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Introduction

‣ Gravitational waves (GW) templates are essential 
‣ Most sensitive gravitational waves detection pipelines are based on modelled 

searches 

‣ Parameter estimation requires template banks (Markov-chain based)

‣ Waveform modelling is complex 
‣ Detection of binary system: large 

parameter space (min 15 parameters) 

‣ Merger: strong-field regime of general 
relativity (GR), non-linear physics 

‣ Parameter estimation bottleneck: no 
propagation of waveform systematics

‣ Machine learning has potential 
‣ Different applications according to 

purposes 
‣ Review in this talk
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Anatomy of a gravitational waveform 

inspiral, weak field
can be computed with post-Newtonian (pN) expansion 

far from innermost stable circular orbit (ISCO)

can be modelled  
as a sum of 

quasinormal modes

requires 
numerical 
relativity

merger,  
strong field

ringdown, strong 
to weak field

Source: Sound of Spacetime

‣ GW150914-like signal:

m1 m2

⃗L
⃗χ1 ⃗χ2

https://www.soundsofspacetime.org/detection.html
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GW computation: numerical relativity simulations

‣ Numerical relativity (NR) simulations 
‣ Use 3+1 decomposition of spacetime to perform evolution (à la ADM)  

‣ Black hole singularity is excised or analytically factored (puncture) 

‣ Issue with well-posedness: first GW simulation in 2005 

‣ Accuracy depends on mesh refinement 

Source: S. Caudill 

https://www.nikhef.nl/~caudills/slides/Lecture_NR.pdf
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GW computation: numerical relativity catalogs

‣ Several numerical relativity catalogs 
‣ 3 are active and open-access 

‣ Table from SXS simulation catalog

arXiv:1904.04831

https://arxiv.org/pdf/1904.04831.pdf
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GW modelling: effective one-body formalism

‣ Effective one-body (EOB) formalism 
‣ 2-body dynamics mapped as 1 body in effective metric 

‣ Very accurate at inspiral, calibrated to NR simulations for LIGO-Virgo models

Source: T. Damour

https://www.ihes.fr/~damour/Conferences/DamourNUS2017%20-%20copie.pdf
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GW modelling: effective one-body formalism

‣ SEOBNR models 
‣ Includes higher harmonics up to  

 
‣ Calibrated to precessing waveform 

with 

(l, m) = (5,5)

χ → 0.8

arXiv:2004.09442

https://arxiv.org/pdf/2004.09442.pdf
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GW modelling: phenomenological approaches

‣ IMRPhenom approach 
‣ Different region of the waveform are 

modelled by different ansatz 

‣ Frequency and time domain models 

‣ Inspiral: pN + pseudo-pN terms 

‣ Intermediate: phenomenological ansatz 

‣ Ringdown: quasimornal modes

arXiv:2001.11412

arXiv:2004.06503

https://arxiv.org/pdf/2001.11412.pdf
https://arxiv.org/pdf/2004.06503.pdf
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GW modelling: phenomenological approaches

‣ IMRPhenom models 
‣ Hierarchical fit as a function of 

mass ratio, effective spin and 
spin difference 

‣ Mapping from non-
precessing to precessing case 

‣ Higher harmonics up to  
(l, m) = (4,4)

arXiv:2001.11412

https://arxiv.org/pdf/2001.11412.pdf


Content

Current modelling approaches 

Point estimates with machine learning:  
remnant properties 

Point estimates with machine learning:  
waveform coefficients 

Waveform generation with machine learning



UCLA IPAM GWAWS4 workshop 2021Leïla Haegel / APC Laboratory 12

Black holes properties with neural networks

‣ Objectives: 
‣ Predict the properties of the remnant black hole (BH) resulting from a binary 

system coalescence with neural networks 

‣ Improved prediction for precessing system by using the full spin information

‣ Motivation: 
‣ Waveform models calibration  

‣ Remnant properties estimation if only inspiral is available 

‣ Pre/post-merger consistency tests 

arXiv:1911.01496

https://arxiv.org/pdf/1911.01496.pdf
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Black holes properties with neural networks

‣ Deep NN structure 
‣ 4 hidden layers: 4096, 256, 64, 8 nodes 
‣ activation function: rectified linear unit 
‣ loss function: mean absolute error 
‣ optimizer: Adam (adaptative stochastic gradient) 

with learning rate = 10-3, decay = 10-4

arXiv:1911.01496

‣ Training data: 
‣ NR simulations masses and spins 

https://arxiv.org/pdf/1911.01496.pdf
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Black holes properties with Gaussian processes

‣ Similar study with Gaussian 
processed: 
‣ Add full final spin information and 

recoil velocity for remnant 

‣ Non-spinning case:  
- 104 SXS simulations for training 
-  

‣ Spinning case:  
- 890 SXS simulations for training 
- 

q ≤ 8 & | χi | ≤ 0.8

q ≤ 2 & | χi | ≤ 0.8

arXiv:1809.09125

https://arxiv.org/pdf/1809.09125.pdf
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Black holes properties with Gaussian processes

‣ Similar study with Gaussian 
processed: 
‣ Add full final spin information and 

recoil velocity for remnant

arXiv:1809.09125

https://arxiv.org/pdf/1809.09125.pdf
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Waveform models surrogates with neural networks

‣ GW models surrogates 
‣ General expression:   
‣ Surrogate model: amplitude and phase are expressed in a reduced basis 

 

h2,2(t, ⃗θ ) = |h22(t, ⃗θ ) | e−i ϕ(t, ⃗θ )

|h22(t, ⃗θ ) |S =
n

∑
i

ci( ⃗θ ) ei(t)

‣ Machine learning  
‣ Neural networks can be applied to estimate coefficients 
‣ Suitable for the large parameter space of binary parameters   
‣ Reduction of number of coefficients → faster waveform generation

⃗θ

projection 
coefficients

basis elements
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Waveform models surrogate for inspiral
‣ Reproducing TaylorF2 waveforms 
‣ Inspiral waveform, suitable for LISA signals 
‣ Masses ~  
‣ Non precessing, aligned spins up to  
‣ Training on  waveforms 
‣ Study the impact on the likelihood evaluation for parameter estimation

105 M⊙

| χi | = 1
∼ 105

arXiv:1811.05491

https://arxiv.org/pdf/2008.12932.pdf
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Waveform models surrogate for coalescence

‣ Reproducing SEOBNR waveforms 
‣ Coalescing binaries: inspiral - merger - ringdown as seen in LIGO-Virgo-KAGRA 
‣ Mass ratio up  
‣ Non precessing, aligned spins up to  
‣ Training on  waveforms, testing and validation on   
‣ ~200 times faster than original model, 15 times faster than ROM model

q ≤ 8
| χi | ≤ 0.99

2 ⋅ 105 2 ⋅ 104

arXiv:2008.12932

https://arxiv.org/pdf/2008.12932.pdf
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Waveform generation with PCA

‣ Principle Component Analysis (PCA) 
‣ Projection of high dimensional data on lower dimension space 
‣ Linear relation between the two spaces 
‣ Coefficients can be evaluated with neural networks or Mixture of Experts   
‣ Trained on non-precessing SEOBNR waveforms

Cano et alarXiv:2011.01958

https://indico.in2p3.fr/event/24548/contributions/99502/attachments/66277/92606/GdR_OG.pdf
https://arxiv.org/pdf/2011.01958.pdf
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Waveform templates error interpolation

‣ Gaussian Processes 
‣ Sum of multivariate normal distributions  
‣ Mean and width fit to reproduce training data 
‣ Non-parameteric interpolation with error estimation 

‣ Application to waveform modelling error quantification  
‣ No propagation of modelling errors 
‣ Interpolate the error between 3 pN and 3.5 pN NR waveforms  
‣ Non-spinning waveforms with different chirp masses

arXiv:1412.3657

https://arxiv.org/pdf/1412.3657.pdf
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NR interpolation with Gaussian Processes

‣ Application to late stages of coalescing binary  
‣ Training on 132 waveforms from GeorgiaTech NR catalog 
‣ Precessing waveforms with  
‣ Main radiation mode:  
‣ 2 validations procedures: mismatch with training dataset and leave-one-out

q ≤ 10 & | χi | ≤ 0.9
(l, m) = (2,2)

arXiv:1903.09204

https://arxiv.org/pdf/1903.09204.pdf
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NR interpolation with Gaussian Processes

‣ Application to coalescing binary  
‣ Hybrids = EOB stitched to NR waveforms to cover all stages of binary 

coalescence 
‣ Training on hybridised SXS waveforms 
‣ Dataset: ~1500 SXS precessing with q ≤ 4 & | χi | ≤ 0.8

arXiv:1905.09300

https://arxiv.org/pdf/1905.09300.pdf
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NR interpolation with Gaussian Processes

‣ Model extended to include: 
‣ Higher harmonics 
‣ Eccentric binaries 
‣ Extreme mass ratios

arXiv:2101.11798
arXiv:1910.10473

arXiv:1905.09300

https://arxiv.org/pdf/2101.11798.pdf
https://arxiv.org/pdf/1910.10473.pdf
https://arxiv.org/pdf/1905.09300.pdf


UCLA IPAM GWAWS4 workshop 2021Leïla Haegel / APC Laboratory 26

Conclusion

‣ Machine learning algorithms features are beneficial for waveform modelling  
‣ Correlations across large parameter space 
‣ Provide accurate (or?) fast GW templates, usefulness depends on case 
‣ The creation of efficient models is built on the knowledge acquired from 

traditional techniques

arXiv:1909.10986

https://arxiv.org/pdf/1909.10986.pdf


Thank you for your attention


