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See also Speagle (2019)
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Motivation: Integrating the Posterior

n
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i=1 Directly proportional
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Nested Sampling In Practice
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Higson et al. (2017)
arxiv:1704.03459
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Nailve Approach: Sampling from the Prior

Sampling from the prior

becomes exponentially
more Iinefficient as time

goes on.

O

Higson et al. (2017)
arxiv:1704.03459
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Sampling from the Constrained Prior

Proposal:
Try to bound the iso-likelihood contours in
real time.

(a) | (b) | ©) | (d) | )

Feroz et al. (2009)



Examples of Bounding Strategies

“Live points” (i.e. “chains”)
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Examples of Sampling Strategies

Uniform Random Walk
) Cy
licg
Bound Proposal
Fixed Scale Variable Scale
Multivariate Slice Hamiltonian Slice

D | @ @)

Principal Axes Random
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Advantages to Nested Sampling:
1. Can characterize complex uncertainties in real-time.
2. Can allocate samples much more efficiently in some cases.
3. Possesses well-motivated stopping criteria (Skilling 2006; Speagle 2020).
4. Can help perform model selection.

Disadvantages to Nested Sampling:
Implementations require a prior transform.
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Overall a ) : tions.
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Dynamic Nested Sampling
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Dynamic Nested Sampling
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dynesty

Inspired by emcee! (Foreman-Mackey et al. 2013)

Open-source Python package designed to make (Dynamic) Nested
Sampling easy to use but also easy to customize.

Designed to be highly modular and can mix-and-match methods.

Includes built-in plotting utilities and post-processing tools.

Speagle (2020) https://dynesty.readthedocs.io
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Modifications and Applications
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