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MCMC: Solving a Hard Problem once.

vs

Nested Sampling: Solving an Easier 

Problem many times.

Pictures adapted from this 
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If you have a prior transform that converts your 
priors to look uniform, then this case is equivalent.
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See also Speagle (2019)
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Importance Weight
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https://arxiv.org/abs/1704.03459
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arxiv:1704.03459

Sampling from the prior 

becomes exponentially

more inefficient as time 

goes on.

https://arxiv.org/abs/1704.03459


Sampling from the Constrained Prior

Feroz et al. (2009)

Proposal:

Try to bound the iso-likelihood contours in 

real time. 



Examples of Bounding Strategies

“Live points” (i.e. “chains”)



Examples of Sampling Strategies
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4. Can help perform model selection.

Disadvantages to Nested Sampling:
1. Implementations require a prior transform.

2. Runtime sensitive to size of prior.

3. Overall approach can sometimes miss certain types of solutions.

4. Sampling is more involved.

5. Can’t use gradients as “naturally” as HMC.
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Advantages to Nested Sampling:
1. Can characterize complex uncertainties in real-time.

2. Can allocate samples much more efficiently in some cases.

3. Possesses well-motivated stopping criteria (Skilling 2006; Speagle 2020).

4. Can help perform model selection.

Disadvantages to Nested Sampling:
1. Implementations require a prior transform.

2. Runtime sensitive to size of prior.

3. Overall approach can sometimes miss certain types of solutions.

4. Sampling is more involved.

5. Can’t use gradients as “naturally” as HMC.

Fraction of “wasted” samples doesn’t adapt 

to the shape of the posterior over time
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Illustrative Example

Speagle (2020)



dynesty

Speagle (2020)

• Open-source Python package designed to make (Dynamic) Nested 

Sampling easy to use but also easy to customize.

• Designed to be highly modular and can mix-and-match methods.

• Includes built-in plotting utilities and post-processing tools.

Inspired by emcee! (Foreman-Mackey et al. 2013)

https://dynesty.readthedocs.io

https://dynesty.readthedocs.io/
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