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Workshop III: Source inference and parameter estimation in Gravitational Wave Astronomy

Overview: Gravitational-wave (GW) observations offer a unique opportunity to study
astrophysical and cosmological sources that are difficult to access through
electromagnetic observations. Inferring the sources’ properties from their GW signal is
one of the key objectives ot GW data analysis. The planned improvements in the
sensitivity of the ground-based detectors and future space-based observatories,
however, bring unique computational and mathematical challenges to the inference
problem including long-duration signals, high signal-to-noise ratios, increased
parameter dimensionality and overlapping signals. These challenges must be overcome
to fully exploit the scientitic potential of GW observations. The goal of this workshop is to
connect statisticians, computer scientists and GW astrophysicists to discuss the current
state-of-the-art approaches to parameter estimation in GW astrophysics, and to
identify the open issues to enable fast and reliable inference tor different GW sources,
including modelled and un-modelled signals, for the current and planned GW
observatories.



Questions to keep in the back of your mind

What's the product of inference?
e Samples from posterior 8, ~ p( | x)

e The posterior p(@ | x) itselt
e The likelihood p(x | 6)

o Confidence/credible intervals

e Expectations of various quantities with respect to posterior -p(@‘x)[f(é’)]

e A component to a larger decision making / planning system
How is important is speed (amortized inference)?
Are we after population-level interence or inference on individual objects?

What is the role of summary statistics / inductive bias / expert domain knowledge?



Science is replete with high-fidelity simulators

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe
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Simulators are causal, generative models of the data generating process

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]
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itates the development of

- modern computing provides the

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]
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Untfortunately, these simulators are poorly suited for statistical inference.

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]
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Model misspecification

Inference is always done within the context ot a model
e |t the model is mis-specified it will affect inference
e Here the model is the simulator

* the simulator may not be pertect, but

* simulators usually include more effects than traditional prescribed models

To account for mis-modeling, simulators are often expanded to model residuals

e The simulator now also depends on nuisance parameters v
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ANIMATION BY ATILIM GUNES BAYDIN
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Properties of simulators
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Integral over latent variables is typically intractable p(z|0) = [ p(x,z | 0)dz
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A rose by any other name

This motivates a class of inference methods for a stochastic simulator where

e evaluating the likelihood is intractable, but

e itis possible to sample synthetic data x ~ p(x | 6)

This setting is often referred to as likelihood-free inference, but | prefer the term
simulation-based inference because usually one approximates the likelihooa
(or likelihood ratio) and then use established inference techniques

e applies to both Bayesian or Frequentist inference
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Simulating particle physics processes
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Simulating particle physics processes
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Simulating particle physics processes

Parton-level Theory
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Simulating particle physics processes

| atent variables

Detector Shower Parton-level Theory
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Simulating particle physics processes
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Simulating particle physics processes

Detector Shower Parton-level Theory
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Simulating particle physics processes

Detector Shower Parton-level Theory
Observables . . e
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters
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integral over this enormous space!
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10° sensors — summary statistic

Most measurements and searches tfor new particles at the LHC are based on the distribution of a single
summary statistic

e choosing a good summary statistic s(x) (feature engineering) is a task for a skilled physicist and tailored
to the goal of measurement or new particle search

e |ikelihood p(s|6) approximated using histograms or kernel density estimation [Similar to Diggle & Gratton (1984)
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This doesn’t scale if summary is high dimensional!



A common theme, a common language

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods |Ike|lhOOd -free), a Class of Computatlonal statlstlcal methods for BayeS|an mferece under

intractable Ilkellhods‘ The site is meant to be a resource bth'o'r |olog|Sts dstatlstilns

want to Iéarh more about ABC and related methods. Recent publications are under Publications
2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the
radar of the machine learning community, but‘ are 1‘portant tools for a large and dlverseSe gment of the
sc1nt1f1c comumt . This is particularly true for systems and ulaloblolo gy, utatlonal B
neuroscience, computer vision, healthcare sciences, but also many others. ’ |

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.




ABC

D1. Generate 6 from ().

D2. Simulate D’ from stochastic model M with parameter 6, and
compute the corresponding statistics S'.

D3. Calculate the distance p(S, S') between § and §'.

D4. Accept 0 1f p = &, and return to DI.




ABC

Markov chain Monte Carlo without likelihoods

Paul Marjoram*, John Molitor*, Vincent Plagnol’, and Simon Tavare™

*Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, and "Molecular and Computational Biology, Department of Biological

Sciences, University of Southern California, Los Angeles, CA 90089

Communicated by Michael S. Waterman, University of Southern California, Los Angeles, CA, October 24, 2003 (received for review June 20, 2003)

Many stochastic simulation approaches for generating observa-
tions from a posterior distribution depend on knowing a likelihood
function. However, for many complex probability models, such
likelihoods are either impossible or computationally prohibitive to
obtain. Here we present a Markov chain Monte Carlo method for
generating observations from a posterior distribution without the
use of likelihoods. It can also be used in frequentist applications, in
particular for maximum-likelihood estimation. The approach is
illustrated by an example of ancestral inference in population
genetics. A number of open problems are highlighted in the
discussion. o

One of the basic problems in_Bawestin Statistics is the
computation of posterr artbutions. We imagine data D

generated from 0 et
PIiOr desmes “which is denoted by 77(9) et unless

| T Ise stated that the data arg.eweTecte. The posterior
" distribution of interest is f( 6] D) &

"hich is given by

"M determined by parameter e

of & therefore reflects a tension between computability and
accuracy. The method is still honest in that, for a given p and &,
we are generating independent and identically distributed ob-
servations from f(0|p(D, D') = &).

When D is high-dimensional or continuous, this approach can
be impractical as well, and then the comparison of D’ with D can
be made by using lower-dimensional summaries of the data. The
motivation for this approach is that if the set of statistics § = (571,

, S,) is sufficient for 0, in that P(D|S, 6) is independent of

9 then f(9|®) f(9|S) The normahzmg constant P(S) is
3 “TY i i s i Tt L 'I“ ﬁ T oSUTII T ﬁ A\ U "A1ICK
practrce it erl be hard, if not 1mp0ss1ble to 1dent1ty a surtable _y
- set of sufficient statistics, and we then might resort to a moref §
gheurrstrc ap roach Thus ‘we seek to _use knowledge of Iy
} partreu ar pro em at hand to suggest summary 'statistics t t’

>

capture information about 6. With these statistics in hand

have the following approximate Bayesian computation scly .l"

for data © summarized by S:

practice it will be hard, if not impossible, to identity a suitable /-
set of sufficient statistics, and we then might resort to a more
heuristic approach.

8111 alc IIIUCPCIIUCIIL UUDCL VvALIUILLD \auu LIIUD Cdll udC Cmbar'
P(D|6); return to Al rassingly parallel computation), and they readily provide
’ ' estimates of Baves factors that can be used for model com-

” Al. Generate 6 from ().
S8 A2. Accept 6 with probability /1 =

17
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Forward modeling and inverse problems
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A review Published in Proceedings of the National Academy of Sciences

The frontier of simulation-based inference

Kyle Cranmer®"'!, Johann Brehmer®", and Gilles Louppe®

Gilles Louppe

2Center for Cosmology and Particle Physics, New York University, USA; P Center for Data Science, New York University, USA; “Montefiore Institute, University of Liége, Belgium
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https://arxiv.org/abs/1911.01429

ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.

SR N M e o PRI Sy

Probabilistic models defined only via the simulations thy ’produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop’s aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in phyS|cs to generate particle simulations for high energy processes.

Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop s focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



Two approaches simulation-based inference

Use simulator Learn simulator

(much more efticiently) (with deep learning)
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https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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From the review
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From the review
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[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]
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[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]
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[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]
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From the review
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[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]
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Probabilistic Programming Example

(defquery arrange-bumpers [ ]
(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist)))

3 examples generated from simulator
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Probabilistic Programming Example

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box
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Structured latent space

One can frame simulators as:

e first samples latent variables z ~ p(z | 8) and then run through

some deterministic function x = g(6, 7)
e with implicit likelihood p(x|80) = /5(X —g(0,2))p(z|0)dz
But
e 2(6,7) may be very weird... non-differentiable due to control flow

e and the latent space often very structured

Latent structure of 250 most frequent trace types in physics simulator

DX Pz Rejection Calorimeter

sampling \

Py Decay Rejection
channel sampling

def

stochastic_function ():
z1 = rand ()
if z1 < 0.5:

z2t = rand ()

x =zl + z2¢
else:

z2f = rand ()

z3f rand ()

x =zl + z2f + z3f
return x

1073 =

Frequency

104 "

0 1000 2000 3000
dimensionality of z



Inference Compilation

Le, Baydin, Wood AISTATS 2017, arXiv:1610.09900

Hijack the random number generators and use NN’s to learn ¢s(2 | ) and then perform a

very smart type of importance sampling over structured latent space of stack traces.

Compilation

Training data

NN architecture
Q. O

Q0D
(oo

Drr(p(z | )llgg(z|2))

Expensive / slow

Probabilistic program
p(z, 2)

q¢2|$)

Inference

Compilation arv J

Training / @ g

Test data
T

|

SIS

Posterior

p(z | x)

Cheap / fast



simulate

G. Baydin, et al SC19 arXiv:1907.03382
G. Baydin, et al. NeurlPS 2019 arXiv:1807.07706

Previously had to use a special purpose probabilistic programming language.
With ppx protocol, we decouple inference engine & control existing simulator.

Inference Engine

pyprob + PyTorch ()
(Python)

Probabilistic
Programming

i)

(

Execution Protocol /

'+ PPX

Simulator

SHERPA (C++)

Observation

14 ]
12 ]

10 |

o N H» O @

o N A O @

Mean Simulated Observation

* Augment real-world physics simulator
(C++, 1M lines of code)

e 3DCNN-LSTM architecture for (2 | x)
(Stack traces with Dim[z] ranging from 100 — 2,000)

* |nference is embarrassingly parallelizable
unlike MCMC. 230x speedup

& uBc
| -’T ‘:“r
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Atilim Giineg Baydin Lukas Heinrich Kyle Cranmer Frank Wood
Bradley Gram-Hansen Andreas Munk

Saeid Naderiparizi
WLHESE  (intel)
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Jialin Liu Larry Meadows
Prabhat

BERKELEY LAB
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Fpidemiology & population Genetics

i Simulation-Based Inference for Global Health Decisions
- Generation ] 2 3 4

Christian Schroeder de Witt! Bradley Gram-Hansen' Nantas Nardelli '
Andrew Gambardella! Rob Zinkov' Puneet Dokania' N. Siddharth'
Ana Belen Espinosa-Gonzalez? Ara Darzi? Philip Torr' Atihm Giines Baydin !

Chain of transmission //////; https://arxiv.org/abs/2005.07062
of the disease W 2
W7

’

PLANNING AS INFERENCE
IN EPIDEMIOLOGICAL DYNAMICS MODELS

Source
33 infected

A PREPRINT

Frank Wood'*, Andrew Warringtonz, Saeid Naderipalrizi1 , Christian Weilbach!, Vaden Masrani',
William Harvey1 , Adam Scibiorl, Boyan Beronov!, and Ali Nasseri'
Super-spreader
"Department of Computer Science, University of British Columbia
“Department of Engineering Science, University of Oxford
SMILA
*CIFAR Al Chair

{fwood,awarring,saeidnp,weilbach,vadmas,wsgh,ascibior,beronov}@cs.ubc.ca, ali.nasseri@ubc.ca

e /& = : https://arxiv.org/abs/2003.13221
Infected with disease , *

Infects multiple people

Simulation-Based Inference for Global Health Decisions

Hijacking Malaria Simulators with Probabilistic Programming

InfectSweep
0.062

InfectSweep

0.999807 0.999 0.999952 0.25 0.977 0.821 0.999756 0.938 0.0361

f [ 6

@ 1 0.000193 Pﬁ 0.000515 @ 4.82e-05 0.00769 pﬁ.fm 1 mﬁzi.l 0.00417 Gﬁg‘ 0.000244 Gﬁg‘ 0.000325 0.098 Bradley J. Gram-Hansen * 1 Christian Schrﬁder de Witt * 1

SetupPopulation  AssignHouscholdAges IncobRecoverySweep = Tom Rainforth? Philip H.S. Torr! Yee Whye Teh? Atihm Giines Baydin
Figure 1: Latent probabilistic structure uncovered using PyProb from the Imperial College CovidSim simulator run on Malta, httpS/ /a rxw.org/ d bS/ 1905.12432

demonstrating the first step in working with this simulator as a probabilistic program. Uniform distributions are omitted for simplicity.



Two approaches simulation-based inference

Use simulator Learn simulator

(much more efticiently) (with deep learning)

conv (180w + 5b)

e non-linear

maxpool  conv (450w + 10b)

hon-linear

S e~

/

hon-linear

eeceeeceeece

maxpool

EREEEEE T
OODROODOC®

fully-connected @
(1600w + 10b)

 Approximate Bayesian Computation (ABC) e |ikelihood ratio trick (with classitiers)

e Probabilistic Programming e Conditional density estimate

. o L with normalizing flows
e Adversarial Variational Optimization ( S )

e |earned summary statistics


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

Different targets

Learn a likelihood ratio or density ratio with a classifier

e Neural Ratio Estimation [NRE]

p(z | 0)
Pref ($)

e likelihood / evidence = posterior / prior r(z;6) = 2&19) _ P12

p(x) p(0)

or between r(z;6p,6:1) =

e |ikelihood ratio to arbitrary reference r(=;6) =

Learn the likelihoodp(z | ) with a conditional density estimate
e Neural Likelihood Estimation [NLE]
Learn the posterior p(f | z) with a conditional density estimate

e Neural Posterior Estimation [NPE]

p(x

p(x




[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]
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[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]

From the review

Approximate Bayesian Computation Approximate Bayesian Computation Probabilistic Programming Probabilistic Programming
with Monte Carlo sampling with learned summary statistics with Monte Carlo sampling with Inference Compilation
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Fig. 3. Overview of different approaches to simulation-based inference.
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[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

REE VM e binary classifier: find function s(x) that minimizes loss:

sid. | |
TR Lis| = Ep(a|a,)[—log 5(2)] + Ep(z|mo)[— log(1 — s(z))]
t ':t‘ 2
S A | | | .
R S e j.e. approximate the optimal classitier
: H
o) — il
g o [E S T p(x|Ho) + p(x|H;)
. e which is 1-to-1 with the likelihood ratio
" i x|H 1
o, L} r(x) = plz|f) _ 1
e S(X) = p(z|Ho) s(x)




[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

— o e binary classifier: find function s(x) that minimizes loss:

.::.:‘... - <
g Lis| = Ep )|~ log s(x)] + Epmy) [~ log(1 — s(x))]
‘ o.::"::::’.:oo 1 N
*°¢ ~ ~ Z —y; log s(xz;) — (1 — y;) log(1 — s(x;))
i=1

t "‘t‘ 2l
Lef 00 Lo
" {.'.""‘:": e j.e. approximate the optimal classitier
s 7
s(x) = p(x|H)

R ru] L p(x|Ho) + p(x|Hy)
o:; * which is 1-to-1 with the likelihood ratio
O.GE— _;% x H 1
Z:: Lﬁg 7“(,513) _ p( 1) — 1
"0 5' p(z|Ho) s(x)

s(x) 1




Parametrizing the Likelihood Ratio Trick

Can do the same thing for any two points 8, & 8, in parameter space 0.

p(z | 6p) 1
p(z | 61) s(x;0p,601)

T($7 (907 (91) —

Or train to classity data from p(x|0) versus some tixed reference p .¢(x)

p(zlf) _ 1

pref(x) S(QZ; 9)

r(x;0) =

| call this a parametrized classifier.

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

Cranmer, Louppe, Pavez, arXiv:1506.02169

Learning the likelihood ratio PNAS, arkiv1805.12244

PRL, arXiv:1805.00013
PRD, arXiv:1805.00020
O 6] Lassrttiitte.,
approximate
likelihood
arg min L|g| — 7(x|0) —>| |

physics.aps.org/articles/v11/90

NeurlPS, arXiv:1808.00973
g

0;

Simulation Machine Learning Inference

The surrogate for the likelihood ratio used for inference

A 2-stage process:
1. learning surrogate (amortized)

2. Inference on parameters ot simulator (frequentist or Bayesian)

No Bayesian prior used for training, but one can use prior for inference.


https://physics.aps.org/articles/v11/90

Amortized likelihood ratio

Once we've learned the likelihood ratio r(x; @), we can apply it to any data x.
e unlike ABC, we pay biggest computational costs up front
e Great for calibrated frequentist confidence intervals with guaranteed coverage

e Here we repeat inference thousands of times & check asymptotic statistical theory

70 2.0

| | Exact MLEs || | Exact
60 - 'L_ Approx. MLEs [ Approx.
- - ~4=0.5 151

50 -

40 | i

30 m

20 [
0.5F

) m |
0 ﬂ | | — 0.0 |

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 1 2 3 4 5 6 7 8 9

(a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) | v = 0.05)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169
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Calibrating the likelihood-ratio trick

We can weaken the requirements for the likelihood ratio trick in case the classitier

If the scalar map s: X = R has the same level sets as the likelihood ratio

s(2; 005 01) = monotonic| p(x|6o)/p(x|61) |

We can show that an equivalent test can be made from 1-D projection

i'ISIidnla.illlllllllllllllIIIIII
Background

p(x|6o)  p(s(x;00,061)|00)

p(x|01)  p(s(x;00,01)01)

0o

n—n—n—l—'ﬁ'|||||||||||||||||||||||||||||||‘|

S

=stimating the density of s(x;80,61) with data from the simulator calibrates the ratio.

Cranmer, Louppe, Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]
[Dalmasso, Izbicki, Lee, ICML2020 arXiv:2002.10399 |
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Bayesian use of the likelihood ratio trick

Likelihood-free inference by ratio estimation

Owen Thomas*, Ritabrata Duttal, Jukka Corander*, Samuel Kaski* and Michael U.
Gutmann® 9

't reference distribution is marginal model
et (2) = [ oo | 0)p(6) a6

Then the learned ratio is proportional to
the posterior

o)~ PELO) 902

p(x) p(0)

and the prior is known

p(0 | x) = p(0)r(x;0)

Thomas et. Al, Bayesian Analysis (2020) arXiv:1611.10242

Likelihood-free MCMC with Amortized Approximate Ratio Estimators

Joeri Hermans! Volodimir Begy? Gilles Louppe !

Use of likelihood ratio in MCMC

e Metropolis-Hastings

p(0)p(x|6") Q(H/‘Ht)>
" p(0:)p(x]0:) q(6:]6")

e Hamiltonian Monte Carlo

Vor(x|0)
r(x|0)

p = min (1

Ve U(6) =

Hermans, Begy, Louppe ICML 2020,arXiv:1903.04057



https://arxiv.org/abs/1903.04057

Bayesian use of the likelihood ratio trick

Likelihood-free inference by ratio estimation

Owen Thomas*, Ritabrata Duttal, Jukka Corander*, Samuel Kaski* and Michael U.
Gutmann® 9

't reference distribution is marginal model
et (2) = [ oo | 0)p(6) a6

Then the learned ratio is proportional to
the posterior

o)~ PELO) 902

p(z) P(0) g

and the prior is known

p(0 | x) = p(0)r(x;0)

Thomas et. Al, Bayesian Analysis (2020) arXiv:1611.10242

Likelihood-free MCMC with Amortized Approximate Ratio Estimators

Joeri Hermans! Volodimir Begy? Gilles Louppe !

Use of likelihood ratio in MCMC

e Metropolis-Hastings

p(0)p(x|6") Q(H/‘Ht)>
" p(0:)p(x]0:) q(6:]6")

e Hamiltonian Monte Carlo

Vor(x|0)
r(x|0)

p = min (1

Ve U(6) =

Posterior-to-evidence ratio

Hermans, Begy, Louppe ICML 2020,arXiv:1903.04057
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From the review
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Fig. 3. Overview of different approaches to simulation-based inference.
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Conditional Density Estimation

In traditional approaches to Simulation-Based Inference, one estimates the likelihood directly:

e Forrejection ABC, the acceptance probability P(p(S, S") < €) estimates the likelihood

e |In Diggle & Gratton (1984) and particle physics, histogram or kernel density estimate p(S | 6)
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i 30— y —]
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o 25 l ATLAS Preliminary
D1. Generate 6 from (*). | - H_s720 4l channel
D2. Simulate D’ from stochastic model Mwith parameter 6,and 20— | 7
compute the corresponding statistics S’. . | $ 1T 4 Signal (m, =125 GeV) 2
D3. Calculate the distance p(S, S') between S and S’. - = e
. - + -
D4. Accept 0 if p < &, and return to DI. - b
B o 10— —
5 =
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Cranmer, Louppe (2016). DOI:10.5281/zenodo.198541

N e u r a ‘ ‘ | |< e ‘ | h O O d Papamakarios, Sterratt, Murray AISTATS 2019 [arXiv:1805.07226 |

Based on (8, x,) pairs with x, ~ p(x | 8,) estimate likelihood with a conditional density
estimator g,(x | 6)

e Cansample 8, ~ p(0) from any proposal distribution with appropriate support

e |everaging advances in normalizing flows and neural density estimation

Unifying generative models and exact likelihood-free . ... Sequential Neural Likelihood:
- . .y . - Fast Likelihood-free Inference with Autoregressive Flows
inference with conditional bijections

By Kyle Cranmer, Gilles Louppe J Brief |Ideas 2016

George Papamakarios David C. Sterratt Iain Murray
University of Edinburgh University of Edinburgh University of Edinburgh

AISTATS 2019


http://doi.org/10.5281/zenodo.198541
https://arxiv.org/abs/1805.07226

‘ - Papamakarios, Murray NeurlPS 2016 arXiv:1605.06376
Neural posterior

Based on (0, x,) pairs with 8, ~ p(0) and x, ~ p(x | 6,) estimate posterior with a
conditional density estimator g,(6 | x)

* Originally used a Mixture Density Network (MDN) to model g4(0 | x)
e More recently using advances in normalizing flows
e Posterior samples can be drawn directly from the model!

e Can also sample 6, ~ p(6) and learn as1x <2 pelx)

Fast e-free Inference of Simulation Models with
Bayesian Conditional Density Estimation

George Papamakarios Iain Murray
School of Informatics School of Informatics
University of Edinburgh University of Edinburgh
g.papamakarios@ed.ac.uk i.murray@ed.ac.uk




Active learning and sequential methods

Can we learn more efticiently for a fixed simulation budget ?

e \What if we are smart about where we run the simulator?

A
D
O
-
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Probabilistic Programming
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Sequential Methods

When the posterior concentrates signiticantly compared to

the prior, then we don't really need to estimate the

ikelihood accurately everywhere

e |nstead, want to estimate likelihood or posterior only in
the relevant regions of parameter / data space

e Motivates active learning / sequential techniques

 lteratively estimate posterior p(0 | x,), sample

0, ~p@|xy,x, ~px|8b) and then refine

Sequential Neural Likelihood Estimation [SNLE]

Sequential Neural Posterior

Sequential Neural Ratio Estimation [SNRE]

Estimation [SNPE]

e Various sequential strategies

Sequential Neural Likelihood:
Fast Likelihood-free Inference with Autoregressive Flows

George Papamakarios David C. Sterratt Iain Murray
University of Edinburgh University of Edinburgh University of Edinburgh

Automatic Posterior Transformation for Likelihood-free Inference

David S. Greenberg' Marcel Nonnenmacher! Jakob H. Macke !

Likelihood-free MCMC with Amortized Approximate Ratio Estimators

Joeri Hermans! Volodimir Begy? Gilles Louppe !

e

On Contrastive Learning for Likelihood-free Inference

Conor Durkan'! Iain Murray! George Papamakarios?

_ _ ol PO p(z)

Sequential Neural Posterior Estimation (SNPE, Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019),



N = 1000 simulations N = 5000 N = 10000
e |nstead, want to estimate likelihood or posterior only in . .
.

Sequential Methods

SNPE-A

When the posterior concentrates signiticantly compared to

the prior, then we don't really need to estimate the
ikelihood accurately everywhere

SNPE-B

the relevant regions of parameter / data space

SNL

e Motivates active learning / sequential techniques

True posterior

 lteratively estimate posterior p(0 | x,), sample ~

SMC

0, ~p@|xy),x, ~pkx|8d,) and then refine C

Sequential Neural Likelihood Estimation [SNLE]

Sequential Neural Posterior Estimation [SNPE]

APT (MDN)

Sequential Neural Ratio Estimation [SNRE]

APT (MAF)

e Various sequential strategies




sbi: A toolkit for simulation-based inference

Software

Alvaro Tejero-Cantero® !, Jan Boelts® !, Michael Deistler® ?,

Jan-Matthis Lueckmann® !, Conor Durkan® %, Pedro J. Goncalves' 3,
David S. Greenbergl' 4 and Jakob H. Mackel 5 6 The Journal of Open Source Software

mackelab/sbi
o\ Search 0 166 Stars - 35 Forks

sbi implements three powerful machine-learning methods that address this problem:

sbi Table of contents
Flome e Sequential Neural Posterior Estimation (SNPE), Motivation and approach
Installation . o . . Publications
. e Sequential Neural Likelihood Estimation (SNLE), and
Tutorials and Examples > SNPE
Contribute e Sequential Neural Ratio Estimation (SNRE). SNLE
API Ref : L : : . SNRE
slerence Depending on the characteristics of the problem, e.g. the dimensionalities of the parameter
FAd space and the observation space, one of the methods will be more suitable.
Credits

mechanistic model inconsistent sample

\

simulated data neural density estimator posterior
1 2 %@J 3

parameter 1 ms

T
3
o
=

probability

parameter 2
&
probability
mV

data or summary data l )

ms consistent sample

Goal: Algorithmically identify mechanistic models which are consistent with data.

https://www.mackelab.org/sbi/



B h |< . #3: Sequential estimation improves sample ef-
enc Mmar | N 9 ficiency. Our results show that sequential algorithms
outperform non-sequential ones (Fig. 3). The differ-
ence was small on simple tasks (i.e. linear Gaussian
cases), yet pronounced on most others. However, we

also found these methods to exhibit diminishing re-
Benchmarking Simulation-Based Inference turns as the simulation budget grows, which points to

an opportunity for future improvements.

#4: Density or ratio estimation-based al-
gorithms generally outperform classical tech-
niques. REJ-ABC and SMC-ABC were generally
outperformed by more recent techniques which use
neural networks for density- or ratio-estimation, and
which can therefore efficiently interpolate between dif-
ferent simulations (Fig. 3). Without such model-based

Jan-Matthis Lueckmann'* Jan Boelts! David S. Greenberg!-?

Pedro J. Goncalves® Jakob H. Macke!*®

Two Moons
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Single observation

When dealing with a single observation, there isa  #3: Sequential estimation improves sample of
. . ficiency. Our results Sh(.)W that Seq}lential algorit.hms
C‘ear adva ntage tO Sequenha‘ techr“ques outperform non-sequential ones (Fig. 3). The differ-

ence was small on simple tasks (i.e. linear Gaussian
cases), yet pronounced on most others. However, we
. . . . lso f h e qe e e 1 ]
e Use simulation budget in relevant regions ot also found these methods to exhibit diminishing re
turns as the simulation budget grows, which points to
an opportunity for future improvements.

parameter space

p(0] ) x [ p(0)pla.z | 0)d:
prior likelihood

p(0 | z) o< p(0) p(z | 0)
prior likelihood




1d data and amortized likelihooad

However, when dealing with iid data, there is a more advantage to learning an

amortized likelihood ratio that is accurate everywhere and can be reusead.

e More work needed to study tradeoff of sequential approaches with iid data

prior

p(0 | 1zi}) o< p(0)

prior

\

S.

s

—_

/ p(xz;, 2z | 0) dz;
N —’
joint likelihood

- amortized likelihood -



Opening the black box

Can we learn more efticiently for a fixed simulation budget?

e \What if we open the black box?

A
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O
-
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- —_ O
“ ((\Q
O ?g@
= &
E3 i°
<
- &>
a N
Traditional
Simulation-Based
Methods
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[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]

From the review
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f augmented
5 simulator ‘
X, t(X,2), r(X,z) $



https://arxiv.org/abs/1911.01429

PNAS, arXiv:1805.12244

. . . " PRL, arXiv:1805.00013
Learning the likelihood ratio e
NeurlPS, arXiv:1808.009/3

physics.aps.org/articles/v11/90

«’(//
0 ;

X%

<\ observable | (/7% -- | J
< <::\ f;.,.;_-‘f Tl 1' a: E / A.‘ 5. a pp r OXI m at e
= = likelihood

S ratio

arg min L|g] — 7(z|0) —>
) —————> 9

augmented data

0;

Simulation Machine Learning Inference

Recently, we realized we can extract more from the simulator.
We can use augmented data to improve training

Johann Brehmer Gilles Louppe


https://physics.aps.org/articles/v11/90

Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244

M i n i n 9 G O ‘ d See also Wenliang, Moskovitz, Kanagawa, Sahani, ICML2020
While implicit density is intractable — — .
p(x|0) = /dzp(x,z|6’) ::::::::::::::::::::::::::::'.:' ::i::::::::::::::::::::::::::
We can augment the simulator to calculate
some quantities conditioned on latent z, which O A AR A
are tractable: o
0154 — p(x|60)
p(x|61) R
Joint likelihood ratio: £ 0107+ x=pki0) " '
p(m, Z (9()) 0.05 - . . "_'Ll-|
r(x, z|0y,01) = (KR h.
p(x, < 91) 0.00 1eeeee-e , . . o000 ee
0 5 10 15 20 25 30
and joint score: "
Vop(z,2|0)|o
t(x. z|0p) = ! 0 = Vylogen(xz, 2|6
( ; ‘ 0) p(ZC,Z|6’O) 0 gp( ; ‘ )|90

connection to REINFORCE policy gradients



The value of golo

We can calculate the joint likelihood ratio

7q($7 Z|907 (91) =

p(ma Zdy 25y Ap (90)

p(xa Zdy 25y AP (91)

We want the likelihood ratio function

p(x

0o)

r(x|0p,01) =

p(x

01)

(“How much more likely is this simulated event, including
all intermediate states, for 8 compared to 61?")

(“How much more likely is the observation x
for 8o compared to 6,?")



The value of golo

We can calculate the joint likelihood ratio

p(ﬂf, Zdy <5y Ap 90)

—— r(x|60,91)
T 20, Ze. 2|0 ch
p( y “dy #59y AP 1) o r(x,z|6g, 61), x ~ p(x]|60 = 6p)

r(x, z|0y,01) =

r(x, z|6o, 61), x ~ p(x|6 = 61)

r(x, 2|0y, 0,)are
scattered around
7“($|(9(), (91)

r(Xe, Ze|6o, 01), r(x|6o, 61)

We want the likelihood ratio function

_ p(z|bo)
o) = )




The value of golo

We can calculate the joint likelihood ratio

p(x, 24, Zs, 2p|00) With »(x, 2|0y, 01), we define a functional like

r(x, z|0y,01) =
o zenll) 2
7(x|0g,01)] /dx /dzp x, z|01) ( (2|09, 61) — r(x, 2|0, 01)) }

It is minimized by

r(xz|0p,01) = argmin L, |7 (x|0y, 01)]
7/’\‘(£E|9(),@1)

(And we can sample from p(x, z|6) by running the simulator.)

We want the likelihood ratio function

_ p(z|6o)
TN




The value of golo

We can calculate the joint likelihood ratio

_ plax, 24, 25, 2p|60) With 7(z, 2|0y, 01 ), we define a functional like
r(x, z|0y,01) =
(e, 2a 202 l00) :
(/0. 0,) /da: /dzp:c 2161) [(#(zl80,62) — r(x. 2|60, 601))?].
It is minimized by
r(xz|0p,01) = argmin L, |7 (x|0y, 01)]
7/”\‘(£E|90,@1)
(And we can sample from p(x, z|6) by running the simulator.)
.. and then magic . ( |
. pP\&, < 6)()
L ~op(z|2 ; 0 7‘9 = | d 0
et [ 100,01) [zt 0.6 Shwrn
We want the likelihood ratio function /d p(z, z01) p(z, z|60)
7“(517‘(9(), 91) — p(a;' 90) B (13‘91) (.CIL‘,Z (91)
p(x|01) = r(x(00,01) 1



Learning the score

Similar to the joint likelihood ratio, from the
simulator we can extract the joint score

t(x,z|00) = Vglogp(x, 24, 25, 2,|0)

We want the score

t(z]0o) = Vg log p(x|0)




Learning the score

Similar to the joint likelihood ratio, from the
simulator we can extract the joint score

t(z, z|00) = Vo log p(x, zd, 25, 2p|0) Given t(x, z|0p),

we define the functional

L:[t(z|00)] = /dx/dz p(z, z|60p) [(f(xwo) — t($72|90))2]

One can show it is minimized by
t(x|0y) = arg min L.[t(x|0y)] .
t(z|6o)

Again, we implement this minimization

through machine learning.
We want the score

t(z]0o) = Vg log p(x|0)




Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244

Augmented Training Data
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Impact on Studies of The Higgs Boson

q -
W, Z
42-Dim observable x
W, Z
.-

Exciting new physics might hide here!
We parameterize it with two coefficients:

B Nwl 19 0t a4 e ra fow| 9° , .+ 0 Tiruva
L = Lou +35] 5 (D 0) 02 Do W, |75 2 (oto) Wi, W
# #

Ow Oww

J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020], CARL [arxiv:1506.02169]
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Learning the likelihood ratio

Simulation

5
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L5

@7

likelihood
ratio

augmented data

Machine Learning

MadMiner: Machine learning-based inference for particle
physics

By Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer

pypi package [0.6.3 | build 'passing J docs failing chat |on gitter || code style black _ DOI 10.5281/zenodo.1489147
arXiv 1907.10621

Introduction

Particle physics processes are usually modeled with complex Monte-Carlo simulations of the hard process, parton
shower, and detector interactions. These simulators typically do not admit a tractable likelihood function: given a
(potentially high-dimensional) set of observables, it is usually not possible to calculate the probability of these
observables for some model parameters. Particle physicisists usually tackle this problem of "likelihood-free inference" by
hand-picking a few "good" observables or summary statistics and filling histograms of them. But this conventiona

S, X approximate

0;

arg min L|g] — 7(z|0) —>
> t(z, 2|)) ———> ¢

arXiv:13805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
physics.aps.org/articles/v11/90

Inference

Dedicated software package interfacing with particle physics simulators:

github.com/johannbrehmer/madminer


https://physics.aps.org/articles/v11/90
http://github.com/johannbrehmer/madminer

Learning the likelihood ratio
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Impact on Studies of The Higgs Boson

(based on a 42-Dim observation X)
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Impact on Studies of The Higgs Boson

Massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors
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Massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors

~

31 pp— WH — (v bb C'p Profiled
L =300fb"
parameter > N\ 2 )
l observable Q | 1 i
latent 2 i = T
5 - |—7r(z, 2|0) — > —
. ’;"M:}r -' — t(:lj, z 9) > g approximate Q
augmented data likelihood
ratio
-] -
Simulation Machine Learning
_) -
a2l —— Imp. STXS

[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980] B _05 CO 05
[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621] HW



Dark Matter Substructure

Abundance of*DM subhalos vs mass:

10° 1010 101! 1012 1013 1014
M [h! Mo]

[R. Dunstangt al 1109.6291]

[T¥Brown, J.Tumlinson]
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Scalable inference for small subhalos

Future surveys (LSST, Euclid) are expected to deliver large samples of galaxy-galaxy
strong lenses coliett et al 1507.02657)
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Simulation-based inference tor strong lensing

2 parameters 6 = (5, fsub)

A

P (msub | :B ’ fsub)




Simulation-based inference tor strong lensing

Simulator

2 parameters 6 = (5, fsub)

p
K, —
I

> Latent 2
source / lens properties,
subhalo masses / positions, ...

P (msub | :B ’ fsub)




Simulation-based inference tor strong lensing

Simulator

642 observables x

y

2 parameters 6 = (3, foub)

p
K, —
I

> Latent 2
source / lens properties,
subhalo masses / positions, ...
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P (msub | :B ’ fsub)




Simulation-based inference tor strong lensing

642 observables x

2 parameters 6 = (3, foub)

A

P (msub | :B ) fsub)

Latent 2
source / lens properties,
subhalo masses / positions, ...




Simulation-based inference tor strong lensing

Simulator

642 observables x

y

2 parameters 6 = (3, foub)

p
K, —
I

> Latent 2
source / lens properties,
subhalo masses / positions, ...

\

P (msub | :B ’ fsub)

= Need inference technique that

e scalesto many lenses
e captures subtle effects in high-dimensional image data

e can deal with a large number of subhalos



Simulation-based inference tor strong lensing

Simulator

642 observables x

y

2 parameters 6 = (3, foub)

A

\

P (msub | :B ) fsub)

> Latent 2
source / lens properties,
subhalo masses / positions, ...

prior L amortized likelihood -




Posterior from amortized likelihood ratio

Watch how the posterior for two population

parameters concentrate around true value usea
to generate mock data.
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Watch how the posterior for two population
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Prob Prog for Dark Matter & Gravitational
PR

Observed image

Here we use probabilistic programming to

infer th
sub ha

e latent variables z, the details ot

o for a particular image
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Gravitational Wave Astronomy

Log likelihood-to-evidence ratio [
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Lightning-Fast Gravitational Wave Parameter
Inference through Neural Amortization

Delaunoy, Wehenkel, Hinderer, Nissanke, Weniger, Williamson, Louppe
[arXiv:2010.12931]
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Gravitational wave Black hole Spacetime

Beam Light
splitter detector

"
> )O(. Light waves cancel
e »
" l each other out

£ .m' u Light waves hit
the light detector

Log likelihood-to-evidence ratio [ logr(x|Y) € R ]

T

000000000:000000000

Multilayer perceptron

3 layers of 200 units

N

Concatenation of 19
N

Stack of
13 blocks
with dilated
Convolutional

layers
AN

Conv. layer
AN

H1/L1 strains
(2 x 8192)

oNojololoNoRoNoNO RN 0RO0NONONORONONONO,

[ 128 4-2 ]
NS

000 00000000000

Dilation 4
CogooonNOO0---00000000O0O0
Dilation 2
OCOOO0OODO0OODOOO0---0O000000000O0

Dilation 1

OO 000000000000

[ 128 x 8192 ]

MRRAHA AR ek (0 )

28] H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and
R. Murray-Smith, Bayesian parameter estimation using
conditional variational autoencoders for gravitational-
wave astronomy (2019), arXiv:1909.06296 [astro-ph.IM].

29] A. J. K. Chua and M. Vallisneri, Learning Bayesian poste-

riors with neural networks for gravitational-wave inference,
Phys. Rev. Lett. 124, 041102 (2020), arXiv:1909.05966
[gr-qc.

[30] C. Chatterjee, L. Wen, K. Vinsen, M. Kovalam, and
A. Datta, Using Deep Learning to Localize Gravita-
tional Wave Sources, Phys. Rev. D 100, 103025 (2019),
arXiv:1909.06367 [astro-ph.IM].

[31] S. R. Green, C. Simpson, and J. Gair, Gravitational-wave
parameter estimation with autoregressive neural network
flows, Phys. Rev. D 102, 104057 (2020), arXiv:2002.07656
lastro-ph.IM].

[32] S. R. Green and J. Gair, Complete parameter inference for
GW150914 using deep learning, Mach. Learn. Sci. Tech.
2, 03LTO01 (2021), arXiv:2008.03312 [astro-ph.IM].

[33] A. Delaunoy, A. Wehenkel, T. Hinderer, S. Nissanke,
C. Weniger, A. R. Williamson, and G. Louppe, Lightning-
Fast Gravitational Wave Parameter Inference through
Neural Amortization, (2020), arXiv:2010.12931 [astro-
ph.IM].

[34] P. G. Krastev, K. Gill, V. A. Villar, and E. Berger, Detec-
tion and Parameter Estimation of Gravitational Waves
from Binary Neutron-Star Mergers in Real LIGO Data

using Deep Learning, Phys. Lett. B 815, 136161 (2021),
arXiv:2012.13101 [astro-ph.IM].

[35] H. Shen, E. A. Huerta, E. O’Shea, P. Kumar, and Z. Zhao,
Statistically-informed deep learning for gravitational wave
parameter estimation, (2021), arXiv:1903.01998v3 [gr-qc].

(36] E. Cuoco, J. Powell, M. Cavaglia, K. Ackley, M. Be-
jger, C. Chatterjee, M. Coughlin, S. Coughlin, P. Easter,
R. Essick, et al., Enhancing gravitational-wave science
with machine learning, Machine Learning: Science and
Technology 2, 011002 (2020), arXiv:2005.03745 |astro-
ph.HE].

36] E. Cuoco, J. Powell, M. Cavaglia, K. Ackley, M. Be-

jger, C. Chatterjee, M. Coughlin, S. Coughlin, P. Easter,
R. Essick, et al., Enhancing gravitational-wave science
with machine learning, Machine Learning: Science and
Technology 2, 011002 (2020), arXiv:2005.03745 |astro-
ph.HE].



Gravitational Wave Astronomy

Gravitational wave Black hole Spacetime

Real-time gravitational-wave science with neural posterior estimation
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Gravitational wave Black hole Spacetime

Real-time gravitational-wave science with neural posterior estimation
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Remark / Alternative framing

e Can think of noise model as having

nuisance parameters v

e Including off-source measurement §, can

be thought of as combining likelihoods
for on-source and off-source

/ noisgnPSD / / strairclz data / / timeTjhifts / o 5 0.0) = p(d | 6. (S, )

A
1

— \

d_,, \
1
embedding :
.'

I

I

128 dims

e Joint posterior given by

pO,v|dS,) xpd,Ss,|0,v)r(0)x(v)

! : e Final posterior given by

/ normal / flow f / parameters/
U 0

p@1dsS,) = Jdvp(@, v|d,S,)



Another recent examples

e Neural ratio estimation

e Targets population-level parameters (fraction of dark matter in sub halos)

Sid Mishra-Sharma

e Feature extractor / embedding network / learned summary statistics with inductive bias (spherical CNN)

e Aimed at future Gaia data

Inferring dark matter substructure with
astrometric lensing beyond the power spectrum

Siddharth Mishra-Sharma
The NSF Al Institute for Artificial Intelligence and Fundamental Interactions
Massachusetts Institute of Technology
Harvard University
New York University
smsharma@mit.edu

[arXiv:2110.01620]
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Another recent examples

* Neural posterior estimation

* Feature extractor / emb!edding
network / learned summary statistics
with inductive bias (spherical CNN)

 Dark matter or point sources?
* Real Fermi data

 Many checks of robustness / prior
sensitivity etc.

Input map =z

Base distribution
u~ m(u) =N(u;0,1)

A neural simulation-based inference approach for characterizing

the Galactic Center y-ray excess

Siddharth Mishra-Sharmal>23:45:* and Kyle Cranmer® 6T
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MCMC-style exactness with approximate posteriors

https://arxiv.org/abs/1904.12072 https://arxiv.org/abs/2105.12603

: https://arxiv.org/abs/2107.00734 https://arxiv.org/abs/2106.05934
One can also make a hybrid

e |fg(0 | x)is the approximate posterior surrogate

e Andp(x | 0) = p(x | )z(0) is the un-normalized posterior (likelihood x prior)

e One can get "exact” samplesint

poroposal and accept/reject baseo

ne MCMC sense by using 8" ~ g(f | x) as a

O

q(0
q(0

x)p(0" | x)
x)p(0" | x)

e \ery efficient, dramatically reduced no auto-correlation time.

Flow-based generative models for Markov chain Monte Carlo in lattice field theory
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A Markov chain update scheme using a machine-learned flow-based generative model is proposed
for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained)
to produce samples from a distribution approximating the desired Boltzmann distribution deter-
mined by the lattice action of the theory being studied. Training the model systematically improves
autocorrelation times in the Markov chain, even in regions of parameter space where standard
Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated up-
dates. Moreover, the model may be trained without existing samples from the desired distribution.
The algorithm is compared with HMC and local Metropolis sampling for ¢* theory in two dimen-
sions.
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MACHINE LEARNING

Boltzmann generators: Sampling
equilibrium states of many-body
systems with deep learning

Frank Noé*T, Simon Olsson*, Jonas Kohler*, Hao Wu

INTRODUCTION: Statistical mechanics aims
to compute the average behavior of physical
systems on the basis of their microscopic con-
stituents. For example, what is the probability
that a protein will be folded at a given tem-
perature? If we could answer such questions
efficiently, then we could not only comprehend
the workings of molecules and materials, but
we could also design drug molecules and ma-
terials with new properties in a principled way.

To this end, we need to compute statistics
of the equilibrium states of many-body sys-
tems. In the protein-folding example, this means
to consider each of the astronomically many
ways to place all protein atoms in space, to
compute the probability of each such

Because of the invertibility, every latent space
sample can be back-transformed to a system
configuration with high Boltzmann probability
(Fig. 1). We then employ statistical mechanics,
which offers a rich set of tools for reweight-
ing the distribution generated by the neural
network to the Boltzmann distribution.

RESULTS: Boltzmann generators can be
trained to directly generate independent sam-
ples of low-energy structures of condensed-
matter systems and protein molecules. When
initialized with a few structures from differ-
ent metastable states, Boltzmann generators
can generate statistically independent sam-

ples from these states and efficiently

113 3 . 9 . °qs . .
configuration” in the equilibrium | re—— compute the free-energy differences

ensemble, and then to compare the

between them. This capability could

total probability of unfolded and Read the full article  be used to compute relative stabil-

folded configurations.

As enumeration of all configura-
tions is infeasible, one instead must
attempt to sample them from their
equilibrium distribution. However, we cur-
rently have no way to generate equilibrium
samples of many-body systems in “one shot.”
The main approach is thus to start with one
configuration, e.g., the folded protein state, and
make tiny changes to it over time, e.g., by using
Markov-chain Monte Carlo or molecular dy-
namics (MD). However, these simulations get
trapped in metastable (long-lived) states: For
example, sampling a single folding or unfold-
ing event with atomistic MD may take a year
on a supercomputer.

RATIONALE: Here, we combine deep machine
learning and statistical mechanics to develop
Boltzmann generators. Boltzmann generators
are trained on the energy function of a many-
body system and learn to provide unbiased,
one-shot samples from its equilibrium state.
This is achieved by training an invertible neural
network to learn a coordinate transformation
from a system’s configurations to a so-called
latent space representation, in which the low-
energy configurations of different states are
close to each other and can be easily sampled.

Noé et al., Science 365, 1001 (2019) 6 September 2019

at http://dx.doi.
org/10.1126/
science.aawll47

ities between different experimental
structures of protein or other organic
molecules, which is currently a very
challenging problem. Boltzmann
generators can also learn a notion of “re-
action coordinates”: Simple linear interpola-
tions between points in latent space have a
high probability of corresponding to phys-
ically realistic, low-energy transition path-
ways. Finally, by using established sampling
methods such as Metropolis Monte Carlo in
the latent space variables, Boltzmann gener-
ators can discover new states and gradually
explore state space.

CONCLUSION: Boltzmann generators can
overcome rare event-sampling problems in
many-body systems by learning to generate
unbiased equilibrium samples from differ-
ent metastable states in one shot. They
differ conceptually from established enhanced
sampling methods, as no reaction coordi-
nates are needed to drive them between
metastable states. However, by applying ex-
isting sampling methods in the latent spaces
learned by Boltzmann generators, a plethora
of new opportunities opens up to design
efficient sampling methods for many-body
systems.
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Boltzmann generators overcome sampling
problems between long-lived states. The
Boltzmann generator works as follows: 1. We
sample from a simple (e.g., Gaussian)
distribution. 2. An invertible deep neural
network is trained to transform this simple
distribution to a distribution px(x) that is
similar to the desired Boltzmann distribution
of the system of interest. 3. To compute
thermodynamics quantities, the samples are
reweighted to the Boltzmann distribution
using statistical mechanics methods.
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Insight of data generating process
informs inductive bias on architecture



Conclusions

Simulation-based inference is a great ftit for gravitational wave astronomy
e Amortized inference has many advantages

* There are possibilities for hybrids where fast inference with surrogate is
calibrated with more forward simulations or used to accelerate MCMC

The product of inference doesn’t need to be samples from the posterior

e \With NPE you can actually convey and evaluate the posterior p(@ | x)

e |t you want to do population level inference, it may be better to isolate
individual terms the likelihood (avoid double counting the prior)

e You can skip explicit inference of latents associated to individual objects
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