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• What is the astrophysical source we are looking 
for?

• What are the challenges?
• How do we approach the problem?
• How can we improve our approach?

Outline





• Thermonuclear Supernovae: Type Ia
Ø Caused by runaway thermonuclear burning of white dwarf fuel to Nickel
Ø Roughly of 1051 ergs released
Ø Very bright, used as standard candles
Ø No remnant

• Core Collapse Supernovae: Type II, Ib, Ic
Ø Result from the collapse of an iron core in an evolved massive star (MZAMS >8-10 MSUN)
Ø Few x 1053 ergs released in gravitational collapse, most (99%) radiated in neutrinos
Ø Spread stellar evolution elemental products throughout galaxy
Ø Neutron star or black hole remnant



MeV Neutrinos from SN1987A

February 23, 1987. 



Massive Stars: Burning stages



Massive Stars: End Stage



Onion shell structure of pre-collapse star

Convective burning can lead to large
scale velocity and density
perturbations in the oxygen and
silicon layers (as indicated for the O-
shell).

Shells of progressively heavier elements
contain the ashes of a sequence of
nuclear burning stages, which finally
build up a degenerate core of oxygen,
neon and magnesium or iron-group
elements at the center.

H.-Th Janka, arXiv:1702.08825



The gravitational instability of the degenerate O-Ne-Mg or iron core is initiated by electron 
captures on nuclei and free protons,

Initially, the electron neutrinos (ne ) produced by electron captures can escape freely, but at a
density of  about 1012 g cm-3 , the outward neutrino diffusion is slower than the accelerating
infall of the stellar plasma, and neutrino trapping sets in.

e- + p à ne +n
e- + (a,Z) à ne + (A,Z-1)
and by the partial
photodissociation of heavy
nuclei to a particles and 
free nucleons

H.-Th Janka, arXiv:1702.08825



The implosion of the inner
core is stopped abruptly
when nuclear saturation
density is reached at the
center

The inner core bounces back and its
expansion creates pressure waves
that steepen into a shock front at
the transition to the supersonically
infalling outer core.[H
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The newly formed shock
begins to propagate
outwards in radius as
well as in mass.

A luminous flash of ne , the so-called shock-
breakout neutrino burst, is radiated and
takes away additional energy from the
postshock layer. Since the velocities
everywhere behind the shock become
negative, the shock expansion stalls and the
shock converts into an accretion shock.

The density behind the
shock has decreased to a
value where the electron
neutrinos, which are
abundantly produced by
electron captures onto
free protons in the
postshock medium, start
to escape freely.
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The conditions, however, change
fundamentally at later post-bounce times,
because the postshock temperature
decreases as the density drops and the
plasma becomes more radiation
dominated.

Shortly after core bounce
neutrino emission carries
away energy from the
postshock layer.
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If the heating by neutrinos is strong enough,
the shock can be pushed outwards and the SN
explosion can be launched.

Neutrino-energy transfer to the
shock raises the postshock pressure.
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• What is the astrophysical source we are looking for?
• What are the challenges?
• How do we approach the problem?
• How can we improve our approach?

Outline



The challenges
The rate of 
observable 

CCSN events

The duty 
cycles of the 

detectors

The noise 
background is 
non-stationary



A neutrino-driven explosion is the most likely outcome in the case of slowly rotating
cores, which are present in the bulk of CCSN progenitors. The emitted GWs could be
detected with the advanced ground-based GW detector network, Advanced LIGO,
Advanced Virgo and KAGRA, within 5 kpc*. Such a galactic event has a rate of about
2-3 per century#.

For the case of rapidly rotating progenitor cores the result is likely a magneto-
rotational explosion, yielding a more powerful GW signal that could be detected
within 50 kpc.

Despite the low rates, CCSN are of great scientific interest because they produce
complex GW signals which could provide significant clues about the physical
processes at work after the gravitational collapse of stellar cores.

The rates

Phys. Rev. D. 93 (2016), 10.1103; Phys. Rev. D. 101, 084002 (2020).
Astrophys. J. 778, 164 (2013); New Astronomy 83, 101498 (2021).

*

#



The duty cycle of the detectors

The fraction of time interferometers are operating and taking science-
quality data is limited by several factors including commissioning work
(to improve sensitivity and stability) and interference due to excessive
environmental noise.

The risk of completely missing a CCSN GW signal is mitigated by having
a larger network of detectors.



The noise background is non-stationary

Phys. Rev. D. 82, 103007 (2010); Class. Quantum Grav. 32, 215012 (2015).
Phys. Rev. D. 88, 062003 (2013).

*

#

Noise in interferometers arises from a combination of instrumental,
environmental, and anthropomorphic noise sources that are extremely
difficult to characterize precisely.

Mitigation strategies include:
Ø Coincident observation with multiple, geographically separated

detectors
Ø Data quality monitoring and the recording of instrumental and

environmental vetos derived from auxiliary data channels such as
seismometers, magnetometers, etc.

Ø Glitch-detection strategies based on Bayesian inference* or machine
learning #.

Ø Using external triggers from EM or neutrino observations to inform
the temporal “on-source window” in which we expect to find GW
signals and consequently reduce the time period searched.
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Motivations

According to the standard paradigm of the neutrino-
driven mechanism of the core collapse explosion, the
energy transfer by the intense neutrino flux can be the
decisive agent for powering the supernova outburst.

In a supernova explosion, also gravitational waves (GW)
are generated in the inner core of the source, so that this
messenger carries direct information of the inner
mechanism.

Although the phenomenon is among of the most
energetic in the universe, the amplitude of the
gravitational wave impinging on a detector on the Earth
is extremely faint.

For a CCSN in the center of the Milky way, a rare event,
we could expect amplitudes of the metric tensor
perturbations ranging between 10−21− 10−23.

To increase the event rate of detections we should
increase the volume of the universe to be explored and
this can be achieved both by decreasing the detector
noise and using better performing statistical algorithms.





A NEW GRAVITATIONAL-WAVE SIGNATURE FROM 
STANDING ACCRETION SHOCK INSTABILITIES IN 

SUPERNOVAE

23
T. Kuroda et al.,Astrophys.J. 829 (2016) no.1, L14 



✓SASI activity higher for softer EOS (due to high growth rate, e.g., Foglizzo et al. (‘06)).

[Kuroda et al 2016, ApJL, 2014, PRD]

SFHx :softer TM1 :stiffer



Credit: Tomoya Takiwaki

Neutrino driven CCSNe

Bruenn et al. 2016. ApJ 818, 123

Magneto-rotationally-driven CCSNe

Burrows et al. 2007,       ApJ 664, 416

Different scenarios

25



Phenomenological
Waveforms

The aim of our phenomenological template is to mimic the
raising arch observed in core-collapse simulations.

The idea is that at each time in the post-bounce evolution, the
PNS is in quasi-hydrostatic equilibrium and any perturbation will
excite the eigenmodes of the system, in particular g-modes.

These modes are continually being excited by the hot bubble surrounding
the PNS, in particular by convective motions and SASI. At the same time
these excited modes are damped by the PNS conditions (e.g. by the
existence of convective layers that do not allow for buoyantly supported
waves) and by the presence of non-linearities and instabilities (e.g.
turbulence).

The GW emission can be modelled as a damped harmonic
oscillator with a random forcing, in which the frequency varies
with time.



Phenomenological Waveforms

Phys.Rev.D 103 (2021) 6, 063011

• New and flexible parametrisation for the
frequency evolution.

• The distance is used as a parameter.



Strategy

28

While the neutrino information are used as an external trigger, it is
necessary the generation of a data set of CCSN waveforms through a 
phenomenological approach.

Creation of the time-frequency plots that are the input for the deep 
learning algorithm.

Analysis of these images through the neural network.

Classification of images as signal or noise.



Gravitational Wave Observatories

KAGRA

LIGO, Livingston, LA LIGO, Hanford, WA Virgo, Cascina, Italy KAGRA, Gifu, Japan



Coherent Waveburst (cWB)
• Coherent Waveburst is an algorithm of Burst search 

developed at LVC

• Interesting features:
– Characterization of signal both in time and frequency (Wavelet)
– Coherent analysis (Likelihood approach)
– Reconstruction of waveforms and source coordinates

• Waveburst is applied in two steps:
– Production: production events list
– Post production: candidate selection

30
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Coherent Waveburst

Representation of
multilayer decomposition
of the GW data

• The pipeline decomposes the data stream, of each detector in the network, at
different (dt, df) resolution levels.

• cWB is an Excess power algorithm: minimal assumption on target signal.

• The TF decomposition of the whitened data at a chosen level is considered
as input for the neural network.



Examples of injections

32



• What are they?
An artificial neural network (ANN) is a mathematical object
composed of many layers. Those layers are both linear
(convolutions, matrix multiplications) and nonlinear
(activation functions, poolings). The network has a multiscale
hierarchical structure that is able to describe and combine
features at different scales.

• How do they work?
The weights of the network are iteratively updated using a
gradient-descent algorithm, trying to minimize an appropriate
cost function. Our cost function, the cross-entropy, is related to
the classification error.

Artificial Neural Network

33



• This data-driven filter learning provides a visual space
decomposition which can be regarded as a hierarchical
matched filtering.

• Convolutional Neural Networks (CNN) are a
biologically-inspired trainable architecture that can learn
multi-scale hierarchical features.

Convolutional Neural Network

34



The eye: otpical system that creates an upside down image on the retina.
The retina: thin layer of tissue that receives and converts the light into neural signals, and send
these signals on to the brain for visual recognition.
The brain: elaborates the data from the retina and builds the final image.

Mimic the brain



Mimic the brain



Training, Test and Confusion Matrix
The process of achieving the minimisation of the loss
function during the training stage is the process whereby the
machine is “learning”.

For the test stage, the CNN will be able to take in input new
data and its output will best represent the probability of that
data belonging to each of the trained classes.



Supervised learning 
workflow

Generate/find, and cleaning the data to ensure that
they are consistent and accurate.

Decide how to map the properties of the system; this
implies to translate the raw information into certain
features that will be used as inputs for the algorithm.

The data are split into various sets: a training set, a
validation dataset and the test set.

The model is trained by optimizing its performance,
measured through the cost function.

To estimate the model generalization and
extrapolation ability it has to be evaluated on
previously unseen data, denoted as test set.



Aim of our Convolutional  Neural Network

• We want to perform signal detection as an image
recognition task, classifying the images in two classes:
Signal and Noise.
• The input images are the RGB multi-detector scalograms,
reconstructed using cWB.
• The aim is to build a pipeline for a data-driven weakly-
modelled robust search.
• Our RGB approach allows us to straightforwardly exploit
coincidences among different detectors.

39



RGB time-frequency plane
Coincidences among detectors

40

Additive colour synthesis
Red Channel

Green Channel

Blue Channel



RGB time-frequency plane
Coincidences among detectors
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Additive colour synthesis



Architecture of the 
deep learning 

algorithm
• Mini Inception Resnet v1: reduced version of

Inception-Resnet

• Keras framework, based on the TensorFlow
backend

• Total number of parameters: 98997

• 30 times more complex than previous network

• The task is treated as a multi-class classification
problem with two classes: the event class and
the noise class, by using the binary cross
entropy.

• The training and validation phase, performed in
the real detector noise, is done in 2 h and 21
min using a GPU Nvidia Quadro P5000, while
predicting the test set takes 3 ms for each 2 s
long image.



• Choosing the cWB output at level 6, the single input image (RGB
scalogram) is 256x64 pixels x3 (time x frequency x detector),
covering the frequency band from 0 to 2048 Hz and a time range of
2s.

• There are 98997 trainable non-independent parameters.

• The training is sequential with decreasing SNR (curriculum learning).

Architecture and training

43



Phys.Rev.D 103 (2021) 6, 063011

Gaussian noise 

Real detector noise
(O2 – August 2017)

Previous set: 104 images for each value of Network SNR ∈ [8,40]

• Training set – phenomenological waveforms: 7 x 104 images 
for each distance ∈ [0.2, 3] kpc and random sky localisation.

• Blind set – phenomenological waveforms: 26 x 104 images 
with distances chosen in a uniform distribution ∈ [0.2, 15] kpc.      
NOT involved in the training or validation procedure.

• Test set - numerical simulations from the literature: 6.5 x
104 images with distances ∈ [0.1, 15] kpc 

Data: from Gaussian noise to real noise

In particular, we chose a stretch of real data even containing glitches, taken during August 2017,
when Virgo joined the run. The period includes about 15 days of coincidence time among the three
detectors and we used this data set to generate about 2 years of time-shifts data to train and test the
neural network as noise class.

Phys.Rev. D 98 (2018) 12, 122002



Measuring and constraining the learning

Efficiency:

False Alarm Rate:

False Positive Rate: 
• The output of the network is a probability vector θ,
which contains the probabilities of the template
belonging to one class or another.

• The classification task is performed according to a
threshold θ*, the template will be classified as event
class only if its probability overcomes θ*.

Confusion matrix

Credit: Melissa Lopez



Phys.Rev. D 103 (2021) 6, 063011

Weighted binary cross-
entropy:

w=1 correctly classify the
noise class or the event class is
the same

w=2 it is 2 times more
important to correctly classify
the noise class rather than the
event class.

Comparison with previous work in Gaussian noise

Phys.Rev. D 98 (2018) 12, 122002



Phys.Rev.D 103 (2021) 6, 063011

Validation process in real detector noise



Phys.Rev.D 103 (2021) 6, 063011

Results in real detector noise



Phys.Rev.D 103 (2021) 6, 063011

Results in real detector noise
O2 data – network: H1L1V1 – real detector noise
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The reference: Optically targeted search for gravitational waves
emitted by core-collapse supernovae during the first and second
observing runs of advanced LIGO and advanced Virgo

Note that the FAR in this search is different from the one discussed in the present talk.



Phys.Rev.D 103 (2021) 6, 063011

Results in real detector noise
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Improvements

• Include the SASI structure in the search
• Consider the rapidly rotating scenario of the

magneto-rotationally-driven CCSN
• Enlarge the network of ground-based

interferometers including the KAGRA detector



• We trained a newly developed Mini-Inception Resnet
neural network using time-frequency images
corresponding to injections of simulated
phenomenological signals, which mimic the waveforms
obtained in 3D numerical simulations of CCSNe.

• In the case of O2 run, it would have been possible to detect
signals emitted at 1 kpc of distance, whilst lowering down
the efficiency to 60%, the event distance reaches values up
to 15 kpc.

• These results are very promising for future detections and
the algorithm has multiple possible extensions.

Conclusions
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Overflow slides



Waveforms for the test set

[28] T. Kuroda et al., 851(1):62, 2017.
[31] H. Andresen et al., MNRAS 468(2):2032-2051, 03 2017.
[47] D. Radice et al., ApJ 876(1):L9, 4 2019.
[48] J. Powell et al., MNRAS 487(1):1178-1190, 05 2019.
[49] T. Kuroda et al., ApJ 829(1):L14, 9 2016.
[50] E. O’Connor et al., ApJ 865(2):81, 9 2018.



Phys.Rev.D 103 (2021) 6, 063011

Results in real O2 detector noise

Given the counts of the ith
bin ci and its width bi, we
define the probability density
as

where N is the total number
of bins of the histogram.
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Phys.Rev. D 98 (2018) 12, 122002

Previous work

Task: classification problem
Classes: 0 class (noise) and 1 class (event) with different level of noise (SNR)
Learning: curriculum learning
Data: Gaussian noise



Binding energy per nucleon


