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We will consider inverse problems for non-linear wave equations, e.g.
∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)2 = f (t, y).

(Loading talkmovie2.mp4)

We will show that:

-Non-linearity helps to solve

the inverse problem,

-“Scattering” from

the interacting

wave packets

determines the

structure of the spacetime.
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Inverse problem with passive observations
Passive imaging problem: There is a large number of point sources
in a subset U of a spacetime M. The light from these point sources
are observed in a set V . Do these observations determine the
structure of the space time in U?

We will show: Let the sets V and U be as in the figure below.
Assume that U contains a dense set of point sources qj , j ∈ Z+.
We observe the intersections of the light cones emanating from the
points qj and the set V so that the light coming from different
sources can be separated (i.e. the sources qj have different
spectra). Then we can reconstruct the set U as a differentiable
manifold and the metric g |U up to a scalar factor.

Inverse problem with passive observations

Next will formulate rigorously formulate the following result:

We do observations in a subset V of spacetime M.
The set U ⊂ M is unknown. U is as in the figure below.

Assume that U contains a dense set of point sources qj , j ∈ Z+.

If we observe in the set V the light coming from the every point qj ,
then we can determine the set U as a manifold.

Also, we can determine the metric g |U up to a scalar factor.
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Definitions
Let (M, g) be a Lorentzian manifold,

γx ,ξ(t) is a geodesic with the initial point (x , ξ)

ξ ∈ TxM is time-like if g(ξ, ξ) < 0,

ξ ∈ TxM is light-like if g(ξ, ξ) = 0, ξ 6= 0.

L+x M ⊂ TxM is the future light cone.

J+(p) = {x ∈ M| x is in causal future of p},
J−(p) = {x ∈ M| x is in causal past of p}.

(M, g) is globally hyperbolic if

there are no closed causal curves and the set

J+(p1) ∩ J−(p2) is compact for all p1, p2 ∈ M.

Then M can be represented as M = R× N.



More definitions
Let A ⊂ Rm be open and µa : (−1, 1)→ M, a ∈ A be a family of
time-like geodesics such that V =

⋃
a∈A µa(−1, 1) is open.

We consider observations in V . Let p−, p+ ∈ µa0 .

Let U ⊂ J−(p+) \ J−(p−) be an open, relatively compact set.

The observation time function Fq : A→ R for a point q ∈ U is

Fq(a) = inf{s ∈ R ; there is a future-directed light-like
geodesic from q to µa(s)}

Inverse problem with passive observations

Next will formulate rigorously formulate the following result:

We do observations in a subset V of spacetime M.
The set U ⊂ M is unknown. U is as in the figure below.

Assume that U contains a dense set of point sources qj , j ∈ Z+.

If we observe in the set V the light coming from the every point qj ,
then we can determine the set U as a manifold.

Also, we can determine the metric g |U up to a scalar factor.
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Theorem (Kurylev-L.-Uhlmann 2018)
Let (M, g) be a globally hyperbolic Lorentzian manifold of dimension n � 3.
Assume that µa(�1, 1) ⇢ M, a 2 A ⇢ Rk are time-like curves, V =

S
a2A µa is open,

and p1, p2 2 µa0 .
Let U ⇢ J�(p2) \ J�(p1) be a relatively compact open set.
Then (V , g |V ), µa, and the collection of the observation time functions,

{ Fq 2 C (A) | q 2 U}

determine the set U, up to a change of coordinates, and the conformal class of the
metric g in U.
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Theorem (Kurylev-L.-Uhlmann)
Let (M, g) be an open, globally hyperbolic Lorentzian manifold of
dimension n � 3. Assume that µa(�1, 1) ⇢ M, a 2 A ⇢ Rm are
time-like geodesic, V = [a2A µa is open, and p�, p+ 2 µa0 .
Let U ⇢ J�(p+) \ J�(p�) be a relatively compact open set.
Then (V , g |V ) and the collection of the light observation functions,

FU =

�
Fq : A ! R

���� q 2 U
�

,

determine the set U, up to a change of coordinates, and the
conformal class of the metric g in U.
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Theorem (Kurylev-L.-Uhlmann 2018 (Arxiv 2014))
Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension n ≥ 3. Assume that µa(−1, 1) ⊂ M, a ∈ A ⊂ Rm are
time-like geodesics, V = ∪a∈A µa is open, and p−, p+ ∈ µa0 .
Let U ⊂ J−(p+) \ J−(p−) be a relatively compact open set.
Then (V , g |V ) and the collection of the observation time functions,

FU =

{
Fq : A→ R

∣∣∣∣ q ∈ U

}
⊂ C (A),

determine the set U, up to a change of coordinates, and the
conformal class of the metric g in U.

Inverse problem with passive observations

Next will formulate rigorously formulate the following result:

We do observations in a subset V of spacetime M.
The set U ⊂ M is unknown. U is as in the figure below.

Assume that U contains a dense set of point sources qj , j ∈ Z+.

If we observe in the set V the light coming from the every point qj ,
then we can determine the set U as a manifold.

Also, we can determine the metric g |U up to a scalar factor.
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Some results for hyperbolic inverse problems for linear equations:
I Nachman-Sylvester-Uhlmann 1988: Inverse problem for ∆ + q.
I Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a

Riemannian manifold with a time-indepedent metric.
The used unique continuation fails for non-real-analytic
time-depending coefficients (Alinhac 1983).

I Eskin 2017: Wave equation with a time-depending metric that
is real-analytic in the time variable.

I Helin-L.-Oksanen 2012: Combining several measurements for
together for the wave equation.



Theorem (Kurylev-L.-Uhlmann ’18, L.-Uhlmann-Wang ’17)
Let (M, g) be a globally hyperbolic Lorentzian manifold,
dim(M) = 4, m ≥ 2, µ ⊂ M be a time-like curve, p1, p2 ∈ µ and V
be a neighbourhood of µ. Let LV : f 7→ u|V be the
source-to-solution map for

�gu + um = f in (−∞,T )× N ⊂ M,

u = 0 in t = x0 < 0.

LV is defined for small sources f , supp(f ) ⊂ V . Then V and LV
determine the manifold J+(p1) ∩ J−(p2) and the conformal class of
g on it. If m 6= 3, the metric tensor g can be determined.

Theorem (Kurylev-L.-Uhlmann 2015)
Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1 + 3). Let µ be a time-like path containing p− and
p+, V ⊂ M be a neighborhood of µ, and a(x) be a nowhere
vanishing function. Consider the non-linear wave equation

!gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T ) × N,

u = 0 in (−∞, 0) × N,

where supp(f ) ⊂ V . Then (V , g |V ) and the measurement operator
LV : f %→ u|V determine the set J+(p−) ∩ J−(p+) ⊂ M, up to a
change of coordinates, and the conformal class of g in the set
J+(p−) ∩ J−(p+).

p2
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Einstein equations

The Einstein equation for the (−,+,+,+)-type Lorentzian metric
gjk of the space time is

Einjk(g) = Tjk ,

where

Einjk(g) = Ricjk(g)− 1
2

(gpq Ricpq(g))gjk .

In wave map coordinates, the Einstein equation yields a quasilinear
hyperbolic equation and a conservation law,

gpq(x)
∂2

∂xp∂xq
gjk(x) + Bjk(g(x), ∂g(x)) = Tjk(x),

∇p(gpjTjk) = 0.



To consider active measurements, we add matter fields.
We consider the coupled Einstein and scalar field equations with
sources,

Ein(g) = T , T = T(φ, g) + F1, on (−∞, t0)× N,

�gφ` −m2φ` = F `2, ` = 1, 2, . . . , L, (1)

g |t<0 = ĝ , φ|t<0 = φ̂.

Here, ĝ and φ̂ are C∞-smooth background solutions that satisfy
equations (1) with the zero sources. Moreover,

Tjk(g , φ) =
L∑

`=1

∂jφ` ∂kφ` −
1
2
gjkg

pq∂pφ` ∂qφ` −
1
2
m2φ2

`gjk .

To obtain a physically meaningful model, the stress-energy tensor
T needs to satisfy the conservation law

∇p(gpjTjk) = 0, k = 1, 2, 3, 4. (2)



Let V ⊂ M be an open neighbourhood of a time-like geodesics µ
on (M, ĝ) and L ≥ 4.

Condition A: Assume that at any x ∈ V the 4× 4 matrix

A(x) =
[
( ∂j φ̂`(x))4

`,j=1

]

Theorem (Kurylev-L.-Uhlmann 2015)
Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1 + 3). Let µ be a time-like path containing p− and
p+, V ⊂ M be a neighborhood of µ, and a(x) be a nowhere
vanishing function. Consider the non-linear wave equation

!gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T ) × N,

u = 0 in (−∞, 0) × N,

where supp(f ) ⊂ V . Then (V , g |V ) and the measurement operator
LV : f %→ u|V determine the set J+(p−) ∩ J−(p+) ⊂ M, up to a
change of coordinates, and the conformal class of g in the set
J+(p−) ∩ J−(p+).
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is invertible.

Inverse problem with active measurements:
Assume that Condition A is valid. Do the observations analogous
to a source-to-solution map in V determine the manifold
J+(p−) ∩ J−(p+) and the metric ĝ in it?

To answer to this question, we have to guarantee that the condition
∇p(gpjTjk) = 0 is valid for all solutions of the Einstein-scalar field
equations (1).



A formulation of measurements with secondary
sources

We can formulate the direct problem for the Einstein-scalar field
equations so the the conservation law is valid.
Let g and φ = (φ`)

L
`=1 satisfy

Einjk(g) = Pjk + Tjk(g , φ), on (−∞, t0)× N,

�gφ` −m2φ` = S`, ` = 1, 2, 3, . . . , L,
S` = Q` + S2nd

` (g , φ,∇φ,Q,∇gQ,P,∇gP),

g |t<0 = ĝ , φ|t<0 = φ̂.

Here Q` and Pjk are considered as the primary sources.
The functions S2nd

` need to be constructed so that the conservation
law is satisfied for the solutions (g , φ). These functions correspond
to a model for a measurement device.
When Condition A is satisfied, secondary source functions S2nd

` can
be constructed, for small Q and P , by solving a pointwise system of
linear equations.



The data set
We define the measured data in Fermi coordinates associated to a
freely falling observer. For δ > 0 small enough, we define

D(δ) = {(Ψ∗gg |Ṽ ,Ψ
∗
gφ|Ṽ ,Ψ

∗
gF|Ṽ ) : F ∈ C 4(M),

‖F‖C4(M) < δ, supp (F) ⊂ Vg ,

(g , φ,F) satisfy the Einstein-scalar equations (1)
and ∇p(gpjTjk) = 0},

where Ψg : Ṽ ⊂ R4 → Vg ⊂ V
are the Fermi coordinates of a time-like
geodesic µg ([0, 1]) in metric g
(a freely falling observe on (M, g)).



Theorem
(Kurylev-L-Oksanen-Uhlmann’16,Uhlmann-Wang’20)
Let (M(i), ĝ (i)), i = 1, 2 be 4-dimensional globally hyperbolic
Lorentzian manifolds that satisfy the Einstein-scalar field equations
with φ̂(i) and vanishing sources. Assume condition (A). Let µ̂(i) be
time-like geodesics and p

(i)
± = µ̂(i)(s±) with s− < s+ and V (i) be

neighborhoods of µ̂(i). Consider the Einstein-scalar field systems

Ein(g) = T , T = T(φ, g) + F1, on (−∞, t0)× N,

�gφ` −m2φ` = F `2, ` = 1, 2, . . . , L, (3)

g |t<0 = ĝ , φ|t<0 = φ̂.

If D(1)(δ) = D(2)(δ), then there is a diffeomorphism

Ψ : J+
ĝ (1)(p

(1)
− ) ∩ J−

ĝ (1)(p
(1)
+ )→ J+

ĝ (2)(p
(2)
− ) ∩ J−

ĝ (2)(p
(2)
+ ) (4)

such that Ψ∗ĝ (2) = ĝ (1) in J+
ĝ (1)(p

(1)
− ) ∩ J−

ĝ (1)(p
(1)
+ ).
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Non-linear wave equation in space-time

Let M = R× N, dim(M) = 4. Consider the equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u(x) = 0 for x = (x0, x1, x2, x3) ∈ (−∞, 0)× N,

where

�gu =
3∑

p,q=0

|det (g(x))|− 1
2
∂

∂xp

(
|det (g(x))| 12 gpq(x)

∂

∂xq
u(x)

)

and a(x) is a non-vanishing C∞-smooth function.

Alternative model:

∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)2 = f (t, y), x = (t, y).



Inverse problem for non-linear wave equation

Consider the equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u(x) = 0 for x ∈ (−∞, 0)× N,

where the source f ∈ C 6
0 (V ) is supported in an open set V ⊂ M1.

In a neighborhood W ⊂ C 6
0 (V ) of the zero-function we define the

measurement operator (source-to-solution operator),

LV : f 7→ u|V , f ∈ W ⊂ C 6
0 (V ).



Idea of the proof: Non-linear geometrical optics.
The non-linearity helps in solving the inverse problem.

Let u = εw1 + ε2w2 + ε3w3 + ε4w4 + Eε satisfy

�gu + au2 = f , on M1 = (−∞,T )× N,

u|(−∞,0)×N = 0

with f = εf1, ε > 0.
When Q = �−1

g , we have

w1 = Qf1,

w2 = −Q(a w1 w1),

w3 = 2Q(a w1 Q(a w1 w1)),

w4 = −Q(aQ(a w1 w1)Q(a w1 w1))

−4Q(a w1 Q(a w1 Q(a w1 w1))),

‖Eε‖ ≤ Cε5.



Interaction of waves in Minkowski space R4

Let x j , j = 1, 2, 3, 4 be coordinates such that

Kj = {x j = 0}, j = 1, 2, 3, 4,

are light-like. We consider plane waves

uj(x) = v · (x j)m+, (s)m+ = |s|mH(s), v ∈ R, j = 1, 2, 3, 4.
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The interaction of the waves uj(x) produce new sources on

K12 = K1 ∩ K2,

K123 = K1 ∩ K2 ∩ K3 = line,
K1234 = K1 ∩ K2 ∩ K3 ∩ K4 = {q} = one point.
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Interaction of two waves
If we consider sources f~ε(x) = ε1f1(x) + ε2f2(x), ~ε = (ε1, ε2), and
the corresponding solution u~ε of the nonlinear wave equation, we
have

W2(x) =
∂

∂ε1

∂

∂ε2
u~ε(x)

∣∣∣∣
~ε=0

= �−1
g (a u1 · u2),

where uj = �−1
g fj .

All light-like co-vectors in the normal bundle of K1 ∩ K2 are in
N∗K1 ∪ N∗K2.
Thus no interesting singularities are produced by the interaction of
two waves. (Greenleaf-Uhlmann ’93)



Interaction of three waves

Consider sources

f~ε(x) =
3∑

j=1

εj fj(x), ~ε = (ε1, ε2, ε3),

and let u~ε be the solution of the nonlinear wave equation, with
source f~ε.
We have

W3 = ∂ε1∂ε2∂ε3u~ε
∣∣
~ε=0

= �−1
g (a u1 ·�−1

g (au2 · u3)) + . . .

The interaction of the three waves happens on the line
K123 = K1 ∩ K2 ∩ K3 and produce new singularities.

Similar results in R1+2: Rauch-Reed ’82 and Melrose-Ritter ’85.



Interaction of waves:

The non-linearity helps in solving the inverse problem.
Artificial sources can be created by interaction of waves using the
non-linearity of the wave equation.

The interaction of 3 waves creates a point source in space that
seems to move with a speed higher than the speed of light, that is,
it appears like a tachyonic point source, and produces a “shock
wave” type singularity.



(Loading talkmovie1.mp4)

Interaction of three waves.
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Interaction of four waves

Consider sources f~ε(x) =
∑4

j=1 εj fj(x), ~ε = (ε1, ε2, ε3, ε4), the
corresponding solution u~ε of the non-linear wave equation, and

W4 = ∂ε1∂ε2∂ε3∂ε4u~ε(x)
∣∣
~ε=0.

We have K1234 = {q}. Thus, when the four waves intersect, an
artificial point source Sq appears at point q,

W4 = �−1
g Sq.

Here Sq = B(x ,D)δq + r(x), where B(x ,D) is a pseudodifferential
operator and the wavefront set of r(x) is “small”.



Interaction of four waves.

The 3-interaction produces conic waves (only one is shown below).

(Loading talkmovie2.mp4)

The 4-interaction produces

a spherical wave from the point q

that determines the

observation times Fq(a).
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Thank you for your attention!


