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Tracking a continuous gravitational-wave signal
with a hidden Markov model
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Gravitational waves are directly observed

LIGO Hanford

Credit: NASA/Dana Berry, Sky Works Digital

3 km (Virgo/KAGRA))



The first detection of a binary black hole merger -—- GW150914

Credit: Caltech/MIT/LIGO Lab

Credit: SXS
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The first multi-messenger event
—— binary neutron star merger GW170817
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All the compact binary mergers detected so far

I\/Iasses IN the Stellar Graveyard
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Other sources of gravitational waves

seconds | | years




Continuous waves from neutron stars

e Non-axisymmetric deformation due to elastic stresses or magnetic field

e Signal is weak but persistent
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Continuous waves from neutron stars

* Free precession around the rotation axis

/
of

| fGW ™~ frotation -+ fprecession

fGW ™~ 2frotation =+ 2fprecessiom

N

Credit: M. Kramer
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Continuous waves from neutron stars

* r-modes, long-lasting oscillations in the fluid that makes up most of the star
—— a fluid wave travelling around the star and driven by the Coriolis force due
to rotation (see Rossby waves)
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Continuous waves from neutron stars

e Deformation due to matter accretion in the binary system

e Accretion is a natural
method of powering
GW emission

e Torque-balance theory
—— accretion spins the
star up; GW emission
slows it down

e Signal frequency might
be wandering slightly

due to accretion

Credit: Mark Myers, OzGrav-Swinburne
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What can we learn from continuous waves?

Interior structure of neutron star

Neutron star properties, e.g., mass,
spin, ellipticity

Nuclear equation of state
May discover exotic states of matter

Multi-messenger studies, e.g., mass

and magnetic field structure inferred
from GW/EM relative phase

Testing General Relativity

.and so on

A NEUTRON STAR SURFACE and INTERIOR
A ‘ '

CORE:

Homogeneous
Matter

ATMOSPHERE
ENVELOPE
CRUST
OUTER CORE
INNER CORE

Polar cap

. Cone of open
_ magnetic
. field

Neutron Superfluic =2 Fi J
Neutron Superfluid + A_}Fﬁ/
Neutron Vortex  Proton Superconductor

/ Neutron Vortex ) /

http://www.astro.umd.edu/~miller/nstar.html
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Continuous waves from boson clouds

e Beyond Standard Model theories predict the existence of new ultralight boson
particles (e.g., QCD axion, string axion) — dark matter candidates

o Ultralight boson fields around Kerr BHs can extract the BH's rotational energy

through Superradiance

e Superradiant instability —— when Compton wavelength ~ BH size, a macroscopic

cloud could form

Continuous quasi-

monochromatic signals |

3 GWs

Brito, Cardoso, Pani (2015)

e What can we learn? — Probe a parameter space that is inaccessible by

conventional particle physics experiments; may detect new particles
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Long-transient gravitational waves

. Time-scale could be in betwe

| the transient and long traditional |

en |

search regimes (~seconds to

days).

— mmmemeny  lOng-transient G |
seconds

[
|

| » Newly born supernova remnants |
|  Glitching pulsars |

‘® Accreting objects

° ... etc.
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Post-merger signal from a binary neutron star merger




Different types of searches

Targeted

Directed

All-sky

known sky position,
ephemeris available

known sky position,
unknown frequency

unknown sky position,
unknown frequency

known pulsars

NSs in supernova remnants,
and low-mass x-ray binaries;
boson clouds around known BHs

any possible signal from any
position and any kind of sources

least expensive

intermediate

most expensive
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Difficulties in the searches for these waves

e Long-duration integration —— computationally expensive

e Large parameter space

» Unknown frequency range

» Large frequency evolution rate

e Unknown spin-wandering

» Spin-wandering has been seen in electromagnetic observations
» Fluctuation of magnetospheric or superfluid torques
» Fluctuation of accretion torque

» Cannot integrate over a long duration coherently

e Uncertainty in signal models

» Uncertainty in the theories

» Minor features not taken into account in simplified signal models
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Bayes’ theorem
X = {ZIZ(), L1y, ZEN} Observational data sequence

"y HM) Vector parameter, e.g., f, f, .

|

| .
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Posterior probability distribution
& Bayes’s theorem

The evidence —— a normalisation factor
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Maximum a posteriori (MAP) estimate

X:{CE(),Q?l,"‘ 7:EN}

0 = (017027”' 79M)

The maximum a posteriori (MAP) estimator
maximises the posterior probability

D>

= arg max p(0|X)
0;

tmap

' ® For detection, we also need some

—

statistics |

to evaluate the significance, e.qg., setting a

21



System, state, tracking

e The system we consider here:
= [t evolves; we know something about the dynamics

= |\\/e can measure it at intervals over time

e State —— Possible configuration of the system

‘New product adoption diagram

o We track the state of a system 0%,
Iv_nndva'tors Yea Q8
@ |
15 g5 .| Saturation [4] 997,
[ Potential | f—
adopters . Ne ters
Saturation Iiaicrs Word of mouth
From wikipedia: Dynamic stock and flow diagram __
of model New product adoption (model from s U |, .
article by John Sterman 2001) | Probability
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The uncertainties

e We cannot know the exact state of a system in most situations

e Uncertainties may come from:

= Dynamic evolution

= \leasurement at each time interval

J

e Calculate the posterior probability and capture the uncertainty in
the tracking
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Hidden Markov Model

| a: hidden | ————— ]
| path | I Hidden states: q1, g2, g3 ..
W U Observable states: 01, 05, 03 .

Emission Transition
Probability Probability

(Qlo) LO(tNT)q(tNT)Aq(tNT)q(tNT 1)
X Lo(t)a(t) Aq(tr)a(to)Na(to)

Hidden
States

e Problem: to find the
maximum a posteriori (MAP)
hidden path given an
observation sequence

States

Observat:on

Sequence |
W 24



Applications

® Speech recognition/synthesis
e Part-of-speech tagging

* Machine translation

e Handwriting recognition

* Music signal processing

e Cryptanalysis

* Financial modelling

® Target tracking models

® radar and sonar analysis

* mobile telephony

* Protein folding

e Single-molecule kinetic analysis
* Metamorphic virus detection

e Bioinformatics
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How to efficiently solve the HMM problem

e Viterbi algorithm [Viterbi (1967)] — a dynamic programming
algorithm to efficiently find the maximum a posteriori (MAP) path
given an observation sequence

e Bellman'’s principle of optimality [Bellman (1957)] — given the
optimal path of states from the first step to the last, then any subpath
is also optimal. It is the key idea of dynamic programming to
recursively solve a complex optimization problem in stages.
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Bellman'’s principle of optimality

e Given the optimal path of states [q*(1),---,q*(i),~,q*(j),-,q*(k)],
any subpath [g*(i), - - -, g*(j)] must also be optimal.
San Francisco
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The Viterbi algorithm

o At every forward step t > 1 in recursion, Viterbi eliminates all but Ngq
possible state paths (the MAP path leading to each end state at each
step; in total Ng hidden states).

e At the termination, find the optimal path among the Nq¢ MAP paths.
Then backtrack the optimal path from the end.
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Viterbi algorithm and the optimal path
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Credit: S. Suvorova
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How does Viterbi work —— Dynamic programming

Frequency bin

Step1  Step 2 Step 3 Step 4 ... Step N

* Number of path comparison: Nq x 3Nstep Py Nq X 3 X Nstep
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Tracking example
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Applications in GW analysis

—— look for continuous waves from neutron stars

%107

, leed frequency W/th sp/n Wander/ng

Frequency minus f, (Hz)

—2.0F ------------------ ------------------- ---------------- - —— Signal path
Suvorcbva+ 20?76 —: Optlmél Vlterbzl path
-2.5 ; a ; ; i ; ;
0 50 100 150 200 250 300 350

Time (days)

** These are synthetic signals injected into simulated noise.

400

e E———— 1

!

* A neutron star in accreting
binary system is spinning at
a stabilised frequency.

® There is spin-wandering
effect due to the fluctuation
in the accretion torque.
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Applications in GW analysis

—— look for continuous waves from neutron stars
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** These are synthetic signals injected into simulated noise.

| Spin-down signal with i

wandering |

e An isolated neutron staris
spinning down due to the
loss of energy.

e There is also small random
fluctuation on top of the
secular spin down.
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Applications in GW analysis
—— look for continuous waves from ultralight boson clouds

N O
==
=)
Z | Spin-up signal with spin wandering |
) _5 e = —— e e = =
Isi+ 2019
6-
5 e Theories predict signals with
T 4 increasing frequencies.
-
X . . .
- ® The signal might not strictly
5
= 2] follow a power law due to,
| . . .
— e.qg., particle self-interaction,
Injected signal path unpredicted features, etc.
01 Optimal Viterbi path
2 4 6 8 10

Step (Tt = 8 days)
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Applications in GW analysis
—— look for long-transient waves from BNS merger remnants

. Arapidly spinning-down signal }i

L A _ R

: . , i
: R |

* For example, if a millisecond

N ______________________________________________ ________________________________________ magnetar IS formed after the

800L N\ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA _ }:1005, n=2.5 merger/ It SplnS dOW” Very

; —— 7=100s, n=7 quickly.

600L N e - —— 7=1000s, n=2.5 | |
——  7=1000s, n=7

4001 —  7=10000s, n=2.5| |

Lasky+, 2017 r=10000s, n =7 of the frequency evolution.
200 ; i i
0 500 1000 1500 2000

* There are many possibilities
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Applications in GW analysis
—— look for long-transient waves from BNS merger remnants
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150

100
Step (T = 15)

50 200

e Can efficiently find the
most likely signal path
(max power along a
physical path)

e Also robust against
transient noise

This method has been
widely applied to |

many long-duration/

continuous wave

searches, including
the analyses in the
latest observing run.
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Summary

e There are many other smart
algorithms used in the
continuous wave searches.

No detections yet for
continuous/long-duration
gravitational waves, but start to
probe interesting physical
regions

With advanced signal
processing and data analysis
techniques and further
improved detectors, new
discovery is at the door!

Image: virtulearn
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