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Observing Binary Black Holes
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How big is each black hole? How fast are they spinning? 
Where are the spin axes pointing?

Where and when did they merge?

m1 m2 χ1 χ2

DL(z) How are black holes 
made?
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The origins of LIGO-Virgo’s black holes
• What were their progenitors? (Likely massive stars) 

• Where and when did these massive stars live? 

• How did these stars die? 

• How did the stellar deaths affect their environments? 

• How did these stellar remnants pair up into merger partners?
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All of these pieces affect the masses, spins, and merger rates of 
gravitational-wave events

See Michela’s talk
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Measuring the parameters of gravitational-wave events
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Parameter estimation

p(θi ∣ datai) =
p(datai ∣ θi)p0(θi ∣ ℋ)

p(datai ∣ ℋ)

Posterior
Likelihood Prior

Parameter estimation assumes a default prior. 

Population inference finds the “best” prior, common to all systems

Evidence: event i’s parameters, like 
masses, spins

θi
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From Single Events to a Population
• Introduce a population model  with a set of population hyper-

parameters that describe the distributions of  masses, spins, 
redshifts across multiple events 

• Example: Fit a power law to black hole masses. Hyper-parameters: 
power-law slope, minimum black hole mass, maximum black hole 
mass. 

• Take into account measurement uncertainty and selection 
effects

ℋ
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Find the “best” prior to use for individual events

ppop(θ ∣ λ, ℋ)

Parameter estimation 
likelihood for event i

Likelihood given 
population model and 

hyperparameters

p(data ∣ λ, ℋ) = ∏
i

∫ p(datai ∣ θi)ppop(θi ∣ λ, ℋ)dθ

β(λ, ℋ)
Selection effects: fraction of 
detectable systems in the 

population

Population analysis

See, e.g., Gair+ 2019, Thrane & Talbot 2019, Vitale+ 2020 for derivation
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Example of selection effects:
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Population inference also updates our knowledge of the parameters of individual events
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Default parameter estimation prior 
is arbitrary! The likelihood is the 
same, but different priors ➡ 
different posteriors. 

Default priors are flat in (detector-
frame) component masses. 

Population prior is the result of 
fitting the population model to all 
events
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Three Astrophysical Lessons
1. Mass distribution 

2. Spin distribution 

3. Evolution with redshift
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Three Astrophysical Lessons
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1. Mass distribution: transition between neutron stars and black holes 

2. Spin distribution 

3. Evolution with redshift
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New O3 events are not really filling in the “gap”…

14Farah, MF, Essick, & Holz 2021 arXiv:2111.03498
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There is a clear deviation from a power law at ~2.4 solar masses
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Coincides with neutron star maximum mass?

Farah+ 2o21

LVK 2021, arXiv:2111.03634
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Three Astrophysical Lessons
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1. Mass distribution 

2. Spin distribution: slowly spinning black holes and large spin tilts 

3. Evolution with redshift
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Effective spin parameters
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• The gravitational-wave signal can be 
parameterized by two “effective” spins: 

• The effective inspiral spin measures the total 
spin along the orbital angular momentum 
axis, 

  

• The effective precessing spin measures the 
spin in the orbital plane, perpendicular to 
orbital angular momentum axis 

χeff =
m1χ1cosθ1 + m2 χ2 cos θ2

m1 + m2

χp ∝ χ1 sin θ1 Figure credit: Thomas Callister
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Effective inspiral spin population distribution
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•  implies there are spin tilts > 90 
degrees  

• Current distribution consistent with 
symmetric  centered at zero, implies 
the distribution of spin tilts may be 
isotropic  

• Favors dynamical origin or mixture 
between dynamical and isolated(?)

χeff < 0

χeff

LVK arXiv:2111.03634, methods papers by 
 Miller, Callister & Farr 2020, Roulet & Zaldarriaga 2019
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Black holes in gravitational-wave systems spin slower than those in X-ray binaries
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Fishbach & Kalogera 2021, arXiv:2111.02935
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Three Astrophysical Lessons
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1. Mass distribution 

2. Spin distribution 

3. Evolution with redshift: Merger rate evolution matches star formation rate
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Binary black hole merger rate density across cosmic time 

21LVK arXiv:2111.03634, methods paper by MF+ 2018,  
gwpopulation by Talbot+ 
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Comparing merger rate evolution to star formation + time delays
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Data favor short time delays between formation and merger
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Predicted time delay distributions
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Right: Chemically 
homogeneous 

evolution

Mandel & de Mink 2016 Antonini+ 2017

Gallegos-Garcia+ 2021

Left: Field binary 
evolution: common-
envelope and stable 

mass transfer

Mandel & de Mink 2016

Rodriguez+ 2018 Left: Dynamical 
assembly in globular 

clusters

Right: Stellar triples
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Ongoing and future population inference with larger catalogs

• Model checking and outlier tests 

• Towards nonparametric population models 

• Population-level correlations between parameters (e.g. mass evolution with redshift, 
spin correlation with masses)

25



Maya Fishbach — Black hole astrophysics with GWs—    

Ongoing and future population inference with larger catalogs

• Model checking and outlier tests: when do we have to upgrade our simple 
models? 

• Towards nonparametric population models 

• Population-level correlations between parameters (e.g. mass evolution with redshift, 
spin correlation with masses)

26
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Posterior Predictive Checks

27
MF, Doctor, Callister, Edelman, Ye, Essick, Farr, Farr & Holz 2021 ApJ  912 98

“Goodness of fit:” Unlike with model selection, we don’t have to 
specify an alternative model. But there is also not a single statistic 

we can use to reject a model.



Maya Fishbach — Black hole astrophysics with GWs—    

Quantify deviations between predicted and observed events 

28
MF, Doctor, Callister, Edelman, Ye, Essick, Farr, Farr & Holz 2021 ApJ  912 98



Maya Fishbach — Black hole astrophysics with GWs—    

Outlier tests with coarse-grained likelihoods
• Typical outlier tests in gravitational-wave 

population inference do a “leave-one-out” 
analysis 

• This usually involves selecting a potential 
“outlier” event in advance, which leads to bias 

• One solution is to repeat “leave-one-out” for 
every event in the catalog —> computationally 
expensive 

• Another solution: define a “coarse-grained” 
likelihood 

• Also see Roulet+ Phys. Rev. D 104, 083010 (2021)

29
Essick, Farah, Galaudage, Talbot, MF, Thrane & Holz 2021, ApJ in press
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Ongoing and future population inference with larger catalogs

• Model checking and outlier tests 

• Towards nonparametric population models 

• Population-level correlations between parameters (e.g. mass evolution with redshift, 
spin correlation with masses)

30
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Semiparametric population fits in GWTC-3

31LVK arXiv:2111.03634, methods papers by Edelman+ 2021, Tiwari+ 
2020, Mandel+ 2017

BPG: Binned Gaussian Process on 2D mass plane, FM: flexible mixture model, PS: 
model deviations from parameterized model as spline See Bruce’s poster
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Ongoing and future population inference with larger catalogs

• Model checking and outlier tests 

• Towards nonparametric population models 

• Population-level correlations between parameters (e.g. mass evolution with 
redshift, spin correlation with masses)

32
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Examples of population-level correlations
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Summary
• Astrophysical Lessons 

• Mass distribution: Transition between neutron stars and black holes 

• Spin distribution: Slowly spinning black holes and large spin tilts 

• Evolution with redshift: Merger rate evolution and small time delays 

• Future prospects and challenges 

• Model checking and outlier tests: posterior predictive checks, coarse-grained 
likelihoods 

• Nonparametric population models: Gaussian mixtures, Gaussian process 
regularized histograms, splines 

• Look for correlations between population distributions

34
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Future prospects and challenges, continued
• Simultaneously model signal and noise population 

• How do we interpret the population fits in the context of theoretical models? (See 
Michela’s talk) 

• Include cosmology, theory of gravity, neutron star equation of state in population 
model (see Rachel’s talk) 

• Leverage information from stochastic background (see Arianna’s talk) 

• Turn systematic uncertainties into statistical uncertainties (e.g. waveform models, 
calibration) 

• Smarter parameter estimation, sensitivity estimation
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