

LIGO Noise Properties

The data consists of both a noise contribution and an astrophysical component

$$\tilde{d}(f) = \tilde{n}(f) + \tilde{h}(\boldsymbol{\theta}; f)$$
noise astrophysical contribution

• The noise is typically assumed to be stationary and Gaussian and is characterized by the power spectral density (PSD)

$$\langle \tilde{n}^*(f_i)\tilde{n}(f_j)\rangle = \frac{T}{4}S_n(f)\delta_{ij}$$

• T is the segment duration, PSD has units of [1/Hz]

LIGO Noise Properties

• For well-behaved noise in the absence of a signal, the real and imaginary parts of the strain each follow a zero-mean Gaussian distribution with variance: $TS_n(f_i)$

 unit normal 0.40 data 0.35 0.30 strain [1/VHz] 0.25 0.20 0.15 0.10 0.05 f [Hz] Biscoveanu GWAWS3

The Gravitational-Wave Likelihood

• The residual is the difference between the data and the signal template:

 $\tilde{r}(\boldsymbol{\theta}; f_i) = \tilde{d}(f_i) - \tilde{h}(\boldsymbol{\theta}; f_i)$

• In the presence of a signal, the real and imaginary parts of the residual should also be Gaussian-distributed:

$$p(\Re \tilde{d}(f_i)|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(\Re \tilde{r}(\boldsymbol{\theta}; f_i))^2}{2\sigma_i^2}\right)$$

$$p(\Im \tilde{d}(f_i)|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(\Im \tilde{r}(\boldsymbol{\theta}; f_i))^2}{2\sigma_i^2}\right)$$

Biscoveanu GWAWS3

The Gravitational-Wave Likelihood

• The PSD (and some normalization factors) is the variance of the likelihood:

$$\sigma_i^2 = \frac{TS_n(f_i)}{4}$$

• The total likelihood of the data is the product of the real and imaginary likelihoods:

$$\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}) \equiv p(\Re \tilde{d}(f_i)|\boldsymbol{\theta}) p(\Im \tilde{d}(f_i)|\boldsymbol{\theta})$$

The Whittle Likelihood

• The final form of the likelihood used in gravitational-wave data analysis is the Whittle Likelihood:

Tysis is the Whittle Likelihood:
$$\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}) = \frac{2}{T\pi S_n(f_i)} \exp\left(-\frac{2|\tilde{d}(f_i) - \tilde{h}(\boldsymbol{\theta}; f_i)|^2}{T S_n(f_i)}\right)$$

$$\mathcal{L}(d|\boldsymbol{\theta}) = \prod_{i} \mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta})$$

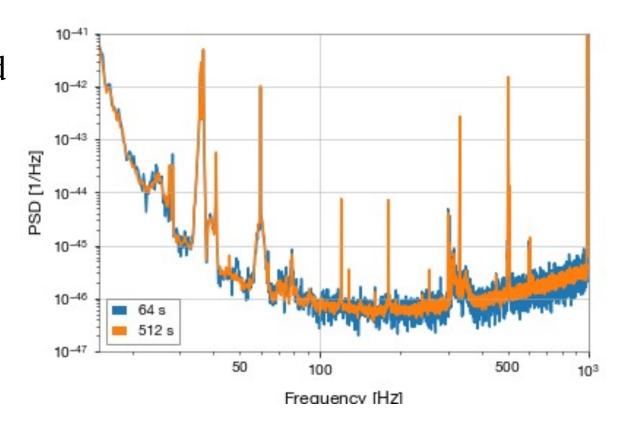
- So far we have assumed that the true PSD, $S_n(f_i)$, is known.
- We can only get an uncertain *estimate* of the true PSD, typically calculated using one of two methods.

Biscoveanu GWAWS3

Calculating the PSD – Off-source

Off-source method

- Also called the periodogram method or Welch method
- Use a long stretch of data either before or after but always excluding the analysis segment
- Split the data into short segments and calculate $|\tilde{d}(f_i)|^2$ for each segment after windowing the data
- Take the median or mean of the periodograms from each short data segment



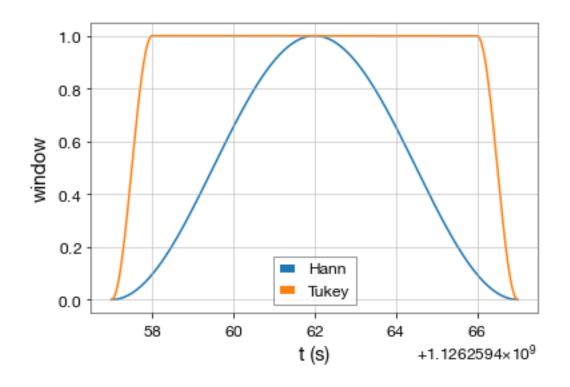
Off-Source Method

- Two corrections need to be applied:
 - Window factor to correct for power lost to window, w_t :

$$W = \frac{1}{N_t} \sum_{t=0}^{N_t - 1} w_t^2$$

• Median correction, where ℓ is the segment index for odd number of segments

segments
$$\alpha = \sum_{\ell=1}^{N_s} \frac{(-1)^{\ell+1}}{\ell}$$



Uncertainty in the PSD – Off source

• Define a normalized periodogram for a single segment, Q_{ℓ} :

$$Q_{\ell} = 4|\tilde{d}_{\ell}(f_i)|^2/TS_n(f_i)$$

- Q_{ℓ} is the quadrature sum of two independent standard normal random variables (the normalized real and imaginary parts of the data)
- Probability of Q_ℓ given by the Chi-squared distribution with two degrees of freedom
- Want to know the probability of the true PSD given the estimated PSD, $\pi(S_n(f_i)|\widehat{S}_i)$

Off source uncertainty – single segment

• If we were to take the periodogram of a single segment as the estimator of the true PSD, $\widehat{S}_i = Q_\ell S_n(f_i) = 4 |\widetilde{d}(f_i)|^2 / T$

$$Q \equiv \hat{S}_i/S_n(f_i)$$
 Jacobian $\pi(S_n(f_i)|\hat{S}_i) = \pi(Q|\hat{S}_i)|dQ/dS_n(f_i)|$ $= \chi_2^2(Q)\hat{S}_i/S_n^2(f_i)$

Biscoveanu GWAWS3

Off source uncertainty – mean

• Now define the estimator of the true PSD to be the mean of the periodograms across several segments:

$$\hat{S}_{i} = \frac{1}{N_{\ell}} \sum_{\ell}^{N_{\ell}} \frac{4|\tilde{d}_{\ell}(f_{i})|^{2}}{T} = \frac{S_{n}(f_{i})}{N_{\ell}} \sum_{\ell}^{N_{\ell}} Q_{\ell}$$

• Now the probability of QN_{ℓ} is a Chi-squared distribution with $2N_{\ell}$ degrees of freedom, so

$$\pi(S_n(f_i)|\hat{S}_i) = \chi^2_{2N_{\ell}}(QN_{\ell})N_{\ell}\hat{S}_i/S_n^2(f_i)$$

Biscoveanu GWAWS3

Off source uncertainty – median

- The mean is known to be an unstable estimator of the PSD for gravitational-wave data because it is more sensitive to outliers
- Typically use the median instead:

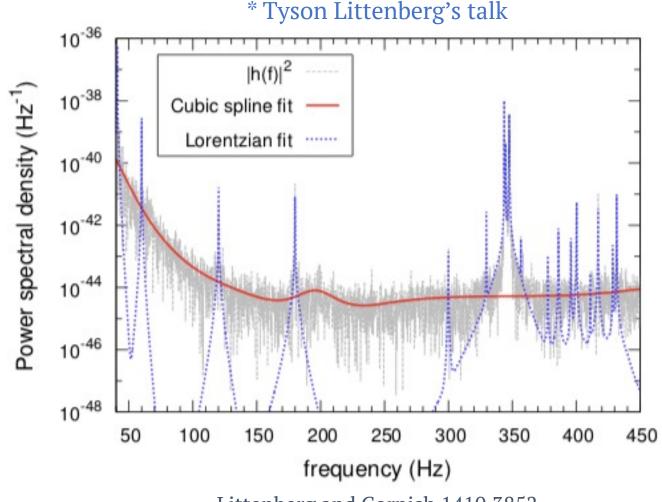
$$\hat{S}_i = \frac{S_n(f_i)}{\alpha} \operatorname{median}(Q_\ell)$$

• If the number of segments is odd, use order statistics to obtain $\pi(S_n(f_i)|\widehat{S}_i)$ from the known distribution for a single segment, $\pi(Q_\ell|\widehat{S}_i)$ – Chi-squared with 2 degrees of freedom

Calculating the PSD – On-source

On-source method

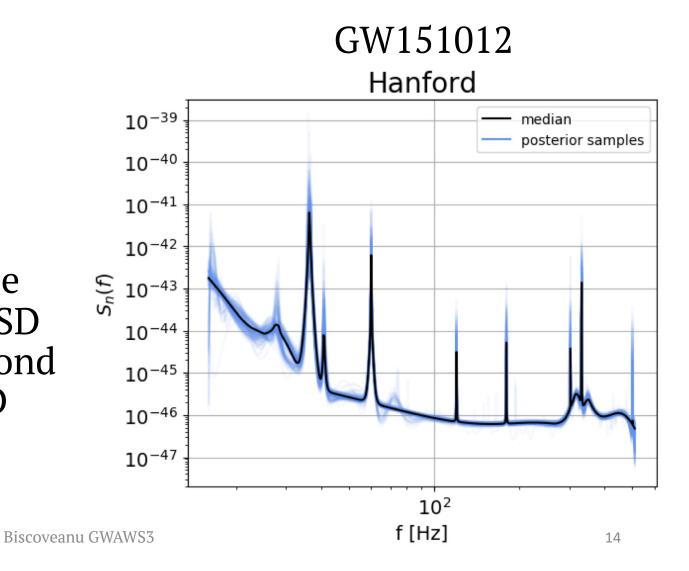
- Model the PSD as a sum of a broadband spline and narrowband Lorentzians using the BayesLine algorithm
- Using only the data from the analysis segment, infer the spline and Lorentzian parameters that best characterize the PSD
- Requires significantly less data
 → more likely that it will be stationary and Gaussian over a shorter period of time



Littenberg and Cornish 1410.3852

On-source uncertainty

- For each of the posterior samples on the spline and Lorentzian parameters, construct a posterior PSD
- Typically ignore the uncertainty and just choose the median, but the true PSD is equally likely to correspond to any of the posterior PSD curves



Alternative parameterization

- Hybrid between on-source and off-source approaches, developed in Littenberg+ 1307.8195, Veitch+ 1409.7215
- Add scale parameters multiplying the off-source PSD estimate at fixed, logarithmically-spaced frequency points spanning N_j frequency bins

$$S_n(f_i) \to \eta_j \hat{S}_i, \ i_j < i \le i_{j+1}$$

- Prior on η_j is a normal distribution with mean 1 and variance $1/N_j$
- Recover mean off-source uncertainty in the limit that there is one scale parameter per frequency bin and the Gaussian prior is replaced by Chi-squared distribution

PSD marginalization

 Include the PSD as a parameter in the likelihood and marginalize over it:

$$\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}, \hat{S}_i) = \int dS_n(f_i) \mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}, S_n(f_i)) \pi(S_n(f_i)|\hat{S}_i)$$

• Alternatively if you already have a posterior on the PSD:

$$p(oldsymbol{ heta}| ilde{d}(f_i)) = \int p(oldsymbol{ heta}, S_n(f_i)| ilde{d}(f_i)) dS_n(f_i)$$
 $= \int p(oldsymbol{ heta}| ilde{d}(f_i), S_n(f_i)) p(S_n(f_i)| ilde{d}(f_i)) dS_n(f_i)$
Biscoveanu GWAWS3

The Student-Rayleigh Distribution

- Analytically marginalize the Whittle likelihood over the uncertainty for the mean off-source PSD
 - Student-Rayleigh Distribution (Röver+ 0804.3853, Röver 1109.0442)
 - Student-t distribution with $2N_{\ell}$ degrees of freedom, like a Gaussian but with heavier tails

$$\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}, \hat{S}_i) = \frac{2}{T\pi\hat{S}_i} \left[1 + \frac{2|\tilde{d}(f_i) - \tilde{h}(\boldsymbol{\theta}; f_i)|^2}{TN_\ell \hat{S}_i} \right]^{-(1+N_\ell)}$$

The median-marginalized distribution

• Analytically marginalize over the uncertainty in the median PSD estimate given by the median order statistic assuming you have $m = (N_{\ell} - 1)/2$ measurements less than Q and m measurements greater than Q (Talbot and Thrane 2006.05292):

$$\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}, \hat{S}_i) = \sum_{k=0}^{m} {m \choose k} \frac{2(-1)^k}{T\pi \hat{S}_i} \frac{\left(m + k + 1 + \frac{2|\tilde{d}(f_i) - \tilde{h}(\boldsymbol{\theta}; f_i)|^2}{\alpha T \hat{S}_i}\right)^{-2}}{B(m+1, m+1)}$$

B is the Beta function

The on-source-marginalized distribution

 Perform a Monte Carlo integral over the PSD posteriors (Biscoveanu+ 2004.05149):

$$p(\boldsymbol{\theta}|\tilde{d}(f_i)) = \int p(\boldsymbol{\theta}|\tilde{d}(f_i), S_n(f_i)) p(S_n(f_i)|\tilde{d}(f_i)) dS_n(f_i)$$

$$= \frac{1}{N_j} \sum_{j} p(\boldsymbol{\theta}|\tilde{d}(f_i), S_{n,j}(f_i))$$
 • The PSD-marginalized posterior on the binary parameters is the combination of an equal number of posterior samples

obtained using each posterior PSD

Caveats

- All approaches to marginalization still assume the data used to calculate the PSD estimator or posterior are stationary and Gaussian
- Analytic off-source marginalization:
 - Requires a longer stretch of data to calculate \widehat{S}_i
 - Does not incorporate off-diagonal elements of the frequency-domain noise covariance matrix due to i.e. windows
 - Does not incorporate cross-power between detectors in the joint likelihood
- Numerical on-source marginalization:
 - Requires obtaining posterior samples on the binary parameters independently for hundreds of PSDs
 - Cannot obtain PSD-marginalized evidence estimate using the current outputs of Bayeswave

Aside: likelihood reweighting

• Use likelihood reweighting to obtain posterior samples and evidences under the marginalized likelihoods at a reduced computational cost (Payne+ 1905.05477)

Weights

$$w(\boldsymbol{\theta}) = \frac{\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}, \mathcal{H}_1)}{\mathcal{L}(\tilde{d}(f_i)|\boldsymbol{\theta}, \mathcal{H}_0)}$$
 "Target" likelihood "Proposal" likelihood

Evidence

$$\mathcal{Z}(\mathcal{H}_1) = \mathcal{Z}(\mathcal{H}_0) \sum_{i}^{\boldsymbol{\theta_i} \sim p(\boldsymbol{\theta} | \tilde{d}(f_i), \mathcal{H}_0)} w(\boldsymbol{\theta_i})$$

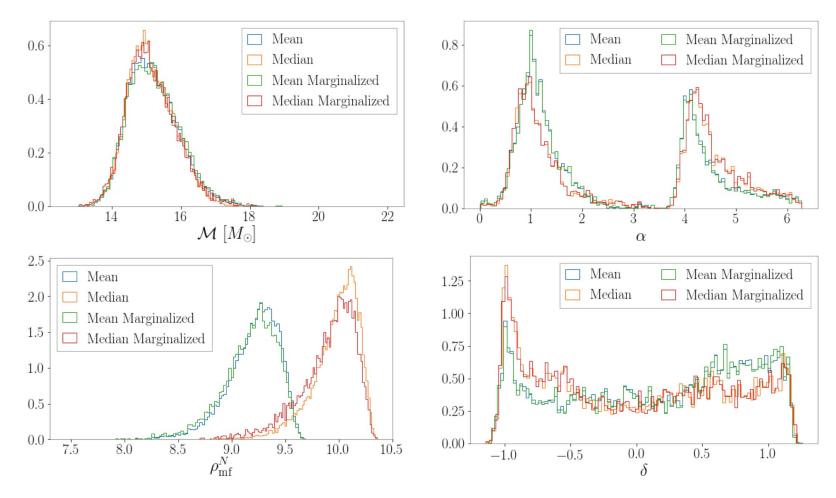
Posterior

$$p(\boldsymbol{\theta}|\tilde{d}(f_i), \mathcal{H}_1) = \frac{w(\boldsymbol{\theta})}{\sum_i w(\boldsymbol{\theta})} p(\boldsymbol{\theta}|\tilde{d}(f_i), \mathcal{H}_0)$$

Posterior comparison – off-source

PSD	Marg vs no marg
Mean	19.26
Median	91.67

Natural log bayes factors show strong preference for marginalized likelihood!



GW151012 results from Talbot and Thrane 2006.05292

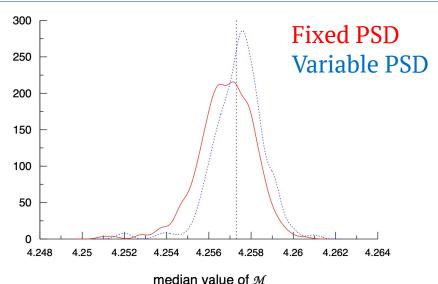
Biscoveanu GWAWS3

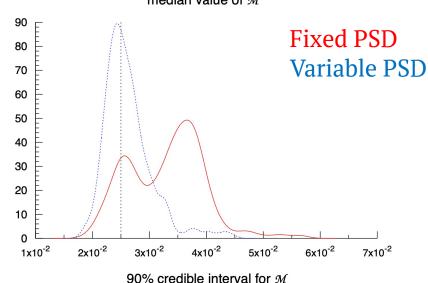
22

Posterior comparison – hybrid approach

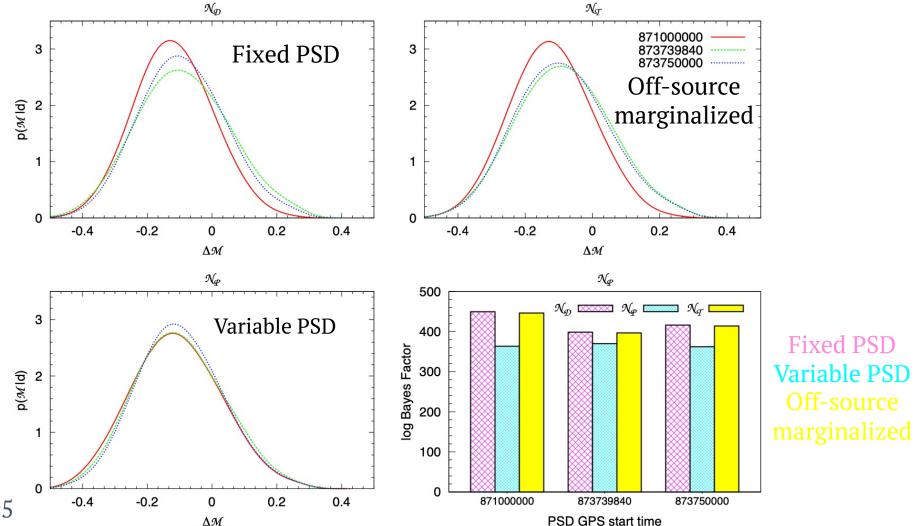
- Perform parameter estimation on the same compact binary signal using 300 different PSDs estimated from different segments of real initial LIGO data
- Compare the distributions of the medians and 90% credible intervals for the chirp mass with and without PSD marginalization

Littenberg+ 1307.8195

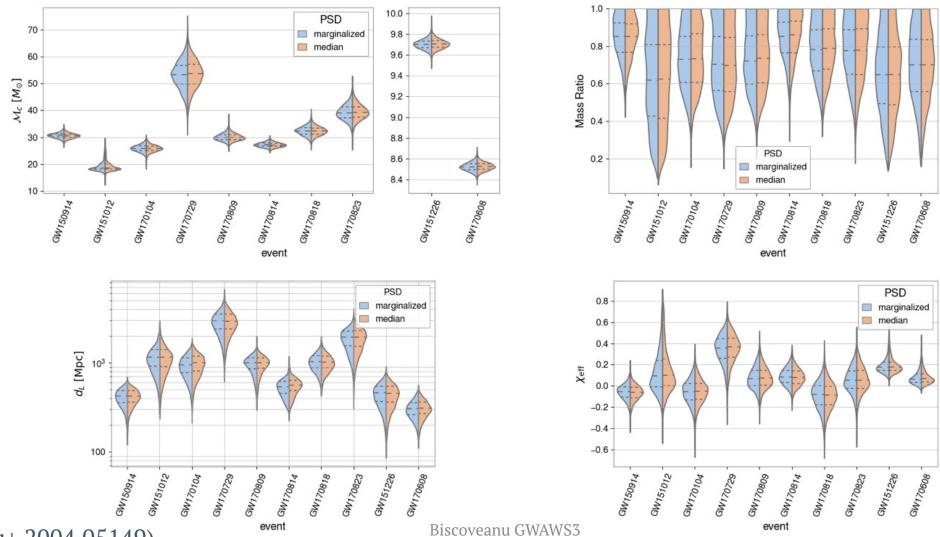




Posterior comparison - hybrid approach



Posterior comparison – on-source



(Biscoveanu+ 2004.05149)

Posterior comparison – on-source

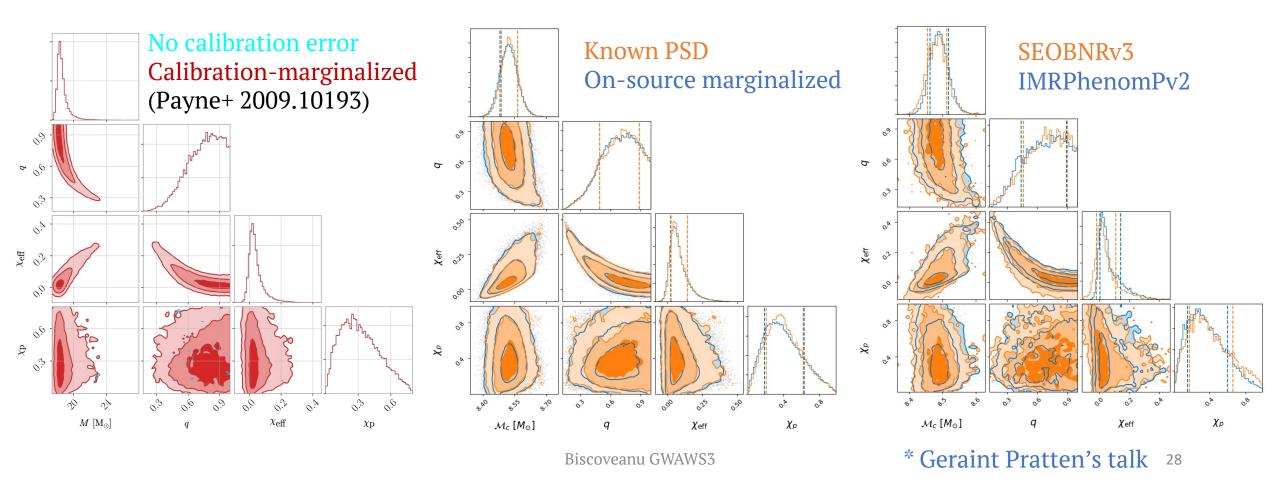
- Change in the width of the 90% credible interval is on the order of 10%
- Posterior variation does not depend on SNR of signal
- Larger variation than when marginalizing over the offsource uncertainty

Event	$\Delta\Omega_{50}~(\%)$	$\Delta\Omega_{90}~(\%)$	$\Delta\Omega_{90}~({ m deg}^2)$
GW150914	13.7	12.3	21
GW151012	1.5	-1.1	-20
GW151226	-9.6	-6.7	-93
GW170104	15.3	7.5	77
GW170608	-12.0	1.9	8
GW170729	19.0	10.4	136
GW170809	-12.1	2.9	9
GW170814	0	-18.6	-24
GW170817	28.6	25.9	7
GW170818	11.1	6.5	2
GW170823	2.9	-0.9	-14

(Biscoveanu+ 2004.05149)

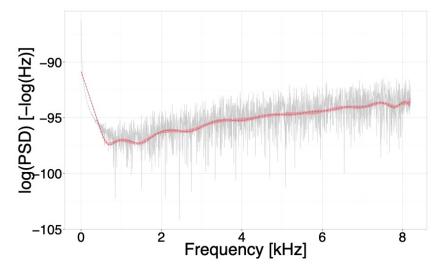
Comparison with other systematics

Ex: GW170608

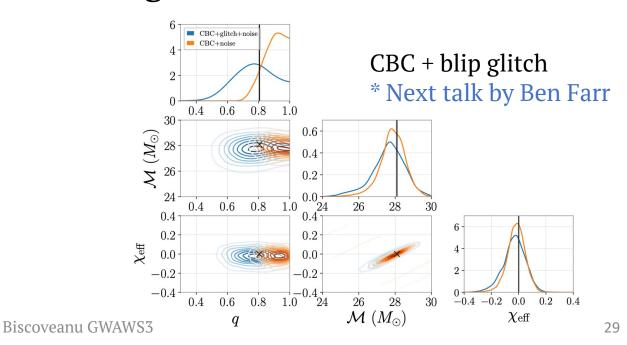


Alternative approaches – simultaneous fit

- Edwards+ 1506.00185 use a nonparametric Bernstein polynomial prior on the PSD
 - On-source method that does not require assumption of stationary, gaussian noise



Chatziioannou+
 2101.01200 modify the
 BayesWave algorithm to fit
 PSD, CBC signal, and
 glitches all at once

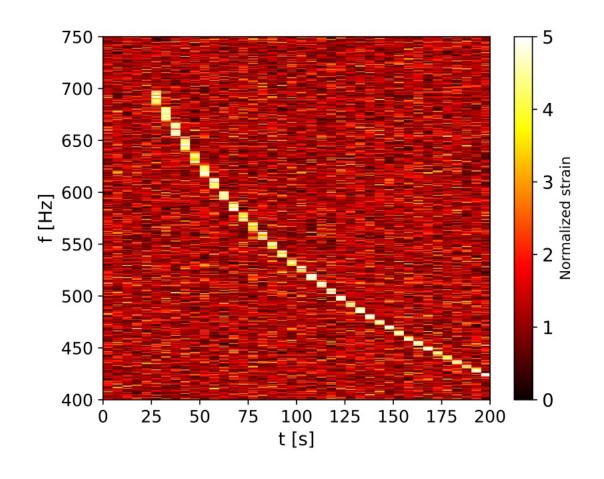


Applications

- We have seen that with three different methods for marginalizing over the uncertainty in the PSD, the effect on the binary parameter posteriors is small, ~10%
- The Bayes factors seem to be more sensitive to the particular noise model chosen for the off-source and hybrid marginalization approaches
- Incorporating the uncertainty is the PSD is required for analyses that stack bayes factors for individual events or for analyses of individual long-duration transients

Ex: BNS postmerger signal

- Banagiri+ 1909.01934 demonstrate a method to search for longduration BNS postmerger signals from a spinning-down millisecond magnetar using time-frequency maps
- Likelihood is a function of both the time and frequency indices
- Find a bias in the recovered model parameters when not accounting for the uncertainty in the PSD using the Student-t likelihood



Ex: Bayesian Coherence Ratio

- BCI Bayes factor between a coherent signal in multiple detectors vs incoherent BCI = glitches (Veitch and Vecchio 0911.3820)
- Bayes Coherence Ratio (BCR) odds comparing the coherent signal hypothesis to the incoherent signal or Gaussian noise hypotheses (Isi+ 1803.09783)

Signal evidence

$$BCI = \frac{\mathcal{Z}(\mathcal{S})}{\mathcal{Z}(\mathcal{G}_1)\mathcal{Z}(\mathcal{G}_2)}$$

Individual glitch evidences

$$BCR = \frac{\text{Prior signal odds} \ \hat{\pi}(\mathcal{S})\mathcal{Z}(\mathcal{S})}{\prod_{i=1,2} \hat{\pi}(\mathcal{G}_i)\mathcal{Z}(\mathcal{G}_i) + (1 - \hat{\pi}(\mathcal{G}_i))\mathcal{Z}(\mathcal{N})}$$

Prior glitch odds

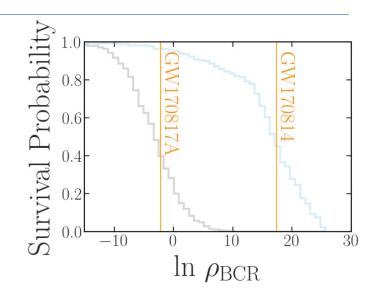
Noise evidence

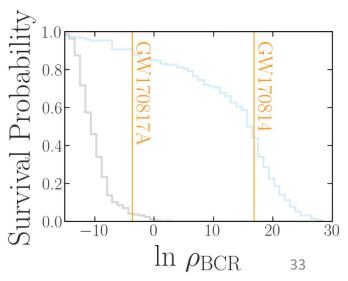
Ex: Bayes Coherence Ratio

- Vajpeyi+ 2107.12109
 present a search for
 intermediate-mass black
 hole signals in data from
 LIGO's third observing run
 using the BCR as a ranking
 statistic
- Tune the prior signal and glitch odds to separate the background and foreground BCR distributions

Known PSD

Off-source marginalized





Ex: Astrophysical odds

• Infer the signal and glitch prior odds using Bayesian inference (Ashton+ 1909.11872, Ashton and Thrane 2006.05039)

$$\mathcal{O}_{N_j}^{S_j} pprox rac{\text{``Duty cycle''} o \langle \xi
angle \mathcal{Z}_j(\mathcal{S})}{\int \mathcal{Z}_j(\mathcal{NG}, \Lambda_{\mathcal{NG}}) \pi(\Lambda_{\mathcal{NG}} | d_{j
eq k}) d\Lambda_{\mathcal{NG}}}$$

Noise model is a mixture model of Gaussian noise and glitch in one or both detectors

Noise model hyper-parameters including distribution of glitch "masses" and "spins" and glitch rate

Ex: Astrophysical odds

- Ashton and Thrane 2006.05039 calculate the astrophysical odds of three candidate signals from LIGO's first observing run
- Find that ignoring PSD uncertainty produces false positive signals with odds > 1 in time-slid data

Known PSD

Event	GstLAL	PyCBC	1-OGC	2-OGC	IAS	$\langle \xi \rangle$	$\hat{\xi}_g^{\scriptscriptstyle \mathrm{H}}$	$\hat{oldsymbol{\xi}}_g^{\scriptscriptstyle extsf{L}}$	$\ln B_{ m S/N}^G$	$\ln B_{\rm S/N}$	$\ln B_{\rm coh,inc}$	ln BCR	ln O	$1-p_{\rm astro}$
GW150914	$< 10^{-3}$	$< 10^{-3}$	$< 8 \times 10^{-4}$	$< 10^{-3}$	_	7.4×10^{-4}	0.0094	0.013	307	205	12.5	14.3	16.2	9×10^{-8}
GW151012	0.001	0.04	0.024	$< 10^{-3}$	-	7.4×10^{-4}	0.031	0.021	28.2	13.2	9.63	5.64	5.74	0.003
GW151216	_	-	0.997	0.82	0.29	7.4×10^{-4}	0.022	0.016	12.7	3.70	3.10	-3.53	-3.50	0.97

Off-source marginalized

Ex: Non-gaussian stochastic background

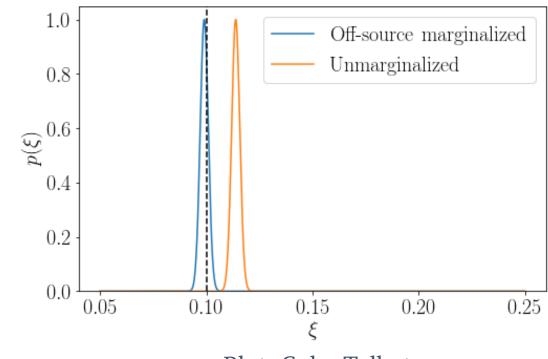
• Estimate the fraction of segments that contain a signal ("duty cycle", ξ) by performing Bayesian parameter estimation on each segment of data (Smith and Thrane 1712.00688)

$$\mathcal{L}(\lbrace d \rbrace | \xi) = \prod_{j} (\xi \mathcal{Z}_{j}(\mathcal{S}) + (1 - \xi) \mathcal{Z}_{j}(\mathcal{N}))$$

• The statistically optimal method to search for a background of BBH mergers, which occur every ~200 seconds in the universe

Ex: Non-gaussian stochastic background

- Need accurate evidence estimates to be sensitive to the weakest signals
- Bias in the recovered duty cycle without using PSD marginalization
- Also need to account for offdiagonal elements of the PSD covariance matrix when applied to windowed data



Summary

- Two main methods for calculating and marginalizing over the uncertainty in the PSD
 - Off-source, analytic marginalization
 - On-source, numerical marginalization
- Variation in the posterior on the order of 10%, bayes factors more sensitive
- Cannot neglect this effect when analyzing:
 - Long signals with time-frequency maps
 - An ensemble of data segments to determine Bayesian-based significance or signal probability

Uncertainty in the PSD – Off source

- Reminder: the real and imaginary parts of the data in a given segment are individual zero-mean Gaussian random variables with $\sigma_i^2 = TS_n(f_i)/4$
- The off-source PSD is constructed by averaging the periodogram across several segments

$$|\tilde{d}_{\ell}(f_i)|^2 = \Re \tilde{d}_{\ell}(f_i)^2 + \Im \tilde{d}_{\ell}(f_i)^2$$

• Define a normalized periodogram for a single segment, Q_{ℓ} :

$$Q_{\ell} = 4|\tilde{d}_{\ell}(f_i)|^2/TS_n(f_i)$$

Bayesian Model Selection

Bayes factor: evidence ratio

$$BF_N^S = \frac{\mathcal{Z}_S}{\mathcal{Z}_N}$$

Odds ratio: bayes factor weighted by prior odds

$$\mathcal{O}_N^S = \mathrm{BF}_N^S \frac{\pi(S)}{\pi(N)}$$