Rapid and robust parameter estimation for gravitational wave observations

IPAM workshop *Big Data in Multi-Messenger Astrophysics*, December 3rd 2021 *Jonathan Gair*, Albert Einstein Institute (Potsdam)

in collaboration with: **Stephen Green**, **Max Dax**, Jakob Macke, Michael Pürrer, Bernhard Schölkopf, Alessandra Buonanno

Talk outline

- Current and future gravitational wave detectors
- Gravitational wave parameter estimation
- * Fast and accurate parameter estimation
 - Reduced order quadrature
 - Fast waveforms using machine learning methods
 - Neural posterior estimation
- * Future challenges and opportunities

Current and future detectors

- LIGO/Virgo/KAGRA: Ground-based interferometers currently operating. 90 (likely) astrophysical sources observed to date, over three observing runs.
- LISA: space-based interferometer to launch in ~2035, operating in mHz band. ESA-led; NASA contributions,
- * 3G: next generation ground-based detector concepts under development. Einstein Telescope (Europe) and Cosmic Explorer (US). To start operation in ~2030s.

Overview of GW parameter estimation

* GW parameter estimation typically uses Bayesian inference, in which we obtain samples from the *posterior distribution* after specifying a *prior distribution* and the *likelihood*

$$p(\vec{\theta}|d) = \frac{p(d|\vec{\theta})p(\vec{\theta})}{p(d)}$$

* Typically we assume the detector output is a linear combination

$$s(t) = n(t) + h(t; \vec{\theta})$$

* and that the noise is Gaussian, giving the likelihood

$$p(d|\vec{\theta}) \propto \exp\left[-\frac{1}{2}(d-h(\vec{\theta})|d-h(\vec{\theta}))\right] \qquad (a|b) = \int_{-\infty}^{\infty} \frac{\tilde{a}^*(f)\tilde{b}(f) + \tilde{a}(f)\tilde{b}^*(f)}{S_h(f)} \mathrm{d}f$$

 Inference typically uses *Markov Chain Monte Carlo* or other stochastic sampling methods to draw samples from the posterior distribution - needs millions of likelihood evaluations, which rely on constructing expensive waveform models.

Computational cost: GW150914

- The analysis of GW150914 used 50 million CPU hours (20,000 PCs running for 100 days). A significant fraction of that was PE.
- Lag between observation and publication of exceptional events mostly dominated by PE (re-)runs.

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4}{M}_{\odot}$
Final black hole mass	$62^{+4}_{-4}{M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05 \\ -0.07}$
Luminosity distance	$410^{+160}_{-180} \mathrm{Mpc}$
Source redshift z	$0.09\substack{+0.03\\-0.04}$

Challenges in GW parameter estimation

- Future detectors will have more events: expect to move from ~1 event/week to several/day.
- Future detectors will have wider
 bandwidths: new types of source,
 longer waveforms and hence
 more expensive PE.
- Sources for LISA (and to a lesser extent 3G detectors) will overlap in time and frequency.
- Fast PE needed for multimessenger applications: send triggers for EM follow-up.

Epoch			2015-2016	2016-2017	2018-2019	2020+	2024+			
Planned run duration			4 months	9 months	12 months	(per year)	(per year)			
		LIGO	40-60	60-75	75-90	105	105			
Expected burst range/Mpc Virgo KAGRA				20 - 40	40 - 50	40 - 70	80			
							100			
		LIGO	40-80	80-120	120 - 170	190	190			
Expected BNS range/Mpc Virgo		Virgo		20 - 65	65-85	65-115	125			
KAGRA				—	—					
LIGO Achieved BNS range/Mpc Virgo		LIGO	60-80	60-100						
			25 - 30	—						
		KACRA								
Estimated BNS detections			0.05 - 1	0.2-4.5	1 - 50	4 - 80	11-180			
Actual DNS detections			0	1						
	% within	5 deg^2	< 1	1-5	1-4	3-7	23-30			
90% CR		20 deg^2	< 1	7 - 14	12 - 21	14 - 22	65-73			
	media	n/deg ²	460-530	230 - 320	120 - 180	110 - 180	9-12			
Searched area	07	5 deg^2	4-6	15-21	20-26	23-29	62-67			
	% Witnin	20 deg^2	14-17	33-41	42-50	44-52	87-90			

Current solutions

- Rapid PE is needed for multi-messenger applications, to send triggers out for EM follow-up. Current methods do this by approximating the likelihood.
- Bayestar employs the autocorrelation likelihood (likelihood evaluated at MLE parameter values)

$$\exp\left[-\frac{1}{2}\sum_{i}\rho_{i}^{2}+\sum_{i}\rho_{i}\Re\left\{e^{-i\gamma_{i}}z_{i}^{*}(\tau_{i})\right\}\right]$$

- Rapid marginalisation over parameters other than sky location achieved via integral approximation and look-up tables.
- * Result is a sky map probability density.

Current solutions: Faster waveform models

 Faster waveform model evaluation facilitates faster PE with standard methods (see talk by Leïla Haegel). One example: Gaussian process regression (e.g., Williams et al. 2020) provides faster models that encode modelling uncertainties.

Current solutions: Reduced Order Modelling

- Reduced order modelling and reduced order quadrature can be used to produce computationally more efficient likelihood calculations (Field, Galley, Pürrer, Tiglio...).
 - 1. Construct a compact representation of the waveform space.
 - 2. Interpolate basis coefficients efficiently across parameter space.
 - 3. Construct ROQ approximation to likelihood by requiring waveform to match at specific frequencies

$$(h(\vec{\theta})|d) = 4Re \int_0^\infty \frac{\tilde{h}(\vec{\lambda})\,\tilde{d}^*(f)}{S_n(f)}\,\mathrm{d}f \approx 4Re \sum_{k=1}^m \omega_k\,h(F_k;\vec{\lambda})$$

- 4. Evaluate waveform at specific F_k 's using **surrogates**.
- Typically get order(s) of magnitude computational saving.
 Important tool for current LIGO analyses. Extensions to other waveform models and LISA non-trivial!

New approaches: Neural posterior estimation

- * Stochastic sampling relies on being able to evaluate the likelihood, $p(d|\theta)$, which is done during sampling and requires a new waveform evaluation at each step.
- * Alternative: *simulation based inference*. Construct a neural network that generates samples from a distribution, $q(\theta|d)$, that approximates the target distribution, in this case the parameter posterior distribution, $p(\theta|d)$. Train the neural network by minimising the average *cross-entropy* with the true distribution

$$L = \mathbb{E}_{p(d)} \mathbb{E}_{p(\theta|d)} \left[-\log q(\theta|d) \right] = \mathbb{E}_{p(\theta)} \mathbb{E}_{p(d|\theta)} \left[-\log q(\theta|d) \right]$$

Compute loss by simulation

Sample
$$\theta^{(i)} \sim p(\theta)$$
, $i = 1, ..., N$
Simulate $d^{(i)} \sim p(d|\theta^{(i)})$; $d^{(i)} = h(\theta^{(i)}) + n^{(i)}$ with $n^{(i)} \sim p_{S_n}(n)$
Compute $L \approx \frac{1}{N} \sum_{i=1}^{N} \left[-\log q(\theta^{(i)}|d^{(i)}) \right]$

* Advantages: *likelihood-free, amortised* cost of waveform generation, *flexible*.

Normalizing flows

 A normalising flow maps represents a complex distribution as a mapping of a simple one.

Construct target distribution using

$$q(\theta|d) = \mathcal{N}(0,1)^D \left(f_d^{-1}(\theta) \right) \left| \det J_{f_d}^{-1} \right|$$

* Want mapping to be invertible and have a simple Jacobian determinant. Can represent a normalising flow with these properties using a neural network.

Normalizing flows

 Build normalising flow from a sequence of *coupling transforms*

$$c_{d,i}(u) = \begin{cases} u_i & \text{if } i \leq D/2\\ c(u_i; u_{i:\frac{D}{2}}, d) & \text{if } i > D/2 \end{cases}$$

- The coupling transforms must be differentiable and invertible.
- We use *spline flows* (Durkan et al. 2019), based on rational quadratic spline interpolation between a set of knots.
- * A sequence of transforms can represent very complicated functions.

NPE refinements: embedding network

* The existence of reduced bases shows that waveform bases can be compressed. Could impose this by hand, but more robust to learn this using an *embedding network*.

NPE refinements: group equivariant NPE

 Representing the time of coalescence, *t_I*, requires many reduced basis elements. Uses up a lot of training resources and freedom within the network.

- A change in time of coalescence in a single detector corresponds to a (trivial) transformation of the data and template. If the time shift is known, the waveform can be aligned and the learning process significantly simplified.
- * Don't know this *a priori* and not an exact symmetry for a detector network.

NPE refinements: group equivariant NPE

- * Introduce a blurred estimate of t_{I} , \hat{t}_{I} , into the parameter space.
- In training and inference, follow a Gibbs sampling procedure
 - 1. Align data based on \hat{t}_I

 $\theta \sim q(\theta | T_{-\hat{t}_I}(d), \hat{t}_I)$

- 2. Sample \hat{t}_I from a fixed kernel $\hat{t}_I \sim p(\hat{t}_I | t_I)$
- Converges in O(10) iterations.
- GNPE exploits (near-) symmetries to simplify the learning task.

NPE network

Big neural networks: \approx 350 layers and 150 million parameters

NPE validation

 Check internal or withindistribution consistency of network by generating a p-p plot.

 Check external or out-ofdistribution consistency by comparing to posterior distributions computed for real observations using standard stochastic samplers.

NPE validation: GWTC-1 BBHs

- Used 5×10^6 waveforms for training
 - IMRPhenomPv2
 - T = 8 s, $f_{\min} = 20$ Hz, $f_{\max} = 1024$ Hz
 - 15D parameter space
 - $m_1, m_2 \in [10, 80] \ M_{\odot}$

- + stationary Gaussian noise realisations consistent with given PSD
- Train several neural networks based on different noise level / number of detectors / distance range:

Observing run	Detectors	Distance range [Mpc]
01	HL	[100, 2000]
O2	HL	$[100, 2000] \\ [100, 6000]$
	HLV	[100, 1000]

NPE validation: GWTC-1 BBHs

NPE validation: GWTC-1 BBHs

- Compare NPE posteriors to "standard" posteriors generated by *LALInference* and *Bilby*. Use JS divergence as a metric for comparison.
- JS divergence less than 2 nats considered *indistinguishable*.

	m	ma	Ø	d_L	q_{j}	92	01	02	ØI2	ØJL	JN	Ķ	Q	б		
	1	-				- 1	- 1	1	- 1	1	- 1	1	- 1	1	- r	- 20
GW150914 -	0.8	1.1	0.2	0.8	0.2	0.3	0.5	0.5	0.1	0.3	0.8	0.2	0.7	1.4		
GW151012 -	2.7	1.6	0.1	0.9	0.4	0.2	0.5	0.5	0.1	0.1	0.6	0.1	1.4	0.5		- 15
GW170104 -	6.4	2.6	0.2	0.4	0.7	0.1	0.7	0.4	0.1	0.1	0.3	0.3	0.8	0.6		- 19
GW170729 -	0.9	1.5	0.4	6.3	0.2	0.2	1.0	0.8	0.2	0.3	3.4	0.3	1.2	1.2		- 10
GW170809 -	0.5	0.8	0.1	0.5	0.2	0.1	0.4	0.4	0.1	0.5	1.4	0.2	2.2	5.5		- 10
GW170814 -	1.2	1.3	0.2	1.5	0.2	0.2	0.4	0.3	0.2	1.4	1.4	1.2	2.5	2.0		- 5
GW170818 -	1.6	1.3	0.2	1.1	1.0	0.2	1.9	0.5	0.1	2.4	1.8	0.4	3.8	2.4		- 3
GW170823 -	0.5	0.6	0.1	0.9	0.2	0.2	0.4	0.2	0.2	0.2	0.5	0.2	0.4	0.4		

JS divergence $[\times 10^{-3} \text{ nat}]$

Future challenges: long waveforms

 Inspiral time from frequency f₀ for binary with m₁=m₂ is approximately

$$T \sim 980 \,\mathrm{s} \, \left(\frac{m_1}{1.4 \, M_\odot}\right)^{-\frac{5}{3}} \left(\frac{f_0}{10 \,\mathrm{Hz}}\right)^{-\frac{8}{3}}$$

- As lower frequency cut off decreases from 30 Hz -> 6 Hz -> 2 Hz, BNS observation time increases from ~1 minute to ~1 hour to ~1 day.
- LISA sources observable for ~1 year.
- Need strategies to deal with long waveforms, e.g., reduced bases, relative binning, GNPE for intrinsic parameters.

Future challenges: non-stationary noise

- BBH mergers are short enough that noise is approximately stationary.
- For longer signals this is less likely to be true: an issue for 3G detectors and LISA.
- NPE can readily accommodate alternative noise specifications, provided that we can simulate these (or use observed noise).

Sample $\theta^{(i)} \sim p(\theta)$, i = 1, ..., NSimulate $d^{(i)} \sim p(d|\theta^{(i)})$ $d^{(i)} = h(\theta^{(i)}) + n^{(i)}$ with $n^{(i)} \sim p_{S_n}(n)$ Use other noise models

Future challenges: population inference

 Population inference uses Bayesian Hierarchical Modelling

$$p(\vec{\lambda}|\{\mathbf{d}_i\}) \propto p(\vec{\lambda}) \prod_{i=1}^{N} \int p(\mathbf{d}_i|\vec{\theta}_i) \, p(\vec{\theta}_i|\vec{\lambda}) \, \mathrm{d}\vec{\theta}_i$$

- Inference relies on reweighting of posterior samples to alternative population parameter values.
- NPE's ability to generate many samples, hence resolving tails, could be crucial for accuracy.

But need to verify that NPE has trained sufficiently in the tails of the distribution.

Future challenges: overlapping sources

- Future detectors will observe sources that overlap in time and frequency.
- Need new NPE architectures to handle this, e.g.,
 - Fixed maximum number of sources - increase output dimensionality.
 - Iterative subtraction. Network operates on residuals.
- Training more complex, as network must learn multi-source and multiresidual data sets.

Summary

- Gravitational wave science relies on obtaining parameter posterior distributions for all observed sources. Multi-messenger applications require rapid estimation of sky position, and perhaps other parameters.
- Current PE codes are computationally intensive—need new methods that are fast, robust and accurate.
- * Various approaches to accelerate conventional methods are being explored, including reduced order and surrogate modelling and Gaussian process regression.
- Neural posterior estimation is a new, machine learning approach that now has comparable performance to standard methods in a fraction of the time. Training cost is amortised, allowing near real-time analysis of new observations.
- * **Group equivariant NPE** can be used to simplify training of a neural network by exploiting near symmetries.
- * **Future detectors pose many developmental challenges**: long waveforms, nonstationary noise, new sources, overlapping sources, population inference....