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Talk outline
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Gravitational wave parameter estimation
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Reduced order quadrature
Fast waveforms using machine learning methods
Neural posterior estimation

Future challenges and opportunities



Current and future detectors
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LIGO/Virgo/KAGRA: Ground-based interferometers
currently operating. 90 (likely) astrophysical sources
observed to date, over three observing runs.

LISA: space-based interferometer to launch in ~2035,
operating in mHz band. ESA-led; NASA contributions,

3G: next generation ground-based detector concepts
under development. Einstein Telescope (Europe) and
Cosmic Explorer (US). To start operation in ~2030s.
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Overview of GW parameter estimation

GW parameter estimation typically uses Bayesian inference, in which we obtain samples
from the posterior distribution after specifying a prior distribution and the likelihood

< v _ p(d|d)p(d)

Typically we assume the detector output is a linear combination

—

s(t) =n(t) + h(t;0)

and that the noise is Gaussian, giving the likelihood

plald) o exp |~ (A~ W@l - h@)| ()= [ TP IDTD

Inference typically uses Markov Chain Monte Carlo or other stochastic sampling methods
to draw samples from the posterior distribution - needs millions of likelihood
evaluations, which rely on constructing expensive waveform models.



Computational cost: GW 150914

# The analysis of GW150914 used 50
million CPU hours (20,000 PCs
running for 100 days). A
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significant fraction of that was PE.

* Lag between observation and
publication of exceptional events
mostly dominated by PE (re-)runs.

Primary black hole mass 365 M

Secondary black hole mass DO j M : :

Final black hole mass 62 M '

Final black hole spin OG> | ' | — : |
Luminosity distance 410180 Mpc 5 30 35 40 45 50

Source redshift z 0.0915:93 mioe /M 4




Challenges in GW parameter estimation
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Epoch | 2015-2016  2016-2017 2018-2019 2020+ 2024+

Planned run duration 4 months 9 months 12 months (per year)  (per year)
LIGO 40-60 60-75 75-90 105 105
Future d ete CtO s Wlll h ave more Expected burst range/Mpc Virgo — 20-40 40-50 40-70 80
KAGRA — — — — 100
i LIGO 40-80 80-120 120-170 190 190
events ” eXpeCt tO move from i 1 Expected BNS range/Mpc Virgo — 20-65 65-85 65-115 125
KAGRA — — — — 140
event/week to several/day:. G0 | @8 @10 — = =
Achieved BNS range/Mpc Virgo — 25-30 — — —

I Kb G R
c . Estimated BNS detections 0.05-1 0.2-4.5 1-50 4-80 11-180
Future detectors will have wider |——rmrmon - ;

. L 5 deg” <1 1-5 1-4 3-7 23-30
bandwidths: new types of source, 00% CR WD 5 g2 <1 7-14 12-21 14-22  65-73
1 f d h me:dian/deg2 460-530 230-320 120-180 110-180 9-12

oneer waveforms an ence  5ded? 4-6 15-21 20-26 23-29  62-67
5 . Searchedarea % within " o 14-17 3341 42-50 44-52  87-90
more expensive PE. Acvanced LICO
1073 gt

Sources for LISA (and to a lesser

extent 3G detectors) will overlap i
in time and frequency. "5' i

Fast PE needed for multi-
messenger applications: send
triggers for EM follow-up.
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Current solutions: Bayestar

Rapid PE is needed for multi-messenger
applications, to send triggers out for EM
follow-up. Current methods do this by
approximating the likelihood.

Bayestar employs the autocorrelation
likelihood (likelihood evaluated at MLE
parameter values)

——sz 2 R {eT e ()

Rapid marginalisation over parameters

other than sky location achieved via
integral approximation and look-up tables.

Result is a sky map probability density.

Singer & Price (2015)




Strain

Current solutions: Faster wavetform models

Faster waveform model evaluation facilitates faster PE with standard methods (see
talk by Leila Haegel). One example: Gaussian process regression (e.g., Williams et al.
2020) provides faster models that encode modelling uncertainties.
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Current solutions: Reduced Order Modelling

Reduced order modelling and reduced order quadrature
can be used to produce computationally more efficient
likelihood calculations (Field, Galley, Piirrer, Tiglio...).

1. Construct a compact representation of the waveform
space.

2. Interpolate basis coetficients etficiently across
parameter space.

3. Construct ROQ approximation to likelihood by
requiring waveform to match at specific frequencies

~ =

(h(6)|d) = 4Re / N h<gi?;§f>

4. Evaluate waveform at specific F's using surrogates.

df ~4Re Y wy, h(Fi; M)
=1l

Typically get order(s) of magnitude computational saving.

Important tool for current LIGO analyses. Extensions to
other waveform models and LISA non-trivial!

Full Likelihood

0608 1 1.2

ROQ Likelihood

Canizares, |G
et al. (2013)




New approaches: Neural posterior estimation

Stochastic sampling relies on being able to evaluate the likelihood, p(d|6), which is
done during sampling and requires a new waveform evaluation at each step.

Alternative: simulation based inference. Construct a neural network that generates
samples from a distribution, q(0|d), that approximates the target distribution, in this
case the parameter posterior distribution, p(0|d). Train the neural network by
minimising the average cross-entropy with the true distribution

L =E, o Ey01a) |—log q(0]d)] = Ep0)Epaio) |—log q(0]d))

Compute loss by simulation

Sample 69 ~ p@), i=1,...,N

Simulate d\9 ~ p(d|0?); d® = r(0D) +n with nY ~ pg (n)
i £ A
Compute L ~ N ; [_ log q(g(z)‘d(z))}

Advantages: likelihood-free, amortised cost of wavetorm generation, flexible.



Normalizing flows

A normalising flow maps represents a complex distribution as a mapping of a
simple one.

N (O,1) fa |} 2(@1d)

Construct target distribution using
q(0]d) = N(0,1)7 (f;(0)) |det.] "

Want mapping to be invertible and have a simple Jacobian determinant. Can

represent a normalising flow with these properties using a neural network.



Normalizing flows

Build normalising flow from a sequence —— RQ Spline
of coupling transforms B-
— |nverse
o u if i < D/2 Anots
“@il") =\ c(uiuyp,d) ifi> Df2

The coupling transforms must be
differentiable and invertible.

We use spline flows (Durkan et al. 2019),

. : . — 131
based on rational quadratic spline
interpolation between a set of knots. | . '
B 0 B
A sequence of transforms can represent U.

very complicated functions.
Figure: Durkan et al (2019)



NPE refinements: embedding network

The existence of reduced bases shows that waveform bases can be compressed. Could
impose this by hand, but more robust to learn this using an embedding network.

Neri= #aee X 24099 - (8033 frequency bins) x (Re + Im + PSD)
8s segment, sampled at 1024Hz,
of noise-free waveforms . inductive bias to recognise waveforms
NMdet X 400
— £ non-linear compression
48 hidden layers

Nout = 128 W



NPE refinements: group equivariant NPE
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Representing the time of coalescence, t;, requires many reduced basis elements. Uses

up a lot of training resources and freedom within the network.
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transformation of the data and template. If the time shift is known, the waveform

can be aligned and the learning process significantly simplified.

Don’t know this a priori and not an exact symmetry for a detector network.




NPE refinements: group equivariant NPE

Introduce a blurred estimate of t;, ¢; into
the parameter space.

In training and inference, follow a Gibbs
sampling procedure

1. Align data based on #; > e \'
A / I
0~ q(0IT s, (d), ir) TR
/
£ / I
A : 1 / /
2. Sample ¢; from a fixed kernel | /
\ Pl
tr ~ p(trltr) ==
e
Converges in O(10) iterations. \.7

GNPE exploits (near-) symmetries to t;
simplify the learning task.



NPE network

PSD S.

Full amortization
Account for PSD
Compress data

— @mbedding networ@

nonstationarity

|

é N
u~ N0,1P « > fd,Sn(u)
§ J

flow

Big neural networks: =~ 350 layers

5 > 0~q(0|d,S,)

and 150 million parameters
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NPE validation

1.0

—— m1 (0.044)
. . . —— myg (0.43)
Check internal or within- 4o (0l7e)
—— t. (0.31)
—— dy, (0.77)
network by generating a p-p plot. — a1 (0.39)
as (0.38)
— 671 (0.82)
0.6 - 65 (0.68)
— ¢12 (0.43)

T ¢JL (0'58)
~-—= 0 N (0.68)

———= 4 (0.015)
o (0.44)

distribution consistency of 0.8 -

Check external or out-of-
distribution consistency by 0.4 -
comparing to posterior

CDF(p)

distributions computed for real o

observations using standard
stochastic samplers.

0.0 0.2 0.4 0.6 0.8 1.0



NPE validation: GWTC-1 BBHs

« Used 5 x 10° waveforms for training s |  Train loss
CLP ' Validation loss
e IMRPhenomPv2 A
e T=8S, f,., =20 Hz, f .. = 1024 Hz 4.4 -

* 15D parameter space
« my,m, € [10,80] Mg

3.8 T T i T T
0 100 200 300 400 500 600

epoch

e + stationary Gaussian noise realisations consistent with given PSD

e Train several neural networks based on different noise level / number of detectors/
distance range:

Observing run  Detectors Distance range [Mpc]

O1 AL 100, 2000]
100, 2000]

02 o 100, 6000]
ALV 100, 1000




1 BBHs

NPE validation: GW'TC

LI MCMC
DINGO

_' 50,000 samples in ~ 20 s '

GW150914




NPE validation: GWTC-1 BBHs

* Compare NPE posteriors to “standard” posteriors generated by LALInference

and Bilby. Use ]S divergence as a metric for comparison.

* ]S divergence less than 2 nats considered indistinguishable.
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Future challenges: long wavetorms

T(s)

Inspiral time from frequency fo for
binary with mi=m; is approximately

5 8
mi = Jo 3
T~
g3 (1.4M@> (10Hz>

As lower frequency cut off decreases
from 30 Hz -> 6 Hz -> 2 Hz, BNS
observation time increases from ~1
minute to ~1 hour to ~1 day.

LISA sources observable for ~1 year.

Need strategies to deal with long
waveforms, e.g., reduced bases, relative
binning, GNPE for intrinsic parameters.
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Future challenges: non-stationary noise

BBH mergers are short enough that
noise is approximately stationary.

For longer signals this is less likely

to be true: an issue for 3G detectors
and LISA.

Frequency (Hz)

NPE can readily accommodate
alternative noise specifications,
provided that we can simulate these
(or use observed noise).

Sample 6% ~ =0
Simulate d¥) ~ p(d|9" )
41 — h(g(%))

with n(z) ps,, (n) Use other
noise models
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Future challenges: population inference

# Population inference uses Bayesian Hierarchical o
Modelling
N 0.8
— — — - — — — my (3.5 x 107°)
p(A{d;}) o< p(N) H p(d;|0;) p(6;|A) do; TS @ixa
1=1 — 0-6 7 —— t. (5.4 x 1079)
R : . s . E‘% —— dp, (4.1 x 107 19)
* Inference relies on reweighting of posterior samples & — a1 0013)
. : @, —— as (8.1 x 1079)
to alternative population parameter values. 0.4 7 — 0 (0:20)
62 (0.31)
— ¢12 (0.13)
o1 -=== ¢y (0.38)
+  NPE’s ability to generate many samples, hence 0.2 - e oy (11 % 1079)
. « . ---- 1 (0.44)
resolving tails, could be crucial for accuracy. - @ (0.13)
--== & (0.57)
0.0
T& 0.01 A
S R
—— FM = |
e J 8 —0.01 ~
PP I I I I
0.0 0.2 0.4 0.6 0.8 1.0
p

* But need to verify that NPE has
w  trained sufficiently in the tails of
the distribution.
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Future challenges: overlapping sources

0.
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Future detectors will observe
sources that overlap in time and

10-'36
frequenCY' stochastic everything
background
38
+  Need new NPE architectures to 07| galactic  instrument
. .‘ inaries noise
) 5 x
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é \ i Y n .F""-'- ’ﬁ. ‘
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- Fixed maximum number of ° \ '\.. LA L { o
. 10742} ‘ N el . P
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. . . < o f ';‘“ \' v | ' \ for legibility)
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° > . J | 1 e —
a 10744} ( .| \ ~ -\ //K// \
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— [terative subtraction. Network \ I i et
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X — 1048 [ [ . . {lla, LS
+ Training more complex, as network 105 104 103 10-2
f[HzZ]

must learn multi-source and multi-
residual data sets.



Summary

Gravitational wave science relies on obtaining parameter posterior distributions for
all observed sources. Multi-messenger applications require rapid estimation of sky
position, and perhaps other parameters.

Current PE codes are computationally intensive—need new methods that are fast,
robust and accurate.

Various approaches to accelerate conventional methods are being explored, including
reduced order and surrogate modelling and Gaussian process regression.

Neural posterior estimation is a new, machine learning approach that now has
comparable performance to standard methods in a fraction of the time. Training cost
is amortised, allowing near real-time analysis of new observations.

Group equivariant NPE can be used to simplify training of a neural network by
exploiting near symmetries.

Future detectors pose many developmental challenges: long waveforms, non-
stationary noise, new sources, overlapping sources, population inference....



