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A Technical Ecosystem
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A New Era
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Many detections are coming



O3 Context
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NOTE: Bigger circles (small sky areas) and very opaque 
(low false alarm rate) are easier to follow-up



So What’s the Problem? 
Long Road from data to science 
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Luckily, a lot of effort at this 
conference on problems of relevance! 
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Gabriele Vajente 
(California Institute of 
Technology)
Virtual Talk: Machine 
Learning and Gravitational 
Wave Detectors

John Veitch (University of Glasgow)
Virtual Talk: Computational Challenges in Gravitational Wave Parameter Estimation

Deep Chatterjee (University of Illinois at Urbana-Champaign)
Applications of machine learning in low-latency electromagnetic counterpart 
inference from gravitational waves

Ik Siong Heng (University of Glasgow)
Gaussian Mixture Models for transient gravitational wave detection

Guillermo Valdes 
(Texas A&M 
University - College 
Station)
Virtual Talk: Acoustic 
noise in gravitational-
wave detectors

Jenne Driggers 
(California Institute 
of Technology)
Improving the 
sensitivity of 
gravitational wave 
interferometers

Agata Trovato (Università di Trieste)
Virtual Talk: Neural networks for gravitational-wave trigger selection in single-detector periods

Jonathan Gair (Max Planck Institute for Gravitational Physics, Albert Einstein Institute)
Virtual Talk: Rapid and robust parameter estimation for gravitational wave observations

Patrick Godwin 
(Pennsylvania 
State University)
Low-latency Noise 
Mitigation 
Techniques in 
Gravitational-wave 
Detector Data 
Using Auxiliary 
Sensor Information

NOTE: Not an exhaustive copy and paste session!
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conference on problems of relevance! 
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However, two questions based on this? 
(i) Are we ready to apply these ML 

algorithms in real time? 
(ii) How can we support the blue block 

better?



Are we ready to apply ML  
in real time?
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Deep Learning Programs at  
Inference Time 
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Pros 
● Robust modelling 

capabilities 
● Real-time compatible 

Cons 
● Resource intensive 
● May require frequent 

updates 
● Effective use requires 

specialized knowledge, 
software, and often 
hardware



Inference as a service 
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Client applications

● Application for hosting 
trained networks and 
exposing them for 
inference via 
standardized client APIs 

● Abstracts away details 
about models and their 
implementations 

● Effectively leverages 
concurrent execution on 
heterogeneous 
computing resources 

● Containerizations means 
portability and easy 
scale 

● Centralized model 
repositories keep all 
users in sync



Cleaning gravitational-wave data

Ormiston et al. (2020): 2005.06534, Gunny et al. (2021): 2108.12430

• Technical and environmental noises prevent GW 
detectors from operating at its design sensitivity

• Can use ML methods combined with on-site witness 
sensors to predict the detector response and remove the 
noise
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Detecting gravitational waves

Gunny et al. (2021): 2108.12430

• Gravitational-wave detection is basically a 
solved problem for Gaussian noise, which 
gravitational-wave data is not

• ML methods have been shown to have the 
capability of meeting the speed requirements 
for online searches, while also being more 
robust to data transients

• Only BBHs (short signals) so far Wide Field 
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LVK Inference as a Service: 
Deployment Scenarios
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Online 
● Latency sensitive, deploy 

locally to minimize data 
transfer time 

● Using DeepClean to remove 
noise in real-time and make 
cleaned strain available to 
downstream analyses/
searches, including BBHNet

Offline 
● Maximize throughput to minimize time to 

completion (subject to cost constraints) 
● Cloud resources leverage economies of scale 
● Cleaning one month of O3 data with 

DeepClean 
● End-to-end ensemble with DeepClean and 

BBHnet to estimate event likelihood over ~27 
hrs. of O2 data

Gunny	et	al.	2021:	2108.12430

Alec Gunny 

MIT 



Inference as a Service: 
for Streaming Data
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● DeepClean and BBHnet perform 
inference on fixed-length snapshots 
of time series 
○ Rate at which snapshots are 

sampled fixed by an inference-
time parameter r, the inference 
sampling rate 

● High values of r compared to the 
length of the frame lead to 
substantial data overlap and 
redundant data transfer from client 
to server 

● Host a “snapshotter” model on the 
server that maintains the current 
snapshot as a state 
○ Only stream state updates 
○ Updated snapshot gets passed 

to downstream models 
○ Introduces a potential 

sequential bottleneck 
● DeepClean also has overlapping 

output data 
○ Aggregating between overlap 

incurs extra latency 
○ Currently adopting “fully-online” 

solutionGunny	et	al.	2021:	2108.12430



Performance vs aggregation latency
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aggregation latency - 
the amount of data 
(seconds) to be 
excluded from the end 
of the segment due to 
quality degradation.

P
er

fo
rm

an
ce

Gunny	et	al.	2021:	2108.12430

Saleem Muhammed 

UMN 

William Benoit 

UMN 



Offline Use Cases
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● Offline DeepClean shows the 
advantages of switching to IaaS 
model: CPU-only node with ~10x 
reduction in processing time, 
adding GPUs gives another ~5x 

● Ensemble model shows economies 
of scale of IaaS paradigm 

● Processing time decreases linearly 
with # of nodes, cost stays 
constant 
○ Optimal point at “infinite” scale 
○ Scale achieved with minimal 

additional engineering 
overhead 

● Ensemble leverages multiple 
framework backends, all invisible to 
client users

Gunny	et	al.	2021:	2108.12430



Online Use Cases
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● Concurrent execution of IaaS model important at lower inference rates, keeps demand for 
scale low 

● Scale becomes more important at higher frequency inference rates 
● Bottleneck is currently sequential update to the input “state” 
● Optimizing this step via HPC unlocks more advantage from additional GPUs



Tests at Scale
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● Use HEPCloud 
framework to run larger 
tests with multiple 
clients/servers 
○ Tests use cloud 

resources (GCP), 
submitted through 
HTCondor 

● Jobs synchronized to 
start all at once, mimic 
realistic environment 

● Able to sustain 
processing for full length 
of job 

● Provides a means to 
manage/run large 
amount of jobs

Gunny	et	al.	2021:	2108.12430



How can we support and 
perform better observations?
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The Observational Landscape
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Landscape of Optical TDA 

• The night sky is imaged at 17.5 mag by ASAS-SN (both hemispheres)
• The northern sky is covered by ATLAS, ZTF, and PS-1 to 19, 20.5, 21.5 over 
roughly two nights (ZTF issues real time, data-rich alerts)
• BlackGEM (21-22 mag; Chile) will start routine operation within this year
• Rubin is expected to become operational in 3 to 4 years
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Two Different Approaches

• Photometric detection followed by spectroscopic classification
– Possible for surveys which are shallow (20 mag or so)
– Spectral classification can be undertaken by existing telescopes
• Photometric detection followed by multi-band time series
– Large samples of faint objects –Much of the analysis will be 
statistical –Use clever techniques and filter out a small subset for 
further follow up

22



Palomar Telescopes
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The Technical Landscape
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The Technical Landscape
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Building the technical environment
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PC:	Leo	Singer,	Goddard

M4OPT:	Mixed	integer	programming	
based	scheduler,	Leo	Singer,	PI



Building the technical environment
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Polina Petrov 

Vanderbilt 

Petrov	et	al.	2021:	2108.07277



What data do we need?
• Often, a photometric light curve is all you 

have available to classify it.
• Due to the many follow-up systems we have 

available, desire to design a system that 
optimizes the differentiation between models 
for kilonovae and other fast transients.

• Can use ML methods to speed up inference on 
each potential counterpart object, including 
when performing the GW and EM inference.
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Transient Filtering

29 [Andreoni, Coughlin+2021, 2104.06352] 



Why do we want fancy strategies?
Kilonovae - Hard to find

30

Rapid reddening

Faint

Fast

modified from Andreoni+2018, LSST White Paper



Landscape of Optical TDA 

• The night sky is imaged at 17.5 mag by ASAS-SN (both 
hemispheres)
• The northern sky is covered by ATLAS, ZTF, and PS-1 to 19, 20.5, 
21.5 over roughly two nights (ZTF issues real time, data-rich alerts)
• BlackGEM (21-22 mag; Chile) will start routine operation within 
this year
• LSST is expected to become operational in 3 to 4 years31



Two Different Approaches

• Photometric detection followed by spectroscopic classification
– Possible for surveys which are shallow (20 mag or so)
– Spectral classification can be undertaken by existing telescopes
• Photometric detection followed by multi-band time series
– Large samples of faint objects –Much of the analysis will be 
statistical –Use clever techniques and filter out a small subset for 
further follow up

32



Value-driven Real-time follow-up
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•As	is,	data	will	be	insufficient	for	full	science	
inference	without	additional	follow-up	

•e.g.	extracting	physics	from	light	curves	

•Need	to	perform	value-driven	follow-up	

•Volume	of	alerts	far	exceeds	the	ability	to	
follow-up	with	limited	and/or	expensive	follow-
up	resources	

•Augment	sparse	Rubin	LCs	to	improve	constraints	
on	SALT2	(supernova)	models	

•We	augment	photometry	to	(branch-normal)	SN	Ia	
LCs	from	ZTF-I	public	survey	(g	and	r)	using	P48	in	
g,r,	and	i	

•i-band	important	for	precisely	estimating	H0	
(Burns+	2018)	

•Second	peak	could	help	probe	SN	Ia	explosion	
mechanisms	

•Broadly	an	optimal	real-time	resource	allocation	
problem	and	not	restricted	to	SALT2	

Folatelli+	2010Peak	luminosity

Sraven	et	al.	2021:	submitted

Niharika (Ari) Sravan 

Caltech 

Tyler Barna 

UMN 



Results
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10-20	%	Median	improvement	in	parameters	over	random	allocation

❑Gap	filling	
❑Resolves	
phase	with	
high	
variability/
diversity:	
❑Around	
peaks	and	
valleys

Sraven	et	al.	2021:	submitted



Results
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Interesting	notes:	

❑More	in	g	due	to	sparser	
sampling	

❑ 3-5%	more	improvement	
for	SNe	Ia	>	18.5mag	

❑ Even	better	prospects	
for	Rubin

Sraven	et	al.	2021:	submitted



So… what then?
NMMA: A Fully Bayesian  
Joint-Inference Pipeline 

• gravitational-wave data analysis using parallel 

bilby 

• kilonova modelling with various models (Bulla, 

Kasen, etc.)  

• gamma-ray burst afterglow fits (also supernova 

models from sncosmo) 

• chiral effective field theory to simulate the 

neutron-star EOS 

• neutron-star maximum mass and NICER 

constraints, fits to relate ejecta parameters to 

progenitor parameters using numerical relativity
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Photometry

Used for many analyses at this point: 
Ahumada et al. 2105.05067, Dietrich et al. 2002.11355,  
Tews et al. 2007.06057, Pang et al. 2105.08688, Huth et al. 2107.06229



NMMA: A Fully Bayesian  
Joint-Inference Pipeline
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Fundamental EOS  
information 

Extrinsic Parameters (H0!) 

Ejecta Parameters 

[Pang+, 2021, in prep] 

Peter Pang 

NIKHEF 

• Extract science 
(and filtering 

criteria) in one 
place! 

• For example, 
immediately 

extract 
information on 
ejecta, neutron 
star physics, 

and cosmology 
(in case of a 
host galaxy).



Online Filtering

38 [Barna, Reed, et al., in prep] 

Tyler Barna 

UMN 

Brandon Reed 

UMN 



Building the technical environment
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Improving community follow-up

Andrew Toivonen 

UMN 

Gargi Mansingh 

American 



Building the technical environment
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A3D3
Join us! 

• Monday 9 am Central: 
Technical MMA call 
(anything related to 
gravitational-wave 
counterpart searches) 

• Tuesday 2 pm Central: 
A3D3 ML Detection 
meeting 

• Thursday 8:30 am 
Central: A3D3 KAGRA 
meeting 

• Friday 2 pm Central: 
A3D3 Inference as a 
Service meeting 



Summary and Perspectives
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IAAS 
● IaaS model represents a powerful way to bring advantages of deep learning to bear in gravitational-

wave astronomy 
● Deploying and optimizing IaaS pipelines requires aligning benefits of scale with constraints of 

problem 
● Several applications currently under development to increase number and speed of event detections 

during O4 

ML based follow-up 
• Technique interpretable 

•Good start before invoking reinforcement learning (also for benchmarking) 
• Data acquisition failure tolerant 

• Latency intolerant 
• Main uncertainty is the reliability of simulated augmented photometry 

•Need verification with real data 
• Extensions of work include: 

• Variable observing cost, observing season based budget 
•Other choices of utility including prior building, model discrimination 

My own perspective on the areas of greatest need: 
• Can the initial promise of ML applications in terms of detection and PE make its way from BBH 

signals (short) to BNS signals (long)? 
• Can ML provide optimal follow-up strategies to rule in and out specific transients as sources given 

limited telescope time and sensitivity? 
• Is ML the key to a truly MMA pipeline, with inference on GW, optical, GRB, etc. data sets? 



Thank you!
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MMA Equation of State Constraints
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NICER - Pulsars

GWs

Optical Counterpart

Nuclear 
Theory

[Dietrich, Coughlin, et al., Science] 



Methodology
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•Given	an	observing	budget	decide	how	to	

augment	LCs	in	real-time	(adapt	to	collected	

data)	such	that	we	maximize	expected	utility	

(EU)	for	the	augmented	LC	(realized	at	the	end	

of	the	episode)	

•Utility	conveys	our	preference	for	an	
outcome	given	a	decision.	We	choose	

utility	as	pseudo*	A-optimality	=	minimum	

SALT2	parameter	variances	in	sncosmo	

•Since	we	do	not	assume	that	redshift	is	

known	as	the	SN	is	taking	place,	we	solve	

for	it	and	minimize	its	uncertainty	as	well.	

Assume	known	SN	sky	location,	MW	

extinction.	
*	because	sncosmo	solves	chi^2	minimization	 	max	likelihood	

**	substitutes	expected	optimal	actions	for	expected	naïve	actions	
***	 -greedy	and	tuned	to	maximize	median	A-optimality	for	all	validation	SNe	Ia	

≠

𝜖Sraven	et	al.	2021:	submitted

•On	each	day	estimate	EU	of	action	space	{no	

action,	g,	r,	i,	gr,	ri,	ig,	gri}	given	observed	data	and	

expected	data	(stochastic)	under	no	action.	

Remaining	budget	allocated	randomly**	

•	Outcome	states	given	actions	and	expected	

future	data	estimated	using	encoder-decoder	

LSTM	trained	on	105	simulated	ZTF	SNe	Ia	

• Take	modal	action	with	least	cost	having	max	

EU***	per	N	simulated	future	outcomes	

•Augmentations	from	2-D	Gaussian	Process	fit	

to	full	LC	and	fed	back	for	the	next	day

The	Goal The	Algorithm


