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NGC 4526

~1 SN / sec in the Universe.

~1 SN / day discovered

(many discovered by amateur astronomers!).
~1 SN / 30-50 years in the Milky Way.

Supernova (SN) 1994D
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* Thermonuclear Supernovae: Type Ia

» Caused by runaway thermonuclear burning of white dwarf fuel to Nickel
> Roughly of 10°! ergs released

» Very bright, used as standard candles

» No remnant

* Core Collapse Supernovae: Type 11, Ib, Ic
» Result from the collapse of an iron core in an evolved massive star (Mzaps >8-10 Mgyy)
> Few x 10°3 ergs released in gravitational collapse, most (99%) radiated in neutrinos
» Spread stellar evolution elemental products throughout galaxy
» Neutron star or black hole remnant



MeV Neutrinos fromgN1987A
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Massive Stars: Burning stages

Stars spend most of their lives
burning hydrogen.

The product — helium — settles in the
core and will burn when
temperatures increase sufficiently.

For massive stars (M > 8-10M_,), the
process continues through carbon,
oxygen, ..., up toiron.

Timescale

H burning 7 million years
He Burning | 0.5 million years
C Burning 600 years

Ne Burning | 1 year

O Burning 6 months

Si Burning | 1 day

This process does not continue past
iron as iron is one of the most tightly
bound nuclei.

Iron core builds up in center of star. _
' A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999).



Massive Stars: End Stage

* Stars are, for the majority of the
time, in hydrostatic equilibrium
because the radiation pressure of
the photons from nuclear
reactions balance gravity.

* |ron cores however are supported
by electron degeneracy pressure,
much like a white dwarf, there is a
maximum mass that electron
degeneracy pressure can support.

imescale

H burning 7 million years
He Burning | 0.5 million years
C Burning 600 years

Ne Burning | 1 year

O Burning 6 months

Si Burning | 1 day

ﬁ A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999).



Onion shell structure of pre-collapse star

Shells of progressively heavier elements H
contain the ashes of a sequence of

nuclear burning stages, which finally

build up a degenerate core of oxygen, He
neon and magnesium oOr iron-group
elements at the center.

Convective burning can lead to large
scale  velocity and  density
perturbations in the oxygen and
silicon layers (as indicated for the O-

shell). B# H.-Th Janka, arXiv:1702.08825 (layers not drawn to scale)

Fe




or iron core is initiated by elect

raV|tat|onaI instability of the degeneraﬂ}

res on nuclei and free protons, e +p > v, +n
e +(a,2) 2 v. + (AZ-1)
and by the partial
photodissociation of heav

\ nuclei to o particles and

free nucleons

Si

oy
electro trinos (ve ) pro d by electron captures can escape freely, but a

bout 10*2 3, the outward neutrino diffusion is slower than the acceleratl

tellar plasma, and neutrino trapping setsin.
- B H.-Th Janka, arXiv:



7 Core bounce at

The implosion of the inner nuclear denS|ty

core is stopped abruptly

when nuclear saturation O
density is reached at the
center

Si

The inner core bounces back and its
expansion creates pressure waves
that steepen into a shock front at
the transition to the supersonically

PI'OtO-neU_trOn star infalling outer core.‘



?’ Shock stagnation
he newly formed shock

begins to propagate
outwards in radius as Accretion

well as in mass.

The density behind the
shock has decreased to a
value where the electron
heutrinos, which are
abundantly produced by
electron captures onto
free protons in e
postshock medium, start
to escape freely.

postshock layer.

Proto-neutron star

O

the

- H.-Th Janka, arXiv:1702.08825

flash of v, , the so-called shock-
ut neutrino burst, is radiated and
takes away additional energy from the
velocities
everywhere behind the shock become
negative, the shock expan
shock converts into an accr

stalls and the
on shock.
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Neutrino heating

Shortly after core bounce
neutrino emission carries

away energy from the ACCretion

postshock layer.

Proto-neutron star &2

B@ H.-Th Janka, arXiv:1702.08825

The sgnditions, however, change
fundamentally at later post-bounce times,
because the postshock temperature
decreases as the density drops and the
plasma becomes more radiation
dominated.



Neutrino-energy transfer to " the
shock raises the postshock pressure

Proto-neutron star §
-

B# H.-Th Janka, arXiv:1702.08825

the heagg by neutrinos is strong enough,
he shock can be pushed ou’yards and the SN

explosion &\n be launched.



xplosion and nucleosynthesis
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The challenges

The rate of The duty
observable cycles of the
CCSN events detectors

The noise
background is
non-stationary
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The rates

A neutrino-driven explosion is the most likely outcome in the case of slowly rotating
cores, which are present in the bulk of CCSN progenitors. The emitted GWs could be
detected with the advanced ground-based GW detector network, Advanced LIGO,
Advanced Virgo and KAGRA, within 5 kpc®. Such a galactic event has a rate of about
2-3 per century”.

For the case of rapidly rotating progenitor cores the result is likely a magneto-
rotational explosion, yielding a more powerful GW signal that could be detected
within 50 kpc.

Despite the low rates, CCSN are of great scientific interest because they produce
complex GW signals which could provide significant clues about the physical
processes at work after the gravitational collapse of stellar cores.

Phys. Rev. D. 93 (2016), 10.1103; Phys. Rev. D. 101, 084002 (2020).
Bl Astrophys. J. 778, 164 (2013); New Astronomy 83, 101498 (2021).



The duty cycle of the detectors

The fraction of time interferometers are operating and taking science-
quality data is limited by several factors including commissioning work
(to improve sensitivity and stability) and interference due to excessive
environmental noise.

The risk of completely missing a CCSN GW signal is mitigated by having
a larger network of detectors.




The noise background is non-stationary

Noise in interferometers arises from a combination of instrumental,

environmental, and anthropomorphic noise sources that are extremely
difficult to characterize precisely.

Mitigation strategies include:

» Coincident observation with multiple, geographically separated
detectors

» Data quality monitoring and the recording of instrumental and
environmental vetos derived from auxiliary data channels such as
seismometers, magnetometers, etc.

> Glitch-detection strategies based on Bayesian inference” or machine
learning *.

» Using external triggers from EM or neutrino observations to inform
the temporal “on-source window” in which we expect to find GW
signals and consequently reduce the time period searched.

ﬁ Phys. Rev. D. 82, 103007 (2010); Class. Quantum Grav. 32, 215012 (2015).
\' Phys. Rev. D. 88, 062003 (2013).
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According to the standard paradigm of the neutrino-
driven mechanism of the core collapse explosion, the
energy transfer by the intense neutrino flux can be the
decisive agent for powering the supernova outburst.

In a supernova explosion, also gravitational waves (GW)
are generated in the inner core of the source, so that this
messenger carries direct information of the inner
mechanism.

Although the phenomenon is among of the most
energetic in the universe, the amplitude of the

MOtlvathnS gravitational wave impinging on a detector on the Earth

is extremely faint.

For a CCSN in the center of the Milky way, a rare event,
we could expect amplitudes of the metric tensor
perturbations ranging between 10721 - 1023,

To increase the event rate of detections we should
increase the volume of the universe to be explored and
this can be achieved both by decreasing the detector
noise and using better performing statistical algorithms.




VNIVERSITAT
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SAPIENZA  Nik[hef

UNIVERSITA DI ROMA
PHYSICAL REVIEW D 103, 063011 (2021)

Deep learning for core-collapse supernova detection

M. Lépez®,"*" 1. Di Palma®,”” M. Drago®,>* P. Cerdd-Durén®,” and F. Ricci®’

The detection of gravitational waves from core-collapse supernova (CCSN) explosions is a challenging
task, yet to be achieved, in which it is key the connection between multiple messengers, including neutrinos
and electromagnetic signals. In this work, we present a method for detecting these kind of signals based on
machine learning techniques. We tested its robustness by injecting signals in the real noise data taken by the
Advanced LIGO-Virgo network during the second observing run, O2. We trained a newly developed Mini-
Inception Resnet neural network using time-frequency images corresponding to injections of simulated
phenomenological signals, which mimic the waveforms obtained in 3D numerical simulations of CCSNe.
With this algorithm we were able to identify signals from both our phenomenological template bank and
from actual numerical 3D simulations of CCSNe. We computed the detection efficiency versus the source
distance, obtaining that, for signal to noise ratio higher than 15, the detection efficiency is 70% at a false
alarm rate lower than 5%. We notice also that, in the case of the O2 run, it would have been possible to
detect signals emitted at 1 kpc of distance, while lowering down the efficiency to 60%, the event distance
reaches values up to 14 kpc.

DOLI: 10.1103/PhysRevD.103.063011

INFN




A NEW GRAVITATIONAL-WAVE SIGNATURE FROM

STANDING ACCRETION SHOCK INSTABILITIES IN
SUPERNOVAE
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F1G. 1.— In each set of panels, we plot, top; gravitational wave amplitude of plus mode A4 [cm]|, bottom; the characteristic wave strain

in frequency-time domain h in a logarithmic scale which is over plotted by the expected peak frequency F peak (black line denoted by “A™).
“B” indicates the low frequency component. The component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009;

Miiller et al.'2013). The component “B” is considered to be associated with the SASI activities (see Sec. [3)). Left and right panels are for
TM1 and SFHx, respectfively. We mention that SFHx (left) and TM1 (right) are softer and stiffer EoS models, respectively. 23

B T. Kuroda et al.,Astrophys.J. 829 (2016) no.1, L14



:softe | | Vi1 :stiffer
Tpb(ms)=-0.800114

7.5 10. 12. 15. 18. Tpb(ms)=8.59512

7.5 10. 12. 15. 18.

400km [Kuroda et al 2016, ApJL, 2014, PRD]‘IOOKrn

SASI activity higher for softer EOS



Different scenarios

Non rotating scenario Neutrino driven CCSNe

A g-mode at PNS surface

—
-
o
@

s => Evolution of PNS

Prompt Convection
PNS resonance of SASI
[ SO ‘

| L ] | >

| | | | .
0 50 100 500 Time[ms]

T Bounce time is determined by v observation

—
o
o

Frequency [Hz]
N
o
&

Rapidly rotating scenario

A

N g-mode at PNS surface
L 10001 Bounce signal => Evolution of PNS
5 (side view)
S 2004 I
cjy 100 + Low T/W instability
3 =>Rotational Period
= I I -

| I I ;

0 50 100 Time[ms]

T Bounce time is determined by v observation

Credit: Tomoya Takiwaki

Burrows ¢4\ 2007, W ApJ 664, 416\



Phenomenological

Waveforms




Phenomenological Wavetorms

strain [10°
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B Phys.Rev.D 103 (2021) 6, 063011
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ASD [10

parameter |min. max. A description

tini [5] 0 0.2 0.1 |beginning of the waveform
tend [S] 02 15 0.1 end of the waveform

vo [Hz] 50 150 50 frequency at bounce

v1 [Hz] 1000 2000 500 frequency at 1 s

vo [Hz| 1500 4500 1000 frequency at 1.5 s
Vdriver |Hz|[ 100 200 100 driver frequency

Q (1,5,10) quality factor

D [kpc] (1,2,5,10,15) distance to source

* New and flexible parametrisation for the
frequency evolution.

* The distance is used as a parameter.



Strategy

While the neutrino information are used as an external trigger, it is
necessary the generation of a data set of CCSN waveforms through a
phenomenological approach.

Creation of the time-frequency plots that are the input for the deep
learning algorithm.

Analysis of these images through the neural network.

Classification of images as signal or noise.

28



Gravitational Wave Observatories
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LIGO, Livingston, LA



@ Coherent Waveburst (cWB)

Coherent WaveBurst
a joint LSC-Virgo project

* Coherent Waveburst 1s an algorithm of Burst search

developed at LVC

* Interesting features:

— Characterization of signal both in time and frequency (Wavelet)

— Coherent analysis (Likelihood approach)
— Reconstruction of waveforms and source coordinates

* Waveburst is applied in two steps:
— Production: production events list
— Post production: candidate selection

Likelihood 96 - di(ms) [7.8125:250] - dffhz) [2:64] - npix 186
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@ Coherent Waveburst

Coherent WaveBurst
a joint LSC-Virgo project

* The pipeline decomposes the data stream, of each detector in the network, at
different (dt, df) resolution levels.

* cWB is an Excess power algorithm: minimal assumption on target signal.

* The TF decomposition of the whitened data at a chosen level is considered
as input for the neural network. - R

S(f) o -
P27
Representation of # - :
multilayer decomposition > L

of the GW data \
/ o
¢ Time-Frequency >

decomposition

Network
pixel x[i]
={a,(i,%,)}

Tt lock: Inverse

Wavelet ¢ Uster seloClioll;  Wavelet

X(t) Transform> based on blacl‘{ Transform h(t)
pixel probability

¢ Constrained Likelihood 31



Examples of injections
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Artificial Neural Network

* What are they?

An artificial neural network (ANN) 1s a mathematical object
composed of many layers. Those layers are both linear
(convolutions, matrix multiplications) and nonlinear
(activation functions, poolings). The network has a multiscale
hierarchical structure that 1s able to describe and combine
features at different scales.

 How do they work?

The weights of the network are iteratively updated using a
gradient-descent algorithm, trying to minimize an appropriate
cost function. Our cost function, the cross-entropy, is related to
the classification error.



Convolutional Neural Network

 Convolutional Neural Networks (CNN) are a
biologically-inspired trainable architecture that can learn
multi-scale hierarchical features.

[j |:| — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING j FLATTEN CONNECTED

i ks i

FEATURE LEARNING CLASSIFICATION

* This data-driven filter learning provides a visual space
decomposition which can be regarded as a hierarchical
matched filtering.

SOFTMAX

34



Mimic the brain

Iris \ Cornea

Posterior chamber Anterior chamber

(aqueous humour)

Zonular_
fibres
lllary muscle

Suspensory
ligament
Retina_

Choroid Vitreous

humour
Sclera

Hyaloid
canal

Optic disc —
Optic nerve

Retinal
blood vessels

The eye: otpical system that creates an upside down image on the retina.

The retina: thin layer of tissue that receives and converts the light into neural signals, and send
these signals on to the brain for visual recognition.

The brain: elaborates the data from the retina and builds the final image.



Mimic the brain

object models

object parts
(combination
of edges)

Area V]

Retina




Training, Test and Confusion Matrix

The process of achieving the minimisation of the loss
function during the training stage 1s the process whereby the
machine 1s “learning”.

For the test stage, the CNN will be able to take in input new
data and 1ts output will best represent the probability of that
data belonging to each of the trained classes.

Predicted Class

A

= R’

_
)
/
0
d
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The convolution operation.



T - Supervised learning

-__ data

a

Test set | |Training set| | Validation set

Final model
evaluation

ssiné '
« ofdata

(Select features, '
Scale features ...)

Refine model

(Optimize hyper=
parameters,

Change features ,..)

( Training

Oy

!
e
|
«

11

ictions for‘
__hew data k.

workflow

Generate/find, and cleaning the data to ensure that
they are consistent and accurate.

Decide how to map the properties of the system; this
implies to translate the raw information into certain
features that will be used as inputs for the algorithm.

The data are split into various sets: a training set, a
validation dataset and the test set.

The model is trained by optimizing its performance,
measured through the cost function.

To estimate the model generalization and
extrapolation ability it has to be evaluated on
previously unseen data, denoted as test set.



Aim of our Convolutional Neural Network

* We want to perform signal detection as an 1mage
recognition task, classifying the images in two classes:
Signal and Noise.

* The input images are the RGB multi-detector scalograms,
reconstructed using cWB.

* The aim 1s to build a pipeline for a data-driven weakly-
modelled robust search.

* Our RGB approach allows us to straightforwardly exploit
coincidences among different detectors.



frequency [HZ]

RGB time-frequency plane

Coincidences among detectors

Red Channel

Additive colour synthesis

Blue Channel

LIGO Hanford = red
LIGO Livingston = green
Virgo = blue

40



RGB time-frequency plane

Coincidences among detectors

Signal+Noise

RGB time-frequency plane
— ¥
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Frequency [bin]

Time [bin]

Additive colour synthesis

LIGO Hanford =
LIGO Livingston =
Virgo = blue

red
green
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Architecture of the

deep learning
algorithm

Mini Inception Resnet vl: reduced version of
Inception-Resnet

Keras framework, based on the TensorFlow
backend

Total number of parameters: 98997
30 times more complex than previous network

The task is treated as a multi-class classification
problem with two classes: the event class and
the noise class, by using the binary cross
entropy.

The training and validation phase, performed in
the real detector noise, i1s done in 2 h and 21
min using a GPU Nvidia Quadro P5000, while
predicting the test set takes 3 ms for each 2 s
long image.

Input (256x64x3)

onv 7% =

Reduction-A

xInception-resnet-

Reduction-A
Inception-resnet-A

Reduction-A

2xInception-resnet-

Reduction-A

Inception-resnet-C

Reduction-A

Sigmoid

Output: 29x125x32

Output: 15x63x52

Output: 15x63x72

Output: 8x32x92

Output: 8x32x102

Output: 8x32x112

Output: 4x16x142

Output: 4x16x152

Output: 2x8x172

Output: 2x8x182




Architecture and training

Choosing the cWB output at level 6, the single input image (RGB
scalogram) 1s 256x64 pixels x3 (time x frequency x detector),
covering the frequency band from 0 to 2048 Hz and a time range of
2s.

There are 98997 trainable non-independent parameters.

The training 1s sequential with decreasing SNR (curriculum learning).

Convolutions Rectification Contrast Pooling / Subsampling

e =

! Normalization

Input Image

43



49  Data: from Gaussian noise to real noise

Gaussian noise Previous set: 10* images for each value of Network SNR € [8,40]

ﬁ Phys.Rev. D 98 (2018) 12, 122002

* Training set — phenomenological waveforms: 7 x 10* images
for each distance € [0.2, 3] kpc and random sky localisation.

Real t i i
eal detector noise * Blind set — phenomenological waveforms: 26 x 10 images

(02 — August 2017) with distances chosen in a uniform distribution € [0.2, 15] kpc.
NOT involved in the training or validation procedure.

 Test set - numerical simulations from the literature: 6.5 x
10* images with distances € [0.1, 15] kpc

In particular, we chose a stretch of real data even containing glitches, taken during August 2017,
when Virgo joined the run. The period includes about 15 days of coincidence time among the three
detectors and we used this data set to generate about 2 years of time-shifts data to train and test the
neural network as noise class.

B Phys.Rev.D 103 (2021) 6, 063011



) Measuring and constraining the learning

Frequency

©*: decision
threshold I

0 Probability

Credit: Melissa Lopez

The output of the network is a probability vector U,
which contains the probabilities of the template
belonging to one class or another.

The classification task is performed according to a
threshold 0*, the template will be classified as event
class only if its probability overcomes J*.

Confusion matrix

Actual class

Event Noise

; Foent True False
il positive (TP) | positive (FP)

L : False True

Noise
negative (FN) [negative (TN)
Efficiency:

correctly classified signals TP
7 NN — = —_—
ICNN = 3l the signals at CNN input TP+ FN

False Alarm Rate:
misclassified noise FP
HrERon = all classified events FP +TP
False Positive Rate: FPR = _ B
) T FP+TN



Comparison with previous work in Gaussian noise

Weighted binary cross- 100 1
entropy:

: 95 |
w=1[ correctly classify the
noise class or the event class is _
the same £ g
w=2 1t 1S 2 times more o
important to correctly classify
the noise class rather than the
event class. 80 1

s,

Phys.Rev. D 98 (2018) 12, 122002
Phys.Rev. D 103 (2021) 6, 063011
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% Validation process in real detector noise
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"% Results in real detector noise
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LIG
VIRG

correctly classified signals

all the signals at the input of CNN

TICNN
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The reference: Optically targeted search for gravitational waves
emitted by core-collapse supernovae during the first and second
observing runs of advanced LIGO and advanced Virgo
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Note that the FAR in this search is different from the one discussed in the present talk.
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Improvements

e Include the SASI structure in the search

* Consider the rapidly rotating scenario of the
magneto-rotationally-driven CCSN

* Enlarge the network of ground-based
interferometers including the KAGRA detector



Conclusions

* We trained a newly developed Mini-Inception Resnet
neural network  using  time-frequency = 1mages
corresponding to Injections of simulated
phenomenological signals, which mimic the waveforms
obtained 1n 3D numerical simulations of CCSNe.

* In the case of O2 run, 1t would have been possible to detect
signals emitted at 1 kpc of distance, whilst lowering down
the efficiency to 60%, the event distance reaches values up
to 15 kpc.

* These results are very promising for future detections and
the algorithm has multiple possible extensions.
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Overflow slides



e Waveforms for the test set

TABLE II: List of models of the test set used in the injections. Myzans corresponds to the progenitor mass at
zero-age in the main sequence (ZAMS). Unless commented, all progenitors have solar metallicity, result in explosions
and their GW signal do not show signatures of the standing-shock accretion instability (SASI).

Model name reference Mzams comments
s9 [47] OM; Low mass progenitor, low GW amplitude.
s25 [47] 25M ¢ Develops SASL.
s13 [47] 13Mg Non-exploding model.
s18 (48] 18M, Higher GW amplitude.
he3.5 (48] - Ultra-stripped progenitor (3.5M He core).
SFHx [49] 15M, Non-exploding model. Develops SASI.
mesa20 [50] 20M
mesa20_pert  [50] 20M; Same as mesa20, but including perturbations.
s11.2 31] 11.2Mg
L15 (28] 15M¢ Simplified neutrino treatment.

ﬁ [28] T. Kuroda et al., 851(1):62, 2017.
[31] H. Andresen et al., MNRAS 468(2):2032-2051, 03 2017.
[47] D. Radice et al., ApJ 876(1):L.9, 4 2019.
[48] J. Powell et al., MNRAS 487(1):1178-1190, 05 2019.
[49] T. Kuroda et al., ApJ 829(1):L.14, 9 2016.
[50] E. O’Connor et al., ApJ 865(2):81, 9 2018.
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ROC curves
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Previous work

Task: classification problem
Classes: 0 class (noise) and 1 class (event) with different level of noise (SNR)

Learning: curriculum learning

Data: Gaussian noise Input (N3 2561:6413)
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Figure 8: Efficiency vs SNR in the case of complete cW. Fully COPt'mdL‘d @
(continuwous) and our method (dashed) for all SNRs. We e
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Figure 4: Sketch of the architecture of our model,

ﬁ Phys.Rev. D 98 (2018) 12, 122002
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Binding energy per nucleon means how
much energy is liberated by combining
protons and neutrons into a nucleus; or
how much energy it takes to rip it apart
down to protons and neutrons.

Data from the International Nuclear Structure and Decay Data Network. IAEA

25 50 75 100 125 150 175 200 225 250 275
Number of Nucleons




