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We will consider inverse problems for non-linear wave equations, e.g.

Zou(t,y) — c(t,y)?Au(t,y) + a(t, y)u(t,y)? = f(t,y).
We will show that:

-Non-linearity helps to solve

the inverse problem,

-“Scattering” from
(Loading talkmovie2.mp4) the interacting
wave packets
determines the

structure of the spacetime.
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Inverse problem with passive observations
Passive imaging problem: There is a large number of point sources
in a subset U of a spacetime M. The light from these point sources
are observed in a set V. Do these observations determine the
structure of the space time in U?

We will show: Let the sets V and U be as in the figure below.
Assume that U contains a dense set of point sources q;, j € Z.
We observe the intersections of the light cones emanating from the
points g; and the set V so that the light coming from different
sources can be separated (i.e. the sources g; have different
spectra). Then we can reconstruct the set U as a differentiable
manifold and the metric g|y up to a scalar factor.




“Worldline” of

a moving object Definitions

m \’§\} Let (M, g) be a Lorentzian manifold,
\___/

L Yx,¢(t) is a geodesic with the initial point (x, )
Cone

. ¢ € TM is time-like if g(¢,€) <0,

L
y

;7 Ehewhere € € TxM is light-like if g(£,6) =0, £ #0.
Present LYM C T,M is the future light cone.

Aot

JT(p) = {x € M| x is in causal future of p},
J=(p) = {x € M| x is in causal past of p}.

(M, g) is globally hyperbolic if

there are no closed causal curves and the set
JT(p1) N J=(p2) is compact for all p1, pr € M.
Then M can be represented as M =R x N.




More definitions

Let A C R™ be open and p,: (—1,1) - M, a € A be a family of
time-like geodesics such that V' = |J,c 4 ta(—1,1) is open.
We consider observations in V. Let p~, p™ € p14,.

Let UC J (p™)\ J (p~) be an open, relatively compact set.

The observation time function Fg : A — R for a point g € U is

Fq(a) =inf{s € R ; thereis a future-directed light-like
geodesic from g to pa(s)}
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Theorem (Kurylev-L.-Uhlmann 2018 (Arxiv 2014))

Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension n > 3. Assume that j1,(—1,1) C M, a€ AC R™ are
time-like geodesics, V = Uaea s is open, and p~, pT € pua,.

Let UcC J=(pT)\ J (p~) be a relatively compact open set.

Then (V, glv) and the collection of the observation time functions,

.FU:{FC,:A—HR’ qu}CC(A),

determine the set U, up to a change of coordinates, and the
conformal class of the metric g in U.
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Some results for hyperbolic inverse problems for linear equations:

>

>

Nachman-Sylvester-Uhlmann 1988: Inverse problem for A + q.

Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a
Riemannian manifold with a time-indepedent metric.

The used unique continuation fails for non-real-analytic
time-depending coefficients (Alinhac 1983).

Eskin 2017: Wave equation with a time-depending metric that
is real-analytic in the time variable.

Helin-L.-Oksanen 2012: Combining several measurements for
together for the wave equation.




Theorem (Kurylev-L.-Uhlmann 18, L.-Uhlmann-Wang '17)

Let (M, g) be a globally hyperbolic Lorentzian manifold,

dim(M) =4, m > 2, u C M be a time-like curve, p1,p2 € p and V
be a neighbourhood of . Let Ly : f — uly be the
source-to-solution map for

Ogu+u™=f in(—o00, T)x NC M,
u=0 int=x"<0.

Ly is defined for small sources f, supp(f) C V. Then V and Ly
determine the manifold J*(p1) N J~(p2) and the conformal class of
g on it. If m # 3, the metric tensor g can be determined.
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Figures: Anderson institute and Greenleaf-Kurylev-L.-Uhlmann



Einstein equations

The Einstein equation for the (—, +, +, +)-type Lorentzian metric
gjk of the space time is
Einj(g) = Tik,
where
. : | .

Einjk(g) = Ricik(g) — 5 (" Ricpq(g))gjk-
In wave map coordinates, the Einstein equation yields a quasilinear
hyperbolic equation and a conservation law,

82
gpq(x)mgjk(x) + Bik(g(x), 0g(x)) = Ti(x),
Vo(g” Tj) = 0.



To consider active measurements, we add matter fields.
We consider the coupled Einstein and scalar field equations with
sources,

Em(g) = T7 T = T(¢7g) +f17 on (—OO, tO) X N7
g¢ﬁ_m¢£ é 621727"'>L7 (1)
glt<co =8, ¢|t<o :Q/b\'

Here, g and qg are C*°-smooth background solutions that satisfy
equations (1) with the zero sources. Moreover,

Ti(g, ¢ Z 0jpe Ok e — *gjkgpqap@ Oqbe — m P2 gk
=1

To obtain a physically meaningful model, the stress-energy tensor
T needs to satisfy the conservation law

Vo(g” Tix) =0, k=1,2,34 (2)



Let V C M be an open neighbourhood of a time-like geodesics
on (M,g) and L > 4.

Condition A: Assume that at any x € V the 4 x 4 matrix

Ax) = [(930E s 7

is invertible.

P1

Inverse problem with active measurements:

Assume that Condition A is valid. Do the observations analogous
to a source-to-solution map in V' determine the manifold
JH(p7)NJ~(p*) and the metric g in it?

To answer to this question, we have to guarantee that the condition
V(g Tjk) = 0 is valid for all solutions of the Einstein-scalar field
equations (1).



A formulation of measurements with secondary
sources

We can formulate the direct problem for the Einstein-scalar field
equations so the the conservation law is valid.

Let g and ¢ = (¢)f_; satisfy

Einj(g) = Pix + Tjx(g, #), on (—oo,tg) x N,
Ogde — m?pp =S, £=1,23,...,L,
Se=Q +S8"(g,0. Vo, Q,VEQ, P, VEP),
g‘t<0 = ga ¢|t<0 = ¢.

Here Q; and Pj, are considered as the primary sources.

The functions Sf”d need to be constructed so that the conservation
law is satisfied for the solutions (g, ¢). These functions correspond
to a model for a measurement device.

When Condition A is satisfied, secondary source functions S2" can
be constructed, for small @ and P, by solving a pointwise system of
linear equations.



The data set

We define the measured data in Fermi coordinates associated to a
freely falling observer. For 6 > 0 small enough, we define

D) = {(Vegly Vedly, VeFly) : F e CHM),
[ Fllcamy <6, supp (F) C Vg,
(8,9, F) sat|sfy the Einstein-scalar equations (1)
and V,(g” Ti) = 0},
where W, : VCR— Ve CV
are the Fermi coordinates of a time-like

geodesic 11([0, 1]) in metric g
(a freely falling observe on (M, g)).




Theorem
(Kurylev-L-Oksanen-Uhlmann’16,Uhlmann-Wang'20)

Let (M) g, i = 1,2 be 4-dimensional globally hyperbolic
Lorentzian manifolds that satisfy the Einstein-scalar field equations
with $\) and vanishing sources. Assume condition (A). Let i) be

time-like geodesics and pg) = 1 (sy) withs_ < s, and V() be
neighborhoods of i), Consider the Einstein-scalar field systems

Eln(g) = 7 T = T(¢7g) +~F17 on (—OO, tO) X N7
g¢€_m¢f é 521727"'7L7 (3)
glt<o =8, ¢li<o :;5-

lfD(l)(d) = D(Q)(é), then there is a diffeomorphism
Wy (0) 0 S (0) = S () 0 () (@)

such that Wg® = g™ in 7%, (0D) 1 uz, (6).
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Non-linear wave equation in space-time
Let M =R x N, dim(M) = 4. Consider the equation

Ogu(x) + a(x) u(x)? = f(x) on My = (—o0, T) x N,
u(x) =0 for x = (x% x1, x2,x3) € (—00,0) x N,

where

Ogu = Z |det (g

p,q=0

s (et )l 5 ) )

and a(x) is a non-vanishing C*°-smooth function.

Alternative model:

82

5zt(ty) = c(t,y)Au(t,y) +a(t,y)u(t,y)* = F(t,y), x=

(t.y)-



Inverse problem for non-linear wave equation

Consider the equation

Ogu(x) + a(x) u(x)? = f(x) on My = (—o0, T) x N,
u(x) =0 forx e (—00,0) x N,

where the source f € C§(V) is supported in an open set V C M.

In a neighborhood W C C§(V) of the zero-function we define the
measurement operator (source-to-solution operator),

Ly :fuly, fewc (V).



Idea of the proof: Non-linear geometrical optics.
The non-linearity helps in solving the inverse problem.
Let u=cw; + ®ws + 3ws + e*wy + E. satisfy
Ogu+au’>=f, on My =(—o0, T)x N,
Ul(—o0,0)xn =0

with f = ef;, e > 0.
When Q = D;l, we have

wi = Qf,

wy = —Q(awyw),

wy = 2Q(awi Q(awywy)),

ws = —Q(aQ(awywy)Q(awr wy))

—4Q(awr Q(awy Q(awy wr))),
IE-|| < Ce°.



Interaction of waves in Minkowski space R*

Let x/, j = 1,2,3,4 be coordinates such that
Ki={< =0}, j=1234,
are light-like. We consider plane waves

u(x) = v- ()T, ()7 =|s|"H(s), vER, j=1,234




The interaction of the waves u;(x) produce new sources on

K2 = KiNKka,
Koz = KiNKoN Kz = line,
Kizza = KiNKyNKzN Ky ={q} = one point.

EERAN




Interaction of two waves

If we consider sources f=(x) = e1f1(x) + e2f2(x), &€= (e1,¢2), and
the corresponding solution uz of the nonlinear wave equation, we
have

a 0 T
Walx) = ey Der =) gzo_Dg (aun- ).

where u; = D;lzj-.

All light-like co-vectors in the normal bundle of K1 N K5 are in
N*K; U N*K>.

Thus no interesting singularities are produced by the interaction of
two waves. (Greenleaf-Uhlmann '93)



Interaction of three waves

Consider sources

3

f(x) = Zej-ﬁ(x), €= (e1,€2,¢€3),

=1

and let uz be the solution of the nonlinear wave equation, with
source fz.
We have

W3 = 0.,0:,0-5uz }5:0

= O;%au-O; (auz - us)) + . ..

The interaction of the three waves happens on the line
K123 = K1 N K> N K3 and produce new singularities.

Similar results in R1*2: Rauch-Reed '82 and Melrose-Ritter '85.



Interaction of waves:

The non-linearity helps in solving the inverse problem.
Avrtificial sources can be created by interaction of waves using the
non-linearity of the wave equation.
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The interaction of 3 waves creates a point source in space that
seems to move with a speed higher than the speed of light, that is,
it appears like a tachyonic point source, and produces a “shock
wave' type singularity.



(Loading talkmoviel.mp4)

Interaction of three waves.



talkmovie1.mp4
Media File (video/mp4)


Interaction of four waves

Consider sources f=(x) = Z}‘:l eifi(x), €= (e1,e2,€3,¢€4), the

corresponding solution uz of the non-linear wave equation, and

W4 = 851852853854U5 X)‘

e=0"

We have Ki234 = {q}. Thus, when the four waves intersect, an
artificial point source S, appears at point g,

Wy =0,'S,.

Here S, = B(x, D)dq + r(x), where B(x, D) is a pseudodifferential
operator and the wavefront set of r(x) is “small”.



Interaction of four waves.

The 3-interaction produces conic waves (only one is shown below).

The 4-interaction produces
a spherical wave from the point ¢
that determines the

observation times Fg(a).

(Loading talkmovie2.mp4)
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Thank you for your attention!



