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representation from many of the
most interesting experiments today.



Many detections are coming
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NOTE: Bigger circles (small sky areas) and very opaque

(low false alarm rate) are easier to follow-up




So What’s the Problem?

Long Road from data to science

Kasliwal et al. (2020): 2008.00008 GW190814 (‘ w
— GW190425
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GW190728 2
Wide Field
of View
}' Candidates ‘
Photometry Spectroscopy

k’ Identification )

Galaxy
Targeted

Characterization

Anand et al. (2020): 2009.07210



Luckily, a lot of effort at this

conference on problems of relevance!

Patrick Godwin - Gjjjlermo Valdes Jenne Driggers  Gabriele Vajente

(Pennsylvania (1oxag A&M (California Institute (California Institute of
State University) pjyersity - Collegeof Technology)  Technology)

Low-latency Noisegation) Improving the Virtual Talk: Machine
Mitigation Virtual Talk: Acoustic sensitivity of Learning and Gravitational
Techniques in — pyise in gravitational-gravitational wave  Wave Detectors
Gravitational-wave,, e detectors interferometers

Detector Data

Using Auxiliary

Sensor Information

Ik Siong Heng (University of Glasgow)

Gaussian Mixture Models for transient gravitational wave detection

Agata Trovato (Universita di Trieste)

Virtual Talk: Neural networks for gravitational-wave trigger selection in single-detector periods

John Veitch (University of Glasgow)
Virtual Talk: Computational Challenges in Gravitational Wave Parameter Estimation

Jonathan Gair (Max Planck Institute for Gravitational Physics, Albert Einstein Institute)
Virtual Talk: Rapid and robust parameter estimation for gravitational wave observations

: : Galax
Deep Chatterjee (University of lllinois at Urbana-Champaign) Wlde Fleld y
Applications of machine learning in low-latency electromagnetic counterpart Of Vl ew Targ eted
inference from gravitational waves

NOTE: Not an exhaustive copy and paste session? \P : "J
Candidates ‘

\, Identification '>
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Applications of machine learning in low-latency electromagnetic counterpart .
pp g y g p of View Targeted

inference from gravitational waves
>
(i) Are we ready to apply these ML T ——

algorithms in real time?

(i) How can we support the blue block L | >
better? v

However, two questions based on this?
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Are we ready to apply ML
In real time?




Deep Learning Programs at

Inference Time

Pros
e Robust modelling

capabilities
e Real-time compatible

Cons
® Resource intensive

o May require frequent
updates

e [Cffective use requires
specialized knowledge,
software, and often
hardware




Inference as a service

e Application for hosting
trained networks and
exposing them for

- inference via
> 5_ standardized client APIs
erence el senores oy, @ ADStracts away details
about models and their
implementations
e [ffectively leverages

._ concurrent execution on
G;] n heterogeneous

computing resources

e (Containerizations means
portability and easy
scale

e Centralized model
repositories keep all
USers in sync

)

Physicists/data scientisis
building and training models.

Model repository
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Cleaning gravitational-wave data

noise
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e Technical and environmental noises prevent GW
detectors from operating at its design sensitivity

e (Can use ML methods combined with on-site witness
sensors to predict the detector response and remove the

rainin

Target h(t)
\ Inference

Compute cost function

J = wpspJpsp + WmseIMSE
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Ormiston et al. (2020): 2005.06534, Gunny et al. (2021): 2108.12430
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¥
Detecting gravitational waves
. !

e Gravitational-wave detection 1s basically a

solved problem for Gaussian noise, which _
L . Detection
gravitational-wave data 1s not

e ML methods have been shown to have the

capability of meeting the speed requirements
for online searches, while also being more
robust to data transients

e Only BBHs (short signals) so far

Wide Field Galaxy
of View Targeted

o s

? L)

] Noise mON 620 | SNR < 8

] N = 2088 | 286 = SNhR
Glitches BN = 4586 | 8 < SNR < 20

107+

Count

20 15 10

NN Output

Gunny et al. (2021): 2108.12430 Characterization




LVK Inference as a Service:

Deployment Scenarios

Offline

e Maximize throughput to minimize time to
completion (subject to cost constraints)

e (Cloud resources leverage economies of scale

e (Cleaning one month of O3 data with
DeepClean

e End-to-end ensemble with DeepClean and
BBHnNet to estimate event likelihood over ~27
hrs. of O2 data

Online

e | atency sensitive, deploy
locally to minimize data
transfer time

e Using DeepClean to remove
noise in real-time and make
cleaned strain available to
downstream analyses/
searches, including BBHNet

MIT

Gunny et al. 2021: 2108.12430



Inference as a Service:

for Streaming Data

e DeepClean and BBHnet perform
iInference on fixed-length snapshots
of time series

o Rate at which snapshots are
sampled fixed by an inference-
l 1 l l l time parameter r, the inference
sampling rate
e High values of r compared to the
() length of the frame lead to
substantial data overlap and
] redundant data transfer from client

- to server
OTHHHT?& | _ e Host a “snapshotter” model on the

I T [ x I * server that maintains the current
Phi . | snapshot as a state

o Only stream state updates

%H/ o Updated snapshot gets passed
[ W itk 1 L to downstream models
Wl i o Introduces a potential
sequential bottleneck
. T 1 . e DeepClean also has overlapping
é *’J,Hw*,w\outputdata
o Aggregating between overlap
iIncurs extra latency
(b) © o Currently adopting “fully-online”
Gunny et al. 2021: 2108.12430 solution
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us
A\, Offline Use Cases

e (ffline DeepClean shows the
advantages of switching to laaS
model: CPU-only node with ~10x

ot e o / reduction in processing time,

Snapshotter + DeepClean inference on:
LDG, single GPU

Cloud 2 nodes, 8 GPUs

adding GPUs gives another ~5x

e Ensemble model shows economies
of scale of laaS paradigm
) ® Processing time decreases linearly

Time to run p1eei—‘.‘second of data (s/s') e With # Of nOdeS, COSt Stays
(a) DeepClean only, = 0.25 Hz constant

Snapshotter + 2 x DeepClean + BBHNet inference on:
M 2 nodes
[ 4 nodes
| 6 nodes

o Optimal point at “infinite” scale
o Scale achieved with minimal
additional engineering
overhead
e Ensemble leverages multiple
framework backends, all invisible to
client users

®
o
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Ever_n
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R

Gunny et al. 2021: 2108.12430
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Onlie Use Cases

10° .
1 Snapshotter + DeepClean inference on:
| ® 1 GPUs
m 2 GPUs
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e (Concurrent execution of laaS model important at lower inference rates, keeps demand for
scale low

e Scale becomes more important at higher frequency inference rates

e Bottleneck is currently sequential update to the input “state”

e Optimizing this step via HPC unlocks more advantage from additional GPUs



e Use HEPCloud

framework to run larger

tests with multiple

clients/servers

o Tests use cloud

resources (GCP),
submitted through
HTCondor

Jobs synchronized to

start all at once, mimic

realistic environment

e Able to sustain

processing for full length
of job

Provides a means to
manage/run large
amount of jobs

Gunny et al. 2021: 2108.12430
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How can we support and
perform better observations?




¥
The Observational Landscape

Spectroscopic
Classification

Facilities
(f




¥
Landscape of Optical TDA

21

DES, %

2.5 deg?

PS1, 7 deg?

PTF/PTF, 7.3 deg? LSST, 9.6 deg? ZTF, 47 deg?

* The night sky 1s imaged at 17.5 mag by ASAS-SN (both hemispheres)
* The northern sky is covered by ATLAS, ZTF, and PS-1 to 19, 20.5, 21.5 over

roughly two nights (ZTF 1ssues real time, data-rich alerts)

e BlackGEM (21-22 mag; Chile) will start routine operation within this year

e Rubin 1s expected to become operational in 3 to 4 years
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Two Different Approaches

22

PS1, 7 deg?

PTF/PTF, 7.3 deg? LSST, 9.6 deg? ZTF, 47 deg?

* Photometric detection followed by spectroscopic classification
— Possible for surveys which are shallow (20 mag or so)
— Spectral classification can be undertaken by existing telescopes

* Photometric detection followed by multi-band time series

— Large samples of faint objects —-Much of the analysis will be
statistical —Use clever techniques and filter out a small subset for
further follow up



Palomar Telescopes

N 560 Confirmation
: - ..-"‘, : ﬂﬂ q{‘-
- m. P48 Discovery P200 SPeCtr?iCORY

23



Y
The Technical Landscape

sentinel ANTARES
gwemopt ALeRCE
Multi
Telescope Brokers
Scheduling FINK
teglon
Lasair
M4OPT MARS
Galaxy .
Catalogs
MANGROVE NED

HOGWARTS




The Technical Landscape

Optimal
Augmentation
sentinel ANTARES
gwemopt ALeRCE
Multi
Telescope Brokers
Scheduling FINK
teglon
Lasair Light curve
MA4OPT MARS Classification

S
<

Photometric Redshifts

Galaxy
Catalogs

MAI GROVE NID
Light curve

Fitting

Real-Bogus
HOGWARTS
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Wide Field Follow-up

MA4OPT: Mixed integer programming r }
based scheduler, Leo Singer, PI

>

Wide Field
AU Targeted

oL oo o8

k’ Identification )
Characterization

PC: Leo Singer, Goddard




Cumulative detection rate (events / year)
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Y
What data do we need?

e Often, a photometric light curve 1s all you
have available to classify it.

® Due to the many follow-up systems we have
available, desire to design a system that
optimizes the differentiation between models
for kilonovae and other fast transients.

® Can use ML methods to speed up inference on
each potential counterpart object, including \>
when performing the GW and EM inference.

500+
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Transient Filtering

Kowalski
andidates an Alert light curve Fad
——»| Alert query for it zadiafice Finding rise and decay |- 0 3a o /d?
N hort-durati < 0.3 mag/d-
x SnoTmaHraTion AL AT rates via linear fit & v
sources database
, Quality check :
Based on nearby alerts (optional) Update
Select from database .
' b
those candidates that |« v no/ambiguous database
need new forced phot
es
v yes, Reject
Trigger forced photometry 31
Light curves added '—» . - Fades no/ambiguous
! r to the database . Light curve fitting < 0.3 mag/d?
Stack flux
h 4 \ 4
Kilonova fitting 4
galaxy

| optional
Lc GT < Trigger LCOGT [+ (op ) crossmatch
r o I’ Daily candidate | | | |

Check scanning 5
A

_LCOGT status_| - = j
—— ﬁ pdate database

sa>e

[Andreoni, Coughlin+2021, 2104.06352]




7 @Why do we want fancy strategies?
V5N

Kilonovae - Hard to find

_ 19 3 -
m
< 5 GW170817
qJ — — -
T 5 |  (Kilonova) Rapid reddening
= .

—17 m
S -17 Q o 192199
= N 4
£ -16 !
= — o)
O
2 =
< —15 - 8 0 -
2 L
3 -14 -
& aw170817 »
= (Kilonova)
S -13 - [
@ |
% : FaSt _2 1 1 1 1

_12 1 1 1 1

-20 -10 0 10 20 30
=20 -10 0 10 20 30

Time from Peak [Days]

modified from Andreoni+2018, LSST White Paper

Time from Peak [Days]
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Landscape of Optical TDA

31

PS1, 7 deg?

PTF/iPTF, 7.3 deg? LSST, 9.6 deg?

ZTF, 47 deg?

* The night sky is imaged at 17.5 mag by ASAS-SN (both
hemispheres)
* The northern sky is covered by ATLAS, ZTF, and PS-1 to 19, 20.5,

21.5 over roughly two nights (ZTF issues real time, data-rich alerts)
* BlackGEM (21-22 mag; Chile) will start routine operation within

this year
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Two Different Approaches

32

PS1, 7 deg?

PTF/PTF, 7.3 deg? LSST, 9.6 deg? ZTF, 47 deg?

* Photometric detection followed by spectroscopic classification
— Possible for surveys which are shallow (20 mag or so)
— Spectral classification can be undertaken by existing telescopes

 Photometric detection followed by multi-band time series

— Large samples of faint objects —-Much of the analysis will be
statistical —Use clever techniques and filter out a small subset for
further follow up




\/
Value-driven Real-time follow-up

® As is, data will be insufficient for full science O e LA EL N L

inference without additional follow-up T R
ee.g. extracting physics from light curves 25 3 . e s i E
e Need to perform value-driven follow-up = = N S =:+} 1 | E
e Volume of alerts far exceeds the ability to s 0E T 3
follow-up with limited and/or expensive follow- & + % MR E
up resources 5 o1 ; * - v
® Augment sparse Rubin LCs to improve constraints _O'g 2 i A i i i. i E
on SALT2 (supernova) models £ o6E t e 4 e e e E
(supernova) o B R I
e We augment photometry to (branch-normal) SN Ia N . E
LCs from ZTF-I public survey (g and r) using P48 in N S R R B R
. 0.6 0.8 1 1.2 1.4 1.6
g0 and I / Am,(B)
ei-band important for precisely estimating HO Peak luminosity Folatelli+ 2010
(Burns+ 2018)

e Second peak could help probe SN la explosion
mechanisms

e Broadly an optimal real-time resource allocation
problem and not restricted to SALT2

UMN

Sraven et al. 2021: submitted Caltech



Gap filling

Resolves
phase with
high
variability/
diversity:

Around

peaks and

valleys

10-20 % Median improvement in parameters over random allocation
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# photometry augmented

0 20 40
g augmentation mjd - tp

0 20 40
r augmentation mjd - tp

0 20 40
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3-5% more improvement T 05
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So... what then?

NMMA: A Fully Bayesian . D
Joint-Inference Pipeline

e gravitational-wave data analysis using parallel
bilby

¢ kilonova modelling with various models (Bulla,
Kasen, etc.)

e gamma-ray burst afterglow fits (also supernova

Wide Field
of View Targeted
}' Candidates ‘
¢ neutron-star maximum mass and NICER
Photometry Spectroscopy

constraints, fits to relate ejecta parameters to

progenitor parameters using numerical relativity k Identification )

Used for many analyses at this point:

Ahumada et al. 2105.05067, Dietrich et al. 2002.11355, Characterization
Tews et al. 2007.06057, Pang et al. 2105.08688, Huth et al. 2107.06229

models from sncosmo)
e chiral effective field theory to simulate the

neutron-star EOS




A\

NMMA: A Fully Bayesian

Joint-Inference Pipeline

Moy

Ejecta Parameters

Fundamental EOS
information

' ‘ Extrinsic Parameters (H0!)

Peter Pang

¥ % "l 3 S
S NIKHEF

(1

e (((

e [Extract science
(and filtering
criteria) in one
place!

e Forexample,
iImmediately
extract
information on
ejecta, neutron
star physics,
and cosmology
(in case of a
host galaxy).

’ [Pang+, 2021, in prep]
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Online Filtering

GROWTH MMA ~ # nmma-bot v

= All unreads Today v

Threads ﬂ growth-mma-restbot AP 11:42 AM
All DMs Hi ztfrest! You are interested in ztfrest fitting, right? Let me get right on that for you.
Mentions & reactions Name: ZTF21abneypf

Saved items Model: Bu2019Im
log(Bayes): -30.204316408615664
log(Evidence): -30.204316408615664 + 0.10116267044829176

Slack Connect

More
Bu2019Imcorner ZTF21abneypf

Channels
ampel_mm
decam
gattini

gemini Brandon Reed

general UMN

il -
,-;3.;.'\(;

grb200826a
grb201130a
grb210510a 11:43 Bu2019Imlightcurve ZTF21abneypf
grb210529b

ic201021a

ic210210a

ic210629a

& &

neutrinos
nmma

nmma-bot
Message #nmma-bot

operations-research [Barna, Reed, et al., in prep]
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Improving community follow-up

ki Wide Field
@ of View Tafgeted
| r Candidates ‘
& Photometry Spectroscopy
Garg_i Mansingh : Andrew Toivonen o .
Identification

Characterization



cé
(;\e’(\ 44(//(‘
) 2
© <
o %
< Scientific picience Computing e
Applications Hardware o
>
A3D3 ‘;:»
Domain ML-specific g
inspired-ML systems §
Artificial &
Intelligence
Algorithms
“igh Energy Phys\®

UC San Diego

Join us!

e Monday 9 am Central:

Technical MMA call
(anything related to
gravitational-wave
counterpart searches)
Tuesday 2 pm Central:
A3D3 ML Detection
meeting

Thursday 8:30 am
Central: ASD3 KAGRA
meeting

Friday 2 pm Central:
A3D3 Inference as a
Service meeting
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L\ Summary and Perspectives

IAAS
e |laaS model represents a powerful way to bring advantages of deep learning to bear in gravitational-
wave astronomy
e Deploying and optimizing laaS pipelines requires aligning benefits of scale with constraints of
problem
e Several applications currently under development to increase number and speed of event detections
during O4

ML based follow-up
e Technique interpretable

e Good start before invoking reinforcement learning (also for benchmarking)
e Data acquisition failure tolerant

e | atency intolerant
e Main uncertainty is the reliability of simulated augmented photometry

e Need verification with real data
e Extensions of work include:

¢ \ariable observing cost, observing season based budget

¢ Other choices of utility including prior building, model discrimination

My own perspective on the areas of greatest need:

» Can the initial promise of ML applications in terms of detection and PE make its way from BBH
signals (short) to BNS signals (long)?

« Can ML provide optimal follow-up strategies to rule in and out specific transients as sources given
limited telescope time and sensitivity?

* Is ML the key to a truly MMA pipeline, with inference on GW, optical, GRB, etc. data sets?




-

Thank you!




MMA Equation of State Constraints

NICER - Pulsars

Nuclear

Theory

GWs

Prior construction

(A) Chiral effective field theory:
EOS derived with the chiral EFT
framework

(B) Maximum Mass Constraints:

PSR J0740+6620/ PSR J0348+4032/ PSR
J1614-2230 and GW170817/AT2017gfo
remnant classification

(C) NICER:
PSR J0030+0451
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The Goal

® Given an observing budget decide how to
augment LCs in real-time (adapt to collected
data) such that we maximize expected utility
(EU) for the augmented LC (realized at the end

of the episode)

e Utility conveys our preference for an
outcome given a decision. We choose
utility as pseudo™® A-optimality = minimum

SALT2 parameter variances in sncosmo

e Since we do not assume that redshift is
known as the SN is taking place, we solve
for it and minimize its uncertainty as well.
Assume known SN sky location, MW

extinction.

Sraven et al. 2021: submitted

The Algorithm

® On each day estimate EU of action space {no
action, g, r, i, gr, ri, ig, gri} given observed data and
expected data (stochastic) under no action.

Remaining budget allocated randomly**

® Outcome states given actions and expected
future data estimated using encoder-decoder

LSTM trained on 105 simulated ZTF SNe Ia

® Take modal action with least cost having max

EU*** per N simulated future outcomes

® Augmentations from 2-D Gaussian Process fit

to full LC and fed back for the next day

* because sncosmo solves chi*2 minimization max likelihood
** substitutes expected optimal actions for expected naive actions
***  _greedy and tuned to maximize median A-optimality for all validation SNe la



