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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Talk outline

❖ Current and future gravitational wave detectors

❖ Gravitational wave parameter estimation

❖ Fast and accurate parameter estimation

❖ Reduced order quadrature

❖ Fast waveforms using machine learning methods

❖ Neural posterior estimation

❖ Future challenges and opportunities
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Figure 1.1: Gravitational-wave strain noise for current and future detectors (left) and astrophysical reach for
equal-mass, nonspinning binaries distributed isotropically in sky and inclination (right).

1.2 Gravity, Spacetime and Gravitational Waves

The nature of space and time has fascinated the human intellect for millennia. In the 17th century Newton laid
out the first concrete notions in his Principia Mathematica by asserting that space and time are immutable
and not amenable to change due to external influence:

• Absolute, true, and mathematical time, of itself, and from its own nature, flows equally without relation
to anything external.

• Absolute space, in its own nature, without relation to anything external, remains always similar and
immovable.

A corner stone of Newtonian physics is the principle of relativity according to which the laws of physics
are the same for all observers in relative motion. Specifically, spatial separations and time intervals between
physical events are identical for all observers. This meant that the speed of light was different for observers
depending on their relative motion. These notions were the guiding principles of physics for over two
centuries and formed the basis for building the theory of gravitation.

At the beginning of the 20th century Einstein formulated the special theory of relativity in which the
speed of light was the same for all observers as required by the decisive precision experiment of Michelson
and Morley a few years before. The idea of absolute space and time was incompatible with special relativity
in which spatial separations and time intervals depended on an observer’s motion. Furthermore, he soon
realized that matter must alter the geometry of space and the flow of time. This eventually led him to a new
theory of gravity, the general theory of relativity, according to which matter and energy warp spacetime and
accelerated masses can create ripples in that distortion, called gravitational waves, that travel outward from
their sources at the speed of light.

Large amplitude gravitational waves emanate from regions of strong gravity with masses moving at
relativistic speeds, making them ideal for studying dynamical spacetimes. They interact weakly with matter
and are hardly dispersed as they propagate from their sources to Earth; so the waves carry uncorrupted
signature of their sources. A passing gravitational wave causes the rate at which clocks tick and physical
distance between test masses to vary—the basic principle behind gravitational wave detectors. Gravitational
waves were deemed responsible for the measured decrease in the orbital period of a pair of neutron stars
discovered by Hulse and Taylor in 1976. Since 2015, gravitational wave detectors have ushered in a new era
in astronomy.

Current and future detectors
❖ LIGO/Virgo/KAGRA: Ground-based interferometers 

currently operating. 90 (likely) astrophysical sources 
observed to date, over three observing runs.

❖ LISA: space-based interferometer to launch in ~2035, 
operating in mHz band. ESA-led; NASA contributions,

❖ 3G: next generation ground-based detector concepts 
under development. Einstein Telescope (Europe) and 
Cosmic Explorer (US). To start operation in ~2030s.



Overview of GW parameter estimation
❖ GW parameter estimation typically uses Bayesian inference, in which we obtain samples 

from the posterior distribution after specifying a prior distribution and the likelihood

❖ Typically we assume the detector output is a linear combination

❖ and that the noise is Gaussian, giving the likelihood

❖ Inference typically uses Markov Chain Monte Carlo or other stochastic sampling methods 
to draw samples from the posterior distribution - needs millions of likelihood 
evaluations, which rely on constructing expensive waveform models.
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Computational cost: GW150914
❖ The analysis of GW150914 used 50 

million CPU hours (20,000 PCs 
running for 100 days). A 
significant fraction of that was PE.

❖ Lag between observation and 
publication of exceptional events 
mostly dominated by PE (re-)runs.

For robustness and validation, we also use other generic
transient search algorithms [41]. A different search [73] and
a parameter estimation follow-up [74] detected GW150914
with consistent significance and signal parameters.

B. Binary coalescence search

This search targets gravitational-wave emission from
binary systems with individual masses from 1 to 99M⊙,
total mass less than 100M⊙, and dimensionless spins up to
0.99 [44]. To model systems with total mass larger than
4M⊙, we use the effective-one-body formalism [75], which
combines results from the post-Newtonian approach
[11,76] with results from black hole perturbation theory
and numerical relativity. The waveform model [77,78]
assumes that the spins of the merging objects are aligned
with the orbital angular momentum, but the resulting
templates can, nonetheless, effectively recover systems
with misaligned spins in the parameter region of
GW150914 [44]. Approximately 250 000 template wave-
forms are used to cover this parameter space.
The search calculates the matched-filter signal-to-noise

ratio ρðtÞ for each template in each detector and identifies
maxima of ρðtÞwith respect to the time of arrival of the signal
[79–81]. For each maximum we calculate a chi-squared
statistic χ2r to test whether the data in several different
frequency bands are consistent with the matching template
[82]. Values of χ2r near unity indicate that the signal is
consistent with a coalescence. If χ2r is greater than unity, ρðtÞ
is reweighted as ρ̂ ¼ ρ=f½1þ ðχ2rÞ3&=2g1=6 [83,84]. The final
step enforces coincidence between detectors by selecting
event pairs that occur within a 15-ms window and come from
the same template. The 15-ms window is determined by the
10-ms intersite propagation time plus 5 ms for uncertainty in
arrival time of weak signals. We rank coincident events based
on the quadrature sum ρ̂c of the ρ̂ from both detectors [45].
To produce background data for this search the SNR

maxima of one detector are time shifted and a new set of
coincident events is computed. Repeating this procedure
∼107 times produces a noise background analysis time
equivalent to 608 000 years.
To account for the search background noise varying across

the target signal space, candidate and background events are
divided into three search classes based on template length.
The right panel of Fig. 4 shows the background for the
search class of GW150914. The GW150914 detection-
statistic value of ρ̂c ¼ 23.6 is larger than any background
event, so only an upper bound can be placed on its false
alarm rate. Across the three search classes this bound is 1 in
203 000 years. This translates to a false alarm probability
< 2 × 10−7, corresponding to 5.1σ.
A second, independent matched-filter analysis that uses a

different method for estimating the significance of its
events [85,86], also detected GW150914 with identical
signal parameters and consistent significance.

When an event is confidently identified as a real
gravitational-wave signal, as for GW150914, the back-
ground used to determine the significance of other events is
reestimated without the contribution of this event. This is
the background distribution shown as a purple line in the
right panel of Fig. 4. Based on this, the second most
significant event has a false alarm rate of 1 per 2.3 years and
corresponding Poissonian false alarm probability of 0.02.
Waveform analysis of this event indicates that if it is
astrophysical in origin it is also a binary black hole
merger [44].

VI. SOURCE DISCUSSION

The matched-filter search is optimized for detecting
signals, but it provides only approximate estimates of
the source parameters. To refine them we use general
relativity-based models [77,78,87,88], some of which
include spin precession, and for each model perform a
coherent Bayesian analysis to derive posterior distributions
of the source parameters [89]. The initial and final masses,
final spin, distance, and redshift of the source are shown in
Table I. The spin of the primary black hole is constrained
to be < 0.7 (90% credible interval) indicating it is not
maximally spinning, while the spin of the secondary is only
weakly constrained. These source parameters are discussed
in detail in [39]. The parameter uncertainties include
statistical errors and systematic errors from averaging the
results of different waveform models.
Using the fits to numerical simulations of binary black

hole mergers in [92,93], we provide estimates of the mass
and spin of the final black hole, the total energy radiated
in gravitational waves, and the peak gravitational-wave
luminosity [39]. The estimated total energy radiated in
gravitational waves is 3.0þ0.5

−0.5M⊙c2. The system reached a
peak gravitational-wave luminosity of 3.6þ0.5

−0.4 × 1056 erg=s,
equivalent to 200þ30

−20M⊙c2=s.
Several analyses have been performed to determine

whether or not GW150914 is consistent with a binary
black hole system in general relativity [94]. A first

TABLE I. Source parameters for GW150914. We report
median values with 90% credible intervals that include statistical
errors, and systematic errors from averaging the results of
different waveform models. Masses are given in the source
frame; to convert to the detector frame multiply by (1þ z)
[90]. The source redshift assumes standard cosmology [91].

Primary black hole mass 36þ5
−4M⊙

Secondary black hole mass 29þ4
−4M⊙

Final black hole mass 62þ4
−4M⊙

Final black hole spin 0.67þ0.05
−0.07

Luminosity distance 410þ160
−180 Mpc

Source redshift z 0.09þ0.03
−0.04
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❖ Future detectors will have more 
events: expect to move from ~1 
event/week to several/day.

❖ Future detectors will have wider 
bandwidths: new types of source, 
longer waveforms and hence 
more expensive PE.

❖ Sources for LISA (and to a lesser 
extent 3G detectors) will overlap 
in time and frequency.

❖ Fast PE needed for multi-
messenger applications: send 
triggers for EM follow-up.

Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 27

Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with
the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the
detectors’ commissioning progress. Ranges reflect the uncertainty in the detector noise spectra shown
in Figure 1. The burst ranges assume standard-candle emission of 10�2

M�c
2 in gravitational waves at

150 Hz and scale as E
1/2
GW, so it is greater for more energetic sources (such as binary black holes). The BNS

localization is characterized by the size of the 90% credible region (CR) and the searched area. These are
calculated by running the BAYESTAR rapid sky-localization code (Singer and Price 2016) on a Monte
Carlo sample of simulated signals, assuming senisivity curves in the middle of the plausible ranges (the
geometric means of the upper and lower bounds). The variation in the localization reflects both the variation
in duty cycle between 70% and 75% as well as Monte Carlo statistical uncertainty. The estimated number of
BNS detections uses the actual ranges for 2015 – 2016 and 2017 – 2018, and the expected range otherwise;
future runs assume a 70 – 75% duty cycle for each instrument. The BNS detection numbers also account for
the uncertainty in the BNS source rate density (Abbott et al 2017a). Estimated BNS detection numbers and
localization estimates are computed assuming a signal-to-noise ratio greater than ⇠ 12. Burst localizations
are expected to be broadly similar to those derived from timing triangulation, but vary depending on the
signal bandwidth; the median burst searched area (with a false alarm rate of ⇠ 1 yr�1) may be a factor of
⇠ 2 – 3 larger than the values quoted for BNS signals (Essick et al 2015). No burst detection numbers are
given, since the source rates are currently unknown. Localization numbers for 2016 – 2017 include Virgo,
and do not take into account that Virgo only joined the observations for the latter part the run. The 2024+
scenario includes LIGO-India at design sensitivity.

Epoch 2015 – 2016 2016 – 2017 2018 – 2019 2020+ 2024+
Planned run duration 4 months 9 months 12 months (per year) (per year)

Expected burst range/Mpc
LIGO 40 – 60 60 – 75 75 – 90 105 105
Virgo — 20 – 40 40 – 50 40 – 70 80

KAGRA — — — — 100

Expected BNS range/Mpc
LIGO 40 – 80 80 – 120 120 – 170 190 190
Virgo — 20 – 65 65 – 85 65 – 115 125

KAGRA — — — — 140

Achieved BNS range/Mpc
LIGO 60 – 80 60 – 100 — — —
Virgo — 25 – 30 — — —

KAGRA — — — — —
Estimated BNS detections 0.05 – 1 0.2 – 4.5 1 – 50 4 – 80 11 – 180

Actual BNS detections 0 1 — — —

90% CR % within 5 deg2 < 1 1 – 5 1 – 4 3 – 7 23 – 30
20 deg2 < 1 7 – 14 12 – 21 14 – 22 65 – 73

median/deg2 460 – 530 230 – 320 120 – 180 110 – 180 9 – 12

Searched area % within 5 deg2 4 – 6 15 – 21 20 – 26 23 – 29 62 – 67
20 deg2 14 – 17 33 – 41 42 – 50 44 – 52 87 – 90

with the two LIGO detectors. Virgo joined the network in August 2017, dramatically
improving sky localization. With a four- or five-site detector network at design sensi-
tivity, we may expect a significant fraction of GW signals to be localized to within a
few square degrees by GW observations alone.

The first BBH detection was made promptly after the start of observations in
September 2015; they are the most commonly detected GW source, but are not
a promising target for multi-messenger observations. GW detections will become
more common as the sensitivity of the network improves. The first BNS coalescence
was detected in August 2017. This was accompanied by observations across the
electromagnetic spectrum (Abbott et al 2017k). Multi-messenger observations of

Challenges in GW parameter estimation



Current solutions: Bayestar
❖ Rapid PE is needed for multi-messenger 

applications, to send triggers out for EM 
follow-up. Current methods do this by 
approximating the likelihood.

❖ Bayestar employs the autocorrelation 
likelihood (likelihood evaluated at MLE 
parameter values)

❖ Rapid marginalisation over parameters 
other than sky location achieved via 
integral approximation and look-up tables.

❖ Result is a sky map probability density.
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1. Evaluate localization on
base tesselation of N pixels 2. Sort by probability and select top N/4 pixels

3. Subdivide & replace with
N new daughter pixels

5. Subdivide & replace with
N new daughter pixels

4. Sort by probability and
select top N/4 pixels

6. Sort by probability and
select top N/4 pixels

Repeat

FIG. 8. Illustration of the BAYESTAR adaptive HEALPix sampling scheme.

FIG. 9. An example multiresolution HEALPix mesh arising
from the BAYESTAR sampling scheme (plotted in a cylindri-
cal projection). This is event 18951 from Ref. [27].

VIII. CASE STUDY

We have completed our description of the BAYESTAR
algorithm. In Ref. [27], the authors presented a compre-
hensive and astrophysically realistic sample of simulated
BNS mergers. We focused on the first two planned Ad-
vanced LIGO and Virgo observing runs as desribed in
Ref. [3]. That work presented a catalog of 500 sky lo-
calizations from BAYESTAR and LALINFERENCE and
dealt with the quantitative position reconstruction accu-
racy as well as the qualitative sky morphologies. In the

present work, we will use the same data set but instead
focus on demonstrating the correctness and performance
of the BAYESTAR algorithm.

A. Observing scenarios

To review the assumptions made in Ref. [27], the two
scenarios are:
2015.—The first Advanced LIGO observing run, or

“O1,” scheduled to start in September 2015 and continue
for three months. There are only two detectors partic-
ipating in this run: LIGO Hanford (H) and LIGO Liv-
ingston (L). Both detectors are expected to operate with
a direction-averaged BNS merger range of 40–80Mpc
(though ongoing Advanced LIGO commissioning sug-
gests that the higher end of this range will be achieved).
As a result of having only two detectors, most localiza-
tions are long, thin arcs a few degrees wide and tens to
hundreds of degrees long. The median 90% credible area
is about 600 deg2.
2016.—The second observing run, “O2,” with the two

between Advanced LIGO detectors, upgraded to a BNS
range of 80–120 Mpc, operated jointly with the newly
commissioned Advanced Virgo detector (V), operating
at a range of 20–60 Mpc. The run is envisioned as lasting
for six months in 2016–2017. The detectors are assumed
to have random and independent 80% duty cycles. Con-
sequently, all three detectors (HLV) are in science mode
about half of the time, with the remaining time divided
roughly equally between each of the possible pairs (HL,
HV, or LV) and one or fewer detectors (at least two GW
facilities are required for a detection). Virgo’s range is as-
sumed to be somewhat less than LIGO’s because its com-
missioning time table is about a year behind. Although
the simulated signals are generally too weak in Virgo to
trigger the matched-filter pipeline and contribute to de-
tection, even these subthreshold signals aid in position

Singer & Price (2015)
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Some example autocorrelation functions and correspond-
ing likelihoods are shown in Fig. 1. To assemble the joint
likelihood for the whole network, we form the product
of the autocorrelation likelihoods from the individual de-
tectors:
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In the following section, we discuss some key properties
of the autocorrelation likelihood.

A. Properties

First, the autocorrelation likelihood has the elegant
feature that if we were to replace the autocorrelation
function with the S/N time series for the best-matching
template, z(⌧ ; ✓̂in), we would recover the likelihood for
the full GW time series, evaluated at the ML estimate of
the intrinsic parameters, viz.:
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[We have omitted the term
R

|Yi(!)|2/S(!)d!, which
takes the place of the earlier ⇢̂

2
i term and is only im-

portant for normalization.] The numerical scheme that
we will develop is thus equally applicable for rapid,
coincidence-based localization, or as a fast extrinsic
marginalization step for the full parameter estimation.

Second, observe that at the true parameter values,
✓̂i = ✓i, the logarithms of Eqs. (30) and (17) have the
same Jacobian. This is because the derivatives of the
autocorrelation function are

a
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n
!n,

with !n defined in Eq. (21). For example, the first few
derivatives are

a(0) = 1, ȧ(0) = i!, ä(0) = �!2.

Using Eq. (19), we can compute the Fisher ma-
trix elements for the autocorrelation likelihood given by
Eq. (30), with the detector subscript suppressed,

I⇢⇢ = 1,

I⇢� = 0,

I⇢⌧ = 0,

I�� = ⇢
2

Z T

�T
|a(t)|2 w(t; ⇢)dt, (34)

I⌧⌧ = �⇢
2

Z T

�T
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The notation Ik denotes a modified Bessel function of
the first kind. Matrix elements that are not listed have
values that are implied by the symmetry of the Fisher
matrix. Note that the minus signs are correct but a little
confusing; despite them, I�� , I⌧⌧ � 0 and I�⌧  0. The
time integration limits [�T, T ] correspond to a flat prior
on arrival time or a time coincidence window between
detectors.

We can show that the weighting function w(t; ⇢) ap-
proaches a Dirac delta function as ⇢ ! 1, so that
the Fisher matrix for the autocorrelation likelihood
approaches the Fisher matrix for the full GW data,
Eq. (23), as ⇢ ! 1. The Bessel functions asymptoti-
cally approach
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❖ Faster waveform model evaluation facilitates faster PE with standard methods (see 
talk by Leïla Haegel). One example: Gaussian process regression (e.g., Williams et al. 
2020) provides faster models that encode modelling uncertainties.
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FIG. 2. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 0.625) with a total mass of 60-solar masses, shown as light grey
lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean draw from the Gaussian process
is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the
right panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the
vertical lines representing the mismatch between the GPR and the phenomenological waveform. The di↵erences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in pink.

FIG. 3. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey lines compared
to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean draw from the
Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

able, and in principal can facilitate accurate inference
on detected signals. However, the expense of produc-
ing them limits their coverage of the parameter space;
as a result of this lack of coverage, and the considerable
time requirements to produce new waveforms, any infer-
ence method which relied solely on NR techniques could
not hope to satisfy the requirement to rapidly charac-
terise signals, and would not be practical in a scenario
where multiple events are detected every month. Phe-
nomenological models, which can be evaluated rapidly,
are available, which attempt to interpolate across a large
volume of the parameter space, but the accuracy of the
waveforms which they produce can be di�cult to assess.

Ths leads to the possibility of introducing biases into the
inferred properties of the system which generated the sig-
nal.

In this paper we have laid-out an approach to improv-
ing the accuracy of gravitational wave parameter estima-
tion in the context of limited template availability by im-
plementing a waveform approximant model using GPR,
providing not only a point-estimate of the waveform at
any point in the BBH parameter space, but also a distri-
bution of plausible waveforms, allowing the uncertainty
of the interpolation to be taken into account during the
analysis. In contrast to previous attemptes to produce a
GPR model for GW waveforms, such as [7], our model
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FIG. 4. Anti-aligned spin waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning,
equal-mass configuration (~s1 = (0, 0, 0.6), ~s2 = (0, 0,�0.6), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey
lines compared to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean
draw from the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region
surrounding the mean. In the right panel the distribution of mismatches between the samples and both phenomenological
waveforms are shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

FIG. 5. Precessing waveform. One hundred draws from the Gaussian process (left panel) for a precessing system, with
a mass ratio q = 0.25, and a spin configuration (~s1 = (0.413, 0.093, 0.425), ~s2 = (�0.004, 0.013, 0.6)) with a total mass of
60-solar masses, shown as light grey lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean
draw from the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region
surrounding the mean. In the right panel the distribution of mismatches between the samples and both phenomenological
waveforms are shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

is trained on data from the Georgia Tech NR waveform
catalogue, described in section IIIA.

We introduced GPR in section II as a non-parametric
regression method. This property allows the regression
model to be constructed while making minimal assump-
tions about the form of the waveforms, which are en-
coded through the form of the covariance function. We
discuss covariance functions in section IIA, and describe
the choice made for our model in section III B. In order
to reduce the computational burdon of evaluating the
model a hierarchical matrix inversion method was used
(described in [11] and discussed in section III C) in com-
bination with a covariance function with finite support.

We present a number of waveforms which have been
produced by our GPR model in section IV, and make
comparisons between its output and two phenomenolog-
ical models. These comparisons show a di↵erence be-
tween the behaviour of the two models which is most
pronounced during the inspiral section of the waveform.
This di↵erence also occurs between the phenomenological
model and the waveform produced from NR. A number
of phenomena are likely to have contributed to this dis-
crepancy. One such di↵erence in the systematic errors of
the NR simulations used to produce the training data for
the GPR model compared to those used to calibrate the
phenomenological models. Additionally, the relatively

Current solutions: Faster waveform models



Current solutions: Reduced Order Modelling
❖ Reduced order modelling and reduced order quadrature 

can be used to produce computationally more efficient 
likelihood calculations (Field, Galley, Pürrer, Tiglio…).

1. Construct a compact representation of the waveform 
space.

2. Interpolate basis coefficients efficiently across 
parameter space.

3. Construct ROQ approximation to likelihood by 
requiring waveform to match at specific frequencies

4. Evaluate waveform at specific Fk’s using surrogates.

❖ Typically get order(s) of magnitude computational saving. 
Important tool for current LIGO analyses. Extensions to 
other waveform models and LISA non-trivial!
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New approaches: Neural posterior estimation
❖ Stochastic sampling relies on being able to evaluate the likelihood,           , which is 

done during sampling and requires a new waveform evaluation at each step.

❖ Alternative: simulation based inference. Construct a neural network that generates 
samples from a distribution,           , that approximates the target distribution, in this 
case the parameter posterior distribution,           . Train the neural network by 
minimising the average cross-entropy with the true distribution

❖  Compute loss by simulation

❖ Advantages: likelihood-free, amortised cost of waveform generation, flexible.
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Normalizing flows
❖ A normalising flow maps represents a complex distribution as a mapping of a 

simple one.

q(θ |d)!(0,1) fd

❖ Construct target distribution using

❖ Want mapping to be invertible and have a simple Jacobian determinant. Can 
represent a normalising flow with these properties using a neural network.
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Normalizing flows
❖ Build normalising flow from a sequence 

of coupling transforms

❖ The coupling transforms must be 
differentiable and invertible.

❖ We use spline flows (Durkan et al. 2019), 
based on rational quadratic spline 
interpolation between a set of knots.

❖ A sequence of transforms can represent 
very complicated functions.

ui

c i

Figure: Durkan et al (2019)
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NPE refinements: embedding network
❖ The existence of reduced bases shows that waveform bases can be compressed. Could 

impose this by hand, but more robust to learn this using an embedding network. 

Nin = ndet x 24099

Linear projection

Seed with principal components
of noise-free waveforms

ndet x 400

Fully connected residual network

48 hidden layers

Nout = 128 to flow

non-linear compression

inductive bias to recognise waveforms

(8033 frequency bins) x (Re + Im + PSD)
8s segment, sampled at 1024Hz, 

flow = 20Hz



NPE refinements: group equivariant NPE
❖ Representing the time of coalescence, tI, requires many reduced basis elements. Uses 

up a lot of training resources and freedom within the network.

❖ A change in time of coalescence in a single detector corresponds to a (trivial) 
transformation of the data and template. If the time shift is known, the waveform 
can be aligned and the learning process significantly simplified.

❖ Don’t know this a priori and not an exact symmetry for a detector network.



NPE refinements: group equivariant NPE
❖ Introduce a blurred estimate of    ,    , into 

the parameter space.

❖ In training and inference, follow a Gibbs 
sampling procedure

1. Align data based on  

2. Sample      from a fixed kernel

❖ Converges in O(10) iterations.

❖ GNPE exploits (near-) symmetries to 
simplify the learning task.
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NPE network

fd,Sn
(u)

d

θ ∼ q(θ |d, Sn)

flow

Embedding network
Compress data

PSD Sn

Full amortization

Account for PSD 
nonstationarity

Big neural networks:  layers and 150 million parameters ≈ 350

u ∼ !(0,1)D



NPE validation

❖ Check internal or within-
distribution consistency of 
network by generating a p-p plot.

❖ Check external or out-of-
distribution consistency by 
comparing to posterior 
distributions computed for real 
observations using standard 
stochastic samplers.
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NPE validation: GWTC-1 BBHs
• Used  waveforms for training

• IMRPhenomPv2
• ,  ,   
• 15D parameter space
•

• + stationary Gaussian noise realisations consistent with given PSD

• Train several neural networks based on different noise level / number of detectors/ 
distance range:

5 × 106

T = 8 s fmin = 20 Hz fmax = 1024 Hz

m1, m2 ∈ [10,80] M⊙
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NPE validation: GWTC-1 BBHs

GW150914

LI MCMC

DINGO

25
30
35

m
2

[M
Ø

]

20
0

40
0

60
0

d
L

[M
p
c]

0.
8

1.
6

2.
4

µ J
N

0.
0

0.
8

1.
6

2.
4

√

0.
00

0.
25

0.
50

0.
75

a
1

0.
25

0.
50

0.
75

a
2

0.
8

1.
6

2.
4

µ 1

0.
8

1.
6

2.
4

µ 2

36 42 48

m1 [MØ]

2

4

6

¡
J

L

25 30 35

m2 [MØ]
20

0
40

0
60

0

dL [Mpc]

0.
8

1.
6

2.
4

µJN

0.
0

0.
8

1.
6

2.
4

√
0.
00

0.
25

0.
50

0.
75

a1

0.
25

0.
50

0.
75

a2

0.
8

1.
6

2.
4

µ1

0.
8

1.
6

2.
4

µ2

2 4 6

¡JL

50,000 samples in ~ 20 s



NPE validation: GWTC-1 BBHs
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• Compare NPE posteriors to “standard” posteriors generated by LALInference 
and Bilby. Use JS divergence as a metric for comparison.

• JS divergence less than 2 nats considered indistinguishable.



Future challenges: long waveforms
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❖ Inspiral time from frequency f0 for 
binary with m1=m2 is approximately

❖ As lower frequency cut off decreases 
from 30 Hz -> 6 Hz -> 2 Hz, BNS 
observation time increases from ~1 
minute to ~1 hour to ~1 day.

❖ LISA sources observable for ~1 year.

❖ Need strategies to deal with long 
waveforms, e.g., reduced bases, relative 
binning, GNPE for intrinsic parameters.          
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Figure 1.1: Gravitational-wave strain noise for current and future detectors (left) and astrophysical reach for
equal-mass, nonspinning binaries distributed isotropically in sky and inclination (right).

1.2 Gravity, Spacetime and Gravitational Waves

The nature of space and time has fascinated the human intellect for millennia. In the 17th century Newton laid
out the first concrete notions in his Principia Mathematica by asserting that space and time are immutable
and not amenable to change due to external influence:

• Absolute, true, and mathematical time, of itself, and from its own nature, flows equally without relation
to anything external.

• Absolute space, in its own nature, without relation to anything external, remains always similar and
immovable.

A corner stone of Newtonian physics is the principle of relativity according to which the laws of physics
are the same for all observers in relative motion. Specifically, spatial separations and time intervals between
physical events are identical for all observers. This meant that the speed of light was different for observers
depending on their relative motion. These notions were the guiding principles of physics for over two
centuries and formed the basis for building the theory of gravitation.

At the beginning of the 20th century Einstein formulated the special theory of relativity in which the
speed of light was the same for all observers as required by the decisive precision experiment of Michelson
and Morley a few years before. The idea of absolute space and time was incompatible with special relativity
in which spatial separations and time intervals depended on an observer’s motion. Furthermore, he soon
realized that matter must alter the geometry of space and the flow of time. This eventually led him to a new
theory of gravity, the general theory of relativity, according to which matter and energy warp spacetime and
accelerated masses can create ripples in that distortion, called gravitational waves, that travel outward from
their sources at the speed of light.

Large amplitude gravitational waves emanate from regions of strong gravity with masses moving at
relativistic speeds, making them ideal for studying dynamical spacetimes. They interact weakly with matter
and are hardly dispersed as they propagate from their sources to Earth; so the waves carry uncorrupted
signature of their sources. A passing gravitational wave causes the rate at which clocks tick and physical
distance between test masses to vary—the basic principle behind gravitational wave detectors. Gravitational
waves were deemed responsible for the measured decrease in the orbital period of a pair of neutron stars
discovered by Hulse and Taylor in 1976. Since 2015, gravitational wave detectors have ushered in a new era
in astronomy.



Future challenges: non-stationary noise
❖ BBH mergers are short enough that 

noise is approximately stationary.

❖ For longer signals this is less likely 
to be true: an issue for 3G detectors 
and LISA.

❖ NPE can readily accommodate 
alternative noise specifications, 
provided that we can simulate these 
(or use observed noise).
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Future challenges: population inference
❖ Population inference uses Bayesian Hierarchical 

Modelling

❖ Inference relies on reweighting of posterior samples 
to alternative population parameter values.

❖ NPE’s ability to generate many samples, hence 
resolving tails, could be crucial for accuracy.
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❖ But need to verify that NPE has 
trained sufficiently in the tails of 
the distribution.
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FIG. 11. The di↵erential merger rate for the primary mass predicted using three non-parametric models compared to the
fiducial PP model. Solid curves are the medians and the colored bands are the 90% credible intervals. These models o↵er
increased flexibility compared to phenomenological models in predicting the population. The PS applies a perturbation to the
primary mass in a modified version of our fiducial PP model that does not include the Gaussian peak. FM models the chirp
mass, mass ratio, and aligned spin distribution as a weighted sum of mixture components. Both of these models incorporate a
single parameter redshift evolution of the merger rate [Eq. (7)]. The BGP models the two-dimensional mass distribution as a
binned Gaussian Process which is piecewise constant in logmi, illustrating the same analysis as presented in Sec. IV with FAR
< 0.25 yr�1. All three models infer a local maximum in the merger rate at around 10M� and 35M�.

FIG. 12. The cubic spline function, f(m1), describing the
perturbations to an underlying power law inferred with the
PS model. The thin grey lines show 1000 draws from the
posterior while the black lines show the knot locations (verti-
cal) and the 90% credible region of the posterior. The dashed
blue lines mark the 90% credible bounds of the Gaussian pri-
ors (centered on zero) imposed on each knot’s height. The
shaded region covers any masses less than the 95th percentile
of the marginal posterior distribution on mmin. Because the
low mass region of the mass distribution is cut o↵ and there
are no observations there, the posterior in this region resem-
bles the prior of the cubic spline function.

over, any metallicity dependence in the physics of stars,
such as the maximum black hole mass imposed by pair
instability supernovae (PISN) [144, 146, 173], could yield
redshift-dependent features in the black hole mass dis-
tribution [174, 175]. Such a redshift dependence would
confound e↵orts to leverage the PISN mass gap as a probe
of cosmology. Previous investigations [176] demonstrated

using GWTC-2 that redshift dependence of the maxi-
mum BBH mass would be required to fit the observa-
tions if the BBH mass distribution has a sharp upper
cuto↵. However, if the distribution decays smoothly at
high masses, for example as a power-law, the data are
consistent with no redshift dependence of the cuto↵ lo-
cation.

We revisit this question using the latest BBH detec-
tions among GWTC-3, finding that these conclusions
remain unchanged. Specifically, by modelling the high-
mass tail of the distribution with a separate power-law
index, we find no evidence that the distribution is red-
shift dependent, suggesting that the high-mass structure
in the BBH mass distribution remains consistent across
redshift.

E. Outliers in the BBH Population

While we inferred the population of most BBH and bi-
naries involving NS, some systems (particularly with high
mass ratio) lie at the boundary between these categories
[23, 142]. So far, we have simply excluded these events
from our BBH analysis. To demonstrate this choice is in-
ternally self-consistent and well-motivated, we show that
these events are outliers from our recovered BBH pop-
ulation. Specifically, we repeat the population analysis
using the PP model, highlighting the extent to which the
population changes when including these events.

For a population consisting of all potential BBH events
in O3, including GW190917 and GW190814, the mass
distribution must extend to lower masses. In Fig. 14
we plot the recovered distribution for the minimum BH



Future challenges: overlapping sources
❖ Future detectors will observe 

sources that overlap in time and 
frequency.

❖ Need new NPE architectures to 
handle this, e.g.,

- Fixed maximum number of 
sources - increase output 
dimensionality.

- Iterative subtraction. Network 
operates on residuals.

❖ Training more complex, as network 
must learn multi-source and multi-
residual data sets.



Summary
❖ Gravitational wave science relies on obtaining parameter posterior distributions for 

all observed sources. Multi-messenger applications require rapid estimation of sky 
position, and perhaps other parameters.

❖ Current PE codes are computationally intensive—need new methods that are fast, 
robust and accurate.

❖ Various approaches to accelerate conventional methods are being explored, including 
reduced order and surrogate modelling and Gaussian process regression.

❖ Neural posterior estimation is a new, machine learning approach that now has 
comparable performance to standard methods in a fraction of the time. Training cost 
is amortised, allowing near real-time analysis of new observations.

❖ Group equivariant NPE can be used to simplify training of a neural network by 
exploiting near symmetries.

❖ Future detectors pose many developmental challenges: long waveforms, non-
stationary noise, new sources, overlapping sources, population inference….


