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“Accelerated gravitational-wave parameter estimation with reduced order modeling”
(PRL, 2015)

Rory Smith, SF, Kent Blackburn, Carl-Johan Haster, Michael Purrer, Vivien
Raymond, Patricia Schmidt, “Fast and Accurate Inference on Gravitational Waves
from Precessing Compact Binaries” (PRD 94, 044031, 2016)

Harbir Antil, Dangxing Chen, SF, “A Note on QR-Based Model Reduction:
Algorithm, Software, and Gravitational Wave Applications” (IEEE Computing in
Science & Engineering, 2018)

Jeroen Meidam, et al. “Parametrized tests of the strong-field dynamics of general
relativity using gravitational wave signals from coalescing binary black holes: Fast
likelihood calculations and sensitivity of the method” (PRD 2018).

Rory Smith, et al. “Bayesian inference for gravitational waves from binary neutron
star mergers in third-generation observatories Authors” (PRL 2021)
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Gravitational wave datasets

In absence of GWs the distance between two mirrors is L (≈ 4Km)

GW h(t) causes small, time-dependent ∆L change in length:
h(t) ∝ ∆L

L ≤ 10−20

Time series data recorded as

d(ti ) = h(ti ) + n(ti ) ,

Here, d is the data, h is the
gravitational-wave signal, and n is
the detector noise.

Scott Field Fast likelihoods with ROQs



Introduction ROQs GW applications

Once a gravitational wave signal has been observed...

Parameter inference: what kind of binary black hole system genereated this
signal (masses, spins, sky location, etc...)
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Bayesian inference of GW datasets

Assume general relativity correctly models our GW signal hGR(t;µ).

µ is a (15 dimensional) parameter vector

d is the dataset d = detector noise + gw signal

P(µ | d , hGR) = probability of µ given observation d and model hGR

Inference problem for GWs (Bayes’ theorem)

Having measured d and assuming hGR, compute

P(µ | d , hGR) =
P(d | µ, hGR)P(µ | hGR)

P(d | hGR)

The prior distribution is constrained by general relativity and informed by
astrophysics
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The prior distribution is constrained by general relativity and informed by
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Posterior
probability

Prior probability

Likelihood function

Evidence
(normalization)

Scott Field Fast likelihoods with ROQs



Introduction ROQs GW applications

The likelihood function

Let the dataset be given by

d(fk) = h(fk ;µ) + n(fk)

at frequencies fk = f1 + (k − 1)∆f with k = 1, . . . ,N.

The likelihood function, assuming a Gaussian noise model

P(d | µ, hGR) ∝ exp

(
−1

2

N∑
k=1

|d(fk)− hµ(fk)|2

σ2
k

)

where the variance σk (power spectral density) is determined experimentally
from the noise n(fk)
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Likelihood computations are too slow

Parameter estimation cost is dominated by
N∑

k=1

[d(fk)− hµ(fk)]2

σ2
k

Cost will quickly escalate

If evaluation at a single parameter and frequency value takes ∼ 10−6s

Long BNS signals will have N = 4096 ∗ 64

Notice the cost scales linearly with N

A typical parameter estimation study has ≈ 106 likelihood evaluations

Implies 3 days of runtime!! (if done sequentially)
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Parameter estimation challenges

1 Bayesian inference: The analysis
ranges from frustratingly slow to
prohibitively slow

2 Closed-form models: many days to
> 100 years (BNS with 3G)

3 ODE models: 1 months to impossible

4 PDE models: cannot do this directly
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Approaches to faster PE (non-exhaustive list)

Make the waveform model faster: surrogate models, feed-forward
network models, Phenom* family

Make the sampling faster: parallelized nested sampling (pBilby),
scalable inference (Dan Foreman-Mackey’s talk)

Likelihood-free methods: neural networks with normalizing flows
(Stephen Green’s talk)

Make the likelihood evaluation faster: Heterodyned Likelihood/relative
binning, multi-band interpolation, reduced-order quadratures

Use better hardware: ILE/RIFT (GPU-acceleration), pBilby
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Reduced-order quadratures (ROQs) in use

ROQs have been used in many of the LVK’s gravitational-wave parameter
estimation studies. For example:

GW170817: observation of gravitational waves from a binary neutron
star inspiral

GW170104: observation of a 50-solar-mass binary black hole
coalescence at redshift 0.2

GW170814: a three-detector observation of gravitational waves from a
binary black hole coalescence

Benefits/Observations

The first results are produced with the ROQ-accelerated code
(low-latency)

No issues with non-Gaussian and/or large noise sources (other than
likelihood assumption)

Already available in LALInference, Bilby, parallel Bilby

We’ll come back to the drawbacks later
Scott Field Fast likelihoods with ROQs
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Numerical integration (quadrature)

Formulas for numerical integration of a function, f (t), can be written as∫
f (t)dt ≈

N∑
k=1

ωk f (tk)

and the error is

EN =

∣∣∣∣∣
∫

f (t)dt −
N∑

k=1

ωk f (tk)

∣∣∣∣∣
Quadrature rule is defined by a set of weights, ωk , and points, tk .

Scott Field Fast likelihoods with ROQs



Introduction ROQs GW applications Setup Basis functions Integration nodes Full assembly

Numerical integration (quadrature)

EN =

∣∣∣∣∣
∫

f (t)dt −
N∑

k=1

ωk f (tk)

∣∣∣∣∣

Examples
Low-order Riemann sum: ωk = ∆t, tk = 0,∆t, 2∆t, ...

EN ∝ N−1 ...need to take N large for accuracy
High-order Gaussian quadrature: ωk and tk have special values

For smooth functions, converges exponentially to the true value
EN ∝ exp(−N) ...small N is still very accurate
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Do I need a low-order quadrature rule for noisy data?

Define a weighted inner product between vectors f , g ∈ CN as

〈f , g〉 :=
N∑

k=1

1

σ2
k

fkg
∗
k .

Then

N∑
k=1

[d(fk)− hµ(fk)]2

σ2
k

= 〈d − hµ, d − hµ〉 = 〈d , d〉+ 〈hµ, hµ〉 − 2<〈d , hµ〉

Observations

This is a low-order quadrature rule for computing inner products

Since h is a smooth function, if we were free to choose the nodes and
ignore d , we would have selected a high-order quadrature rule for the
last two terms
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Do I need a low-order quadrature for noisy data? A: No

〈d − hµ, d − hµ〉 = 〈d , d〉+ 〈hµ, hµ〉 − 2<〈d , hµ〉

〈d , d〉 computed once – the dataset is fixed

Build Gaussian quadrature like-rules for 〈hµ, hµ〉 and 〈d , hµ〉
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Goal: 〈d , hµ〉 = ∆f
N∑
i=1

d(fi )h
∗
µ(fi )

σ2
i

≈
n∑

i=1

ωih
∗
µ(Fi ) = 〈d , hµ〉ROQ

Data-specific weights, ωi , which depend on the dataset, d , and
properties of the detector noise σ2

i

Model-specific quadrature nodes {Fi}ni=1 selected as a subset of {fi}Ni=1

N is a property of the experiment whereas n is a property of the model

Model’s approximation properties are independent of data, n� N.

We refer to this dimensionally reduced quadrature as a reduced order
quadrature (ROQ) rule.
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Problem Formulation

Parametrized Model

Let
F := {hµ : Ω→ C | µ ∈ P}

be a set of functions where Ω, P denote the physical and parameter domains.

Example: hµ is some GW model, P are masses/spins for BBH systems,
Ω = [20, 4096]Hz.

ROQ roadmap

1 (Offline) Find an n-dimensional approximation space “Xn ≈ F”

2 (Offline) Find n points for accurate and stable integration in Xn

3 (Start-up) When data is known compute quadrature weights {ωi}ni=1

4 (Online) Use new integration rule {fi ,∆f }Ni=1 → {Fi , ωi}ni=1
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Step 1: Compressing the model

Seek a representation of the gravitational wave model

hµ(f ) ≈
n∑

i=1

ci (µ)ei (f )

for n as small as possible

Sometimes referred to as a reduced order model for a special choice of ei

Whats special about the basis ei ???

Application-specific basis

Fewer basis → faster computations

Optimality: What is the best n-dimensional space Xn for this
representation? Then we will choose our basis as ei ∈ Xn
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Best approximation space Xn

hµ(f ) ≈
n∑

i=1

ci (µ)ei (f ) ∈ Xn

Kolmogorov n-width of F

dn(F) := min
dimXn≤n

max
hµ∈F

∥∥∥∥∥hµ −
n∑

i=1

ci (µ)ei (f )

∥∥∥∥∥
measures error of the best n-dimensional space Xn approximating F

Bottleneck: Solving the n-width problem for Xn is in general not possible.
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Theorem (Binev+ 2011, DeVore+ 2012)

If the Kolmogorov n-width decays exponentially (or with polynomial order)
so does the greedy approximation error σn(F)

dn(F) ≤ Ce−c0nα → σn(F) ≤
√

2Ce−c1nα

where C, c0, α, and c1 := 2−1−2αc0 are positive constants.

Remarks

Xn found through greedy algorithm nearly optimal compared to best
space

If we define an N-by-K matrix A = [hµ1(f), . . . , hµK
(f)] the greedy

selects n columns from A which serve as a low-rank approximation

Scott Field Fast likelihoods with ROQs



Introduction ROQs GW applications Setup Basis functions Integration nodes Full assembly

Example basis generation

Effective one body (Pan et al., 2011)

(2,2) mode for q ∈ [1, 2],
duration ≈ 12, 000M

Fast decay of approximation (overlap)
error

maxq ‖hq −
∑m

i=1 ci (q)ei‖2

Other evidence

Observed across models, regimes

Observed by groups using POD/SVD

Cannon et al (PRD 044025)
M. Pürrer (arXiv:1402.4146)
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Waveform compression application (ex: q ∼ 1.2040)

Ortho.
Basis

Approx:

0 2000 4000 6000 8000 10000 12000 14000
−1.5
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−0.5

0

0.5

1

1.5

2

t/M

Basis #2
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h(t) ≈ c1e1(t) + c2e2(t)

(a) 2 term, err ∼ 1
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(b) 4 term, err ∼ 10−1
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(c) 6 term, err ∼ 10−6
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Summary of step 1

We use a greedy algorithm to find a nearly optimal n-dimensional space Xn,
whose basis are ei ∈ Xn. We can represent gravitational waves as

hµ(f ) ≈
n∑

i=1

ci (µ)ei (f )

and the aproximation error is

∣∣∣∣∣hµ(f )−
n∑

i=1

ci (µ)ei (f )

∣∣∣∣∣ ≤ σn
where σn is computable, and for smooth models σn ∝ e−n. On to step 2.
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Where are the good points for integrating in Xn?

Find interpolation nodes, derive an interpolatory quadrature rule

In data analysis applications points cannot be freely drawn from Ω

Naively selected points do not guarantee
1 The interpolation problem is well-conditioned or even has a solution
2 The interpolation error is small

Scott Field Fast likelihoods with ROQs



Introduction ROQs GW applications Setup Basis functions Integration nodes Full assembly

Empirical interpolation method1

Input: n basis {ei (f )}ni=1

Output: Nearly optimal selection of n times {Fi}ni=1

These times are adapted to the problem/basis - unlike Chebyshev nodes

Sequential selection of points: {F1} → {F1,F2} → . . .

Algorithm

Set of points {Fj}i−1
j=1 for interpolation with the first i − 1 basis

To find Fi

Fi = argmaxf

∣∣∣∣∣∣ei (f )−
i−1∑
j=1

ei (Fj)êj(f )

∣∣∣∣∣∣
1Barrault 2004, Maday 2009, Chaturantabut 2009, Sorensen 2009
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Example: Points for polynomial interpolation

Basis are normalized polynomials defined on [−1, 1]

P0(x) =
1√
2

P1(x) =

√
3

2
x

P2(x) =

√
5

8

(
3x2 − 1

)
...

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

legendre polynomials

x
P

 (
x)

n

P₀(x)
P₁(x)
P₂(x)
P₃(x)
P₄(x)
P₅(x)

the six first legendre polynomials http://upload.wikimedia.org/wikipedia/commons/c/c8/Legen...

1 of 1 11/18/2013 11:20 AM

Q: Where are the “good” interpolation points?
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Example: Points for polynomial interpolation

Basis:

P0(x) =
1√
2

Residual:

P0(x)− 0 =
1√
2

Point selection (no
preference):

x = 0 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
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Example: Points for polynomial interpolation

Basis:

P1(x) =

√
3

2
x

Residual:

P1(x)− c0P0 =

√
3

2
x

Point selection (either ±1):

x = −1
−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

 

 
P1

P1 - c0P0
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Example: Points for polynomial interpolation

Basis:

P2(x) =

√
5

8

(
3x2 − 1

)
Residual:

P2(x)− (c0P0 + c1P1)

Point selection:

x = 1
−1 −0.5 0 0.5 1

−1

0

1

2

3

4

5

 

 
P2

P2 - c0P0 - c1P1
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Example: Points for polynomial interpolation/integration

Continue the process until # points = # basis. First 24 points for 24
polynomial basis...

1.0 0.5 0.0 0.5 1.0
x

0.00

0.05

0.10

0.15

0.20

w
ei

gh
ts

 ω

Legendre
ROQ

1.0 0.5 0.0 0.5 1.0
x

Chebyshev nodes

EIM nodes

Distribution and approximation error properties similar to Chebyshev nodes
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Interpolant = basis + points

Using the n points {Fi}ni=1 and basis {ei}ni=1, any hµ can be written as

In[hµ](f ) =
n∑

i=1

hµ(Fk)êi (f )

where n� N (N= data’s length)
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The ROQ approximation

The ROQ rule is completed as follows:

〈d , hµ〉 = ∆f
N∑
i=1

d∗(fi )hµ(fi )

σ2
i (fi )

≈ ∆f
N∑
i=1

d∗(fi )In[hµ](fi )

σ2
i (fi )

=
n∑

i=1

ωihµ(Fi ) = 〈d , hµ〉ROQ

Empirical interpolant

where the data-specific weights ω comprise a startup cost.

Error bounds [SF+, J. of Scientific Computing]

Given the greedy approximation error σn(F) and Λn = |||In|||2

|〈d , hµ〉 − 〈d , hµ〉ROQ| < σn(F)Λn‖d‖‖hµ‖

For smooth GW models, convergence exponentially fast with n
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Offline: Decide on...

GW model,

Detector settings (sampling rate, flow, fmax),

Parameter domain.

Compute basis + integration nodes and save to file

Online: Assemble data-specific reduced-order quadrature rule fast likelihood
evaluations. This requires the computation of the ROQ weights.
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Online: Assemble data-specific reduced-order quadrature rule fast likelihood
evaluations. This requires the computation of the ROQ weights.
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ROQ catalog

Models

IMRPhenomPv2 (Smith+ PRD 94 2016)
IMRPhenomPv2 with non-GR deviations (Meidam+ PRD 2018)
IMRPhenomPv2 NRTidalv2 (unpublished)
SEOBNRv2 ROM DoubleSpin (unpublished)
LackeyTidal2013 SEOBNRv2 ROM (unpublished)
SEOBNRv4T surrogate (unpublished)

Detectors

Current ground-based detectors LIGO, Virgo, KAGRA
Preliminary look at BNS signals with future detectors CE and ET
(Smith+ PRL 2021)

Future/ongoing work

IMRPhenomXPHM, beyond-GR extensions of the Phenom families,
SEOBNRv4HM ROM SEOBNRv4HM NRTidalv2 NSBHv2
Carl-Johan Haster, Michael Pürrer, Rory Smith, and others
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Using ROQs

LALInference

Bilby

Parallel Bilby

Example ROQ dataset (basis + nodes):
https://git.ligo.org/lscsoft/ROQ_data

Scott Field Fast likelihoods with ROQs
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Building ROQs

Greedy and EI methods have nice theoretical and computational properties2

Figure: Time to complete 100 basis (n),
for Training set = 100 ∗ cores. Cores are
increased from 32 to 32, 768, with the
largest matrix having 3, 276, 800
columns. Machine: BlueWaters.

Faster and parallelizes easier than,
say, singular value decomposition

Under-the-hood: Fast EIM algorithm
(Field+ 2013) and iterative modified
Gram-Schmidt (Hoffmann 1989)

Automated ROQ building, validation,
enrichment, and exports ROQ rule
for LALInference and Bilby

(Alternative) Python code (Qi and
Raymond):
github.com/qihongcat/PyROQ

(Alternative)
LALInferenceGenerateROQ

2https://bitbucket.org/sfield83/greedycpp/
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Example with PhenomPv2 (Smith et al PRD 2016)

PhenomPv2 (Hannam, Schmidt, et al. PRL 2014):

An IMR signal of precessing binary black holes

Models precession by rotating the waveforms of an aligned-spin model
PhenomD (“twist up” approach)

Includes mode content for (2, {±2,±1, 0})
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Offline (data independent): basis and ROQ points

Decide on a suitable range of parameter values, run greedy and EIM

Sample in chirp mass, mass ratio,
and spin-related parameters

Training set size:
642 × 85 = 134, 217, 728
waveforms (terabytes in memory)

Used XSEDE supercomputers
and parallelized greedycpp code
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Figure: Greedy error and empirical
interpolant (ROQ) nodes
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Offline (data independent): validation

Out-of-sample validation of the
basis and empirical interpolant
(basis + nodes)

ROQ error is essentially empirical
interpolant’s error
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Figure: Out-of-sample errors
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Startup: a signal has been detected!

Compute the data-dependent weights:

~ω T = ~E TV−1

Ej = ∆f
N∑
i=1

d∗(fi )ej(fi )

σ2
i

where V is the interpolation matrix.
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Sample distribution p (µ|s), where the likelihood P(s|µ) uses a standard or ROQ

m1 m2 d |S1| |S2|
ROQ 28.7229.90

25.74 21.5024.16
19.45 269.5493.3

165.9 0.69600.8771
0.1643 0.44660.841

0.05357

Full 28.7229.90
25.74 21.5024.16

19.45 269.5493.3
165.9 0.69600.8771

0.1643 0.44660.841
0.05357

Consistent values are a code
sanity test: Due to error
estimates we are guaranteed
accuracy.
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How much faster?

Figure: Annotated with the time (in hours) to compute 2× 107 ROQ (Full)
likelihood evaluations
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Accelerating tests of GR

Figure: ROQ training set. Original basis for
IMRPhenomPv2 (triangles) is extended in the
additional parameter dimension for non-GR
deviations. (Meidam, et al. PRD 2018)

ROQs for non-GR deviation
of IMRPhenomPv2

A different ROQ for each of
the 15 GR testing parameters

Inference of testing
parameters with and without
ROQs are consistent

Speedup factors from 3 (high
mass) to 130 (low mass)
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BNS events with third-generation observatories

Figure: Posteriors for component masses and
component tidal deformabilities computed
with ROQ (Smith, et al. PRL 2021)

Cosmic Explorer and Einstein
Telescope

IMRPhenomPv2 NRTidalv2

BNS event at SNR = 2400

fmin = 5Hz, fmax = 2048
Hz, duration = 90 min

Takes 10 hours on 10 nodes,
16-cores/node (uses parallel
Bilby and dynesty nested
sampler)

Without ROQ, would take
(10 hours)(104)≈ 11 years
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Summary

Fast inference essential for keeping pace with detectors

A model and data specific quadrature rule was developed

Works out-of-the-box for higher harmonic modes, complicated models,
unknown “best fit parameters”

Error bounds are rigorous and computable

Production codes like greedycpp for ROQ building

Accelerated parameter estimation studies by factors of 2 to 104

For 3G detectors, hours/days vs tens/hundreds years (estimated).

Available in production codes LALInference, Bilby, parallel Bilby

Outlook/limitations/wish list

Automate building ROQs for newest models? (Key practical limitation)

Can more compact quadrature rules be found?

Can similar strategies be applied to work with time-domain models?
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Experiment 1: Comparison to Gaussian quadrature

Continuum

x ∈ [−1, 1] and weight W (x) = 1

Discrete quadrature

24-point Gaussian quadrature

Reduced order quadrature

24 ROQ basis: Legendre polynomials, no greedy algorithm used

24 ROQ points: Subset of 1000 equidistant points sampling the basis
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Point and weight distribution
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Top: Weight ωk and node {xi} distributions for each 24-point rule
Bottom: Quadrature node locations only
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Conditioning of quadrature

Negative weights can lead to poorly conditioned quadrature

n-point ROQ rule for n ∈ [2, 200]
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k=1 |ωk | for ROQ (blue) and GQ (red) rules
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