
Tyson B. Littenberg

Building flexible models of 
gravitational wave data
…but not too flexible…



p(A |B) =
p(B |A)p(A)

p(B)Probability (density) of A 
given B



p(θ |d, M) =
p(d |θ, M)p(θ |M)

p(d |M)Probability (density) of parameters 
given data && model
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“nuisance parameters”
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p(x |d, M) = ∫ p(x, y, z |d, M) dy dz
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p(d |M) = ∫ dθ p(d |θ, M) p(θ |M)



𝒪A,B =
p(MA)
p(MB)

×
p(d |MA)
p(d |MB)
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“I’ve detected Gravitational Waves!”

“I’ve measured lots of noise!”
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“I’ve detected Gravitational Waves!”

“I’ve measured lots of noise!”

“odds ratio”
“Bayes factor”

𝒪A,B = X ≡ Model A is preferred over model B with X : 1 odds

p(d |M) = ∫ dθ p(d |θ, M) p(θ |M)
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Bayesian Analyses: Not magic.



Let’s Build a Likelihood Function
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Noise is modeled statistically

GWs are modeled 

coherently (discrete sources)

or statistically (backgrounds)
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x

i

= nd + h
∼ N[0,σ2]

Probability of measuring noise ni

p(ni) =
1

2πσ2
e− |ni |2

2σ2
Noise is zero-mean Gaussian


Noise has known variance




x

i

= nd + h
∼ N[0,σ2]

Probability of measuring data di

p(di |θ) =
1

2πσ2
e− |di − hi |2

2σ2

= h(θ)

Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect

x



= nd + h
Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect

Probability of measuring set of data d with k samples: 

p(d |θ) =
1

(2π)k det C
e− 1

2 (d−h)TC−1(d−h)



= nd + h
Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect


Noise variance is stationary

⟨ñiñj⟩ = σ2
i δi,j ≡

T
2

Sn( fi)

Probability of measuring set of data d with k samples: 

p(d |θ) =
1

(2π)k det C
e− 1

2 (d−h)TC−1(d−h)



= nd + h

p(d |θ) = ∏
k

2
πTSn,k

e− 2 | d̃k − h̃k |2
TSn,k

Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect


Noise variance is stationary
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Noise variance is stationary

⟨ñiñj⟩ = σ2
i δi,j ≡

T
2

Sn( fi)

Probability of measuring set of data d with k samples: 

p(d |θ) =
1

(2π)k det C
e− 1

2 (d−h)TC−1(d−h)

p(d |θ) ∝ e− 2
T ∑k

| d̃k − h̃k |2
Sn,k
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Waveform model is perfect


Noise variance is stationary



Model everything and let the data sort it out



Choose a convenient “basis set” to phenomenologically model features in data


Use evidence to determine the number of “basis functions” to use in the model
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Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect


Noise variance is stationary
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Short-duration transients
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Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect


Noise variance is stationary
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Noise is zero-mean Gaussian


Noise has known variance


Data are perfectly calibrated


Waveform model is perfect


Noise variance is stationary
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Nspline × {f0, Sn} : Spline Model

Nlines × {f0, A, Q} : Line Model

NS × {f0, t0, A, Q, ϕ0} ∪ {α, δ, ψ, ϵ} : Generic Signal Model

NG,I × {f0, t0, A, Q, ϕ0} : Glitch Model

{m1, m2, S1, S2, L, α, δ, DL, t0} : CBC Model

and/or

Ncal × {δAI, δϕIFO} : Calibration Model
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“likelihood” “prior”

likelihood = p(d |signal, noise, glitch)

p(signal |d) = ∫glitch,noise
p(d |signal, glitch, noise)

Model everything…

Marginalize the stuff you don’t care about…



Transdimensional (Reversible Jump) MCMC

θ



Transdimensional (Reversible Jump) MCMC

θ
M



θ
M

Transdimensional (Reversible Jump) MCMC

counts in model A
counts in model B

≡ 𝒪A,B
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αM0→M1
= min [1,

p(d |x0, x1)
p(d |x0)

p(x0)p(x1)
p(x0)

1
q(x1) ]

Transdimensional (Reversible Jump) MCMC

M0

propose adding parameter set x : {x0} → {x0, x1}

M1

x0

x0
x1

…are notoriously tricky to get mixing…



Transdimensional (Reversible Jump) MCMC

M0

propose adding parameter set x : {x0} → {x0, x1}

M1

x0

x0
x1

…are notoriously tricky to get mixing…

αM0→M1
= min [1,

p(d |x0, x1)
p(d |x0)

p(x0)p(x1)
p(x0)

1
q(x1) ]

<<1 unless close to  
bulk of posterior penalty for adding  

prior volume

penalizes “heavy 
handed” proposal
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(i) Mixing benefits from domain knowledge / 
data-driven proposals 
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…are notoriously tricky to get mixing…

(i) Mixing benefits from domain knowledge / 
data-driven proposals 


(ii) Convergence benefits from a helping-
hand during burn-in
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(i) Mixing benefits from domain knowledge / 
data-driven proposals 
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Transdimensional (Reversible Jump) MCMC
…are notoriously tricky to get mixing…

(i) Mixing benefits from domain knowledge / 
data-driven proposals 


(ii) Convergence benefits from a helping-
hand during burn-in


(iii) Having (ii) should make you nervous 
about the robustness of the sampler
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Ncal × {δAI, δϕIFO} : Calibration Model

Point estimate of PSD for LIGO-Virgo CBC PE

Point estimate of Glitch Model for some CBC PE

Template-free CBC waveform reconstructions

Burst search/characterization

New use-cases in development for O4

Similar algorithms under development for LISA


