X	15	×
NRAR $[120]$	2013	X	25	1 - 10	0 - 0.8	0 - 0.6	\checkmark	24	X
Georgia Tech [122]	2016	\checkmark	452	1 - 15	$0\!-\!0.8$	0 - 0.8	\checkmark	4	\checkmark
RIT (2017) [123]	2017	\checkmark	126	1 - 6	$0\!-\!0.85$	$0\!-\!0.85$	\checkmark	16	\checkmark
RIT (2019) [124]	2017	\checkmark	320	1 - 6	$0\!-\!0.95$	$0\!-\!0.95$	\checkmark	19	\checkmark
NCSA (2019) [125]	2019	X	89	1 - 10	0	0	X	20	X
SXS (2018)	2013	\checkmark	337	1 - 10	$0\!-\!0.995$	$0\!-\!0.995$	\checkmark	23	\checkmark
SXS (2019)	2013	\checkmark	2018	1 - 10	0 - 0.998	0 - 0.998	\checkmark	39	\checkmark

arXiv:1904.04831

GW modelling: effective one-body formalism

Effective one-body (EOB) formalism

- 2-body dynamics mapped as 1 body in effective metric
- Very accurate at inspiral, calibrated to NR simulations for LIGO-Virgo models

Source: T. Damour

GW modelling: effective one-body formalism

SEOBNR models

- Includes higher harmonics up to
 (l, m) = (5,5)
- Calibrated to precessing waveform with $\chi \rightarrow 0.8$

arXiv:2004.09442

GW modelling: phenomenological approaches

IMRPhenom approach

- Different region of the waveform are modelled by different ansatz
- Frequency and time domain models
- Inspiral: pN + pseudo-pN terms
- Intermediate: phenomenological ansatz
- Ringdown: quasimornal modes

arXiv:2001.11412

GW modelling: phenomenological approaches

IMRPhenom models

- Hierarchical fit as a function of mass ratio, effective spin and spin difference
- Mapping from nonprecessing to precessing case
- Higher harmonics up to (l, m) = (4, 4)

arXiv:2001.11412

Content

- Current modelling approaches
- Point estimates with machine learning: remnant properties
- Point estimates with machine learning: waveform coefficients
- Waveform generation with machine learning

Black holes properties with neural networks

• Objectives:

- Predict the properties of the remnant black hole (BH) resulting from a binary system coalescence with neural networks
- Improved prediction for precessing system by using the full spin information
- Motivation:
 - Waveform models calibration
 - Remnant properties estimation if only inspiral is available
 - Pre/post-merger consistency tests

arXiv:1911.01496

Black holes properties with neural networks

Training data:

NR simulations masses and spins

Deep NN structure

- ► 4 hidden layers: *4096*, *256*, *64*, *8 nodes*
- activation function: rectified linear unit
- ► loss function: *mean absolute error*
- optimizer: Adam (adaptative stochastic gradient) with learning rate = 10⁻³, decay = 10⁻⁴

NR code	non-precessing	precessing
SpEC	592	1420
LazEv	280	0
MayaKranc	125	0
BAM	47	0
$\eta \to 0$	300	0
Total	1344	1420

Black holes properties with Gaussian processes

- Similar study with Gaussian processed:
 - Add full final spin information and recoil velocity for remnant
 - Non-spinning case:
 - 104 SXS simulations for training
 - $-q \le 8 \& |\chi_i| \le 0.8$
 - Spinning case:
 - 890 SXS simulations for training
 - $-q \le 2 \& |\chi_i| \le 0.8$

arXiv:1809.09125

 $\Delta v_f \ [0.001 \, c]$

Black holes properties with Gaussian processes

- Similar study with Gaussian processed:
 - Add full final spin information and recoil velocity for remnant

Content

- Current modelling approaches
- Point estimates with machine learning: remnant properties
- Point estimates with machine learning: waveform coefficients
- Waveform generation with machine learning

Waveform models surrogates with neural networks

GW models surrogates

- General expression: $h_{2,2}(t, \vec{\theta}) = |h_{22}(t, \vec{\theta})| e^{-i \phi(t, \vec{\theta})}$
- Surrogate model: amplitude and phase are expressed in a reduced basis

$$|h_{22}(t, \vec{\theta})|_{S} = \sum_{i}^{n} c_{i}(\vec{\theta}) e_{i}(t)$$
projection
coefficients
basis elements

Machine learning

- Neural networks can be applied to estimate coefficients
- Suitable for the large parameter space of binary parameters $\vec{\theta}$
- Reduction of number of coefficients → faster waveform generation

Waveform models surrogate for inspiral

Reproducing TaylorF2 waveforms

- Inspiral waveform, suitable for LISA signals
- Masses ~ $10^5 M_{\odot}$
- Non precessing, aligned spins up to $|\chi_i| = 1$
- Training on $\sim 10^5$ waveforms
- Study the impact on the likelihood evaluation for parameter estimation

arXiv:1811.05491

Waveform models surrogate for coalescence

Reproducing SEOBNR waveforms

- Coalescing binaries: inspiral merger ringdown as seen in LIGO-Virgo-KAGRA
- Mass ratio up $q \leq 8$
- Non precessing, aligned spins up to $|\chi_i| \le 0.99$
- Training on $2\cdot 10^5$ waveforms, testing and validation on $2\cdot 10^4$
- ~200 times faster than original model, 15 times faster than ROM model

Waveform generation with PCA

- Principle Component Analysis (PCA)
 - Projection of high dimensional data on lower dimension space
 - Linear relation between the two spaces
 - Coefficients can be evaluated with neural networks or Mixture of Experts
 - Trained on non-precessing SEOBNR waveforms

Content

- Current modelling approaches
- Point estimates with machine learning: remnant properties
- Point estimates with machine learning: waveform coefficients
- Waveform generation with machine learning

Waveform templates error interpolation

Gaussian Processes

- Sum of multivariate normal distributions
- Mean and width fit to reproduce training data
- Non-parameteric interpolation with error estimation
- Application to waveform modelling error quantification
 - No propagation of modelling errors
 - Interpolate the error between 3 pN and 3.5 pN NR waveforms
 - Non-spinning waveforms with different chirp masses

arXiv:1412.3657

NR interpolation with Gaussian Processes

- Application to late stages of coalescing binary
 - Training on 132 waveforms from GeorgiaTech NR catalog
 - Precessing waveforms with $q \le 10 \& |\chi_i| \le 0.9$
 - Main radiation mode: (l, m) = (2, 2)
 - 2 validations procedures: mismatch with training dataset and leave-one-out

NR interpolation with Gaussian Processes

Application to coalescing binary

- Hybrids = EOB stitched to NR waveforms to cover all stages of binary coalescence
- Training on hybridised SXS waveforms
- Dataset: ~1500 SXS precessing with $q \le 4$ & $|\chi_i| \le 0.8$

Leïla Haegel / APC Laboratory

NR interpolation with Gaussian Processes

- Model extended to include:
 - Higher harmonics ►
 - **Eccentric binaries** ►
 - Extreme mass ratios ►

180

200

Conclusion

Machine learning algorithms features are beneficial for waveform modelling

- Correlations across large parameter space
- Provide accurate (or?) fast GW templates, usefulness depends on case
- The creation of efficient models is built on the knowledge acquired from traditional techniques

Thank you for your attention

