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m Spacetimes and Radiation

= Cauchy Problem for the Einstein Equations

m Gravitational Waves and Memory

= New Structures

m Dynamics of General Asymptotically-Flat Systems

m Outlook



Investigate the Cauchy problem for the Einstein equations for physical
systems to gain information on gravitational radiation.
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Measuring Gravitational Waves

m LIGO detected gravitational waves from a binary black
hole merger for the first time in September 2015.

m Several times since then.

m LIGO and VIRGO together observed gravitational waves
from a binary neutron star merger in 2017. At the same
time, several telescopes registered data.



Einstein Equations and Spacetimes

Einstein Equations

1
R,uz/ - 5 Suv R =8r T,uu 5 (1)

with

R,,, the Ricci curvature tensor,
R the scalar curvature tensor,
g the metric tensor and

T, the energy-momentum tensor.

Investigate dynamics of spacetimes (M, g), where M a 4-dimensional
manifold with Lorentzian metric g solving Einstein's equations (1).



Einstein Vacuum Equations

For the main parts of the discussion we concentrate on the
Einstein-Vacuum equations.

Solutions of the Einstein-Vacuum (EV) equations:
R, = 0. (2)

Spacetimes (M, g), where M is a four-dimensional, oriented,
differentiable manifold and g is a Lorentzian metric obeying (2).



Foliations of the Spacetime

Let ¢ denote a maximal time function foliating the spacetime into
complete Riemannian hypersurfaces H;.

Let u be an optical function foliating the spacetime into null
hypersurfaces C,.

Siw = Hy N Cy



Evolution Equations, Constraints and Lapse

Evolution equations of a maximal foliation:

09gij
= 20k,
ot Kij
Ok _ .
8t] = =ViV;® + (Riyj — 2kink"})®

Constraint equations of a maximal foliation:

trk = 0
Vikij = 0
R = |k|?

Lapse equation of a maximal foliation:

AD — |k]P® =0



Given an outgoing null vectorfield L, we define a conjugate (incoming)
null vectorfield L by requiring that

g(L,L)=-2.
L and L are orthogonal to S; ,,.
For further purposes denote L by ey and L by e3.

Complement e4 and ez with an orthonormal frame e;, e; on St ,,
= We obtain a null frame.

The null decomposition of a tensor relative to a null frame ey, e3, €2, €1 is
obtained by taking contractions with the vectorfields ey, e3.



Shears and Expansion Scalars

Viewing S as a hypersurface in C, respectively C"

m Denote the second fundamental form of S in C by x, and the
second fundamental form of S in C' by x.

m Their traceless parts are the shears and denoted by X, X respectively.
m The traces trx and ¢ry are the expansion scalars.

m Null Limits of the Shears:
lime, t—00 72X = L(u) (in (A) spacetimes) and
lime, 100 "X = E(u).




Foliation of Null Infinity

Future null infinity ZT is defined to be the endpoints of all
future-directed null geodesics along which » — oco. It has the topology of

R x S? with the function u taking values in R.

Thus a null hypersurface C,, intersects Z* at infinity in a 2-sphere S ,,.

Here we observe gravitational radiation.



General Spacetimes

Theorem [L. Bieri (2007)]

Every asymptotically flat initial data obeying appropriate smallness
assumptions (controlled via weighted Sobolev norms) gives rise to a
globally asymptotically flat solution of the Einstein vacuum equations
that is causally geodesically complete.

Small data ensures existence.
Large data

Main behavior along null hypersurfaces towards future null infinity

= Largely independent from the smallness.

Pioneering stability results:

Global Result by S. Klainerman and D. Christodoulou, 1991, proving the
global nonlinear stability of Minkowski spacetime.

Semiglobal Result: [H. Friedrich (1986)]



Asymptotic Flatness

(B) (Most general asymptotically-flat spacetimes.) Asymptotically flat
initial data set in the sense of (B): an asymptotically flat initial data set
(Ho, g, k), where g and k are sufficiently smooth and for which there

exists a coordinate system (21,22, %) in a neighbourhood of infinity
such that with 7 = (32°_ (2%)2)7 — oo, it is:
Gij = 0i + o3 (7“_%> (3)
ki = 0p (r7). (4)

(D Christodoulou-Klainerman) Strongly asymptotically flat initial data
set in the sense of (D): an initial data set (H, g, k), where g and k are
sufficiently smooth and there exists a coordinate system (z!, 22, %)
defined in a neighbourhood of infinity such that, as

r= (E?Zl(xi)2)% — 00, gi; and k;; are:

Gij = (1 + g) 6ij + 04 (7'_%) (5)
kij = o3 (7“_%)’ (6)

where M denotes the mass.



Asymptotic Flatness

Asymptotic Flatness

Situation (H). Consider initial data of the asymptotic type

gij =0 = ly + 07 (7)
kij = 0@, (8)

with I;; being homogeneous of degree —1.

Situation (C). Consider initial data of the asymptotic type

with 0 <& < 3.

Situation (A). As in (B) but with big O instead of o.



Theorems for Large Data

Stability proofs that established the relevant properties of the spacetimes:
(D) D. Christodoulou and S. Klainerman: 1993
(B) L. Bieri: 2007

Stability Theorems: For data as in definition (B) under a smallness
condition = established global existence and decay theorem for the
Einstein vacuum equations.

Large data: It follows easily by a corollary that there exists a complete
domain of dependence of the complement of a sufficiently large compact
subset of the initial hypersurface. Thus, we have a solution spacetime
with a portion of future null infinity corresponding to all values of the
retarded time w not greater than a fixed constant.

= This provides the solid foundation to investigate the asymptotic
behavior at future null infinity for large data for (B) spacetimes, and to
prove theorems on the nature of gravitational radiation.

Naturally, our investigations will extend to these spacetimes coupled to
neutrinos via a null fluid.



Data of type (B): total energy finite, total angular momentum diverges.

Data of type (A):

e total energy no longer finite,
e no existence theorem is known for a development which includes a
portion of future null infinity.

e Study of type (A) gives conjectures furnished with supporting evidence.

Definition

We define the null components of the Weyl curvature W as follows:
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Thus we have the following with the capital indices taking the values 1, 2:

Wasps = aap (17)
Wassa = 205, (18)
Wsaza = 4p (19)
Wyse = 4o (20)
Waasza = 28a (21)
Wasps = «aaB (22)

Notation: Hodge duals *W and W* defined as

1

aByd = §EQ5HVWMV’)/5

*

* 1 v
afys = §Waﬁu Eprys



Let 72 = 1 +u? and 7(t,u) is the area radius of the surface S; ,,.

Weyl curvature components

(D) L
aW) = 0@ t7l%)
BW) = 0@ 7%
(W) = 0@?
(W) = O@F3r?)
a(W), BW) = o(r %)
(B)
a = 0@ 7 ?2)
B = O(r_27':%)
poo,a, B = o(r¥)

Correspondingly, obtain decay rates for cases (A) and (C).



Structures in (B) Spacetimes

X = o(r2) (23)
X = Ofr 1r72) (24)
¢ = o(r2) (25)
try = 2 + lot. (26)
T
try = —= + lot. (27)
Further, we have
kap =naB o= O@r 7
kan =¢€a e = o(r_%)
knn =6 § = o(r 3)

Here, ¢ is the torsion-one-form. Ricci rotation coefficients of the null frame are:
1 1
XAB = y(DAe4yeB),1AB=9(DA€3,€B),§A=;y(D3€376A), CA=;9(D3€4v5A)

1 1 1 1
<a = ;9(D4"~31€A): V:;g(D4E4yF~3);£:;g(D3P~3YE4)V 5A:;9(DA"~41"~3)



The Bianchi equations for J) ;p as well as JD ;o are

Dap + ;trxp = —diﬁ}ﬁ—%ig + (=08 + 268 (28)
+i(D3Rg4 — Dy Rss3)
Pao + 5o = ol f- 3Vt 8- 20025 (29)

1 v
+Z(DHR3V — Dy Ry, )e" 54



For small as well as large data, the following is a consequence of the
relations between the shears, the shear and curvature, and the stability
proof (B).

_3
2

[rm2] + {r2 Jr2}—i—lot (30)
{r=1r" 2}—1—[7‘ 2]+l0t (31)

[ <
Il Il

Notation: In (B) spacetimes, we denote the part of ¥ with decay o(r~2)
and which is non-dynamical (i.e. which does not evolve with u) by [r~z].
Denote the leading order dynamical part of ¥ (i.e. which evolves with u)

Nl Nlw

by {7’*27{%}. More generally, for any of the non-peeling curvature
components and any of the Ricci coefficients which have a leading order
non-dynamical part, let [] denote the leading order non-dynamical part
(thus not evolving in u) of this component; and let {-} denote its leading
order dynamical part (thus evolving in u).



By the proof (B) and the smallness conditions therein for the
es-derivative of p, respectively o:

/7“4|P3|2 <ce
H
/7‘4|03|2 <ece
H

1 1

p3=0("312%) | o3=0(r"31_%)

it is a consequence that

For small data it follows that

p = 3+ {7‘*371%} +{r 3+ 2P+ 0(r W) (32)
and

o = [r3+ {T'_?’Tj%} + {3+ 3P+ O(r 3w ) (33)

with w denoting r or 7_ and @ >0, 0 < 8 < 3.

For large data, there are more terms present with a variety of decay,

. . . . 5 _ .
including terms in p, respectively o, of the order r~27-% with « > 0.



Limits at null infinity Z

Limits at null infinity Z

More general phenomenon. Several quantities, which are defined locally
on the surface S; ,,, do not attain corresponding limits on a given null
hypersurface C, as t — co. However, the difference of their values at
corresponding points on S, and \S,,, does tend to a limit.

For instance, consider ¥ defined locally on Sy ,. Recall (23). Even
though r2y¥ does not have a limit as 7 — oo on a given C,, the
difference at corresponding points on S, in C,, and on S,,, in C,,, does
have a limit. In particular, these points being joined by an integral curve
of e3, the said difference attains the limit

U
/ Dyx du
uo

The part of ¥ with slow decay of order o(r*%) is non-dynamical, that is,
it does not evolve with u. We see that this part does not tend to any
limit at null infinity ZT. Similarly, the components of the curvature that
are not peeling have leading order terms that are non-dynamical (and do
not attain corresponding limits at Z7). Taking off these pieces gives us
the dynamical parts of these (non-peeling) curvature components.



Theorem [L. Bieri (2007)]

For the spacetimes of types (B), the normalized curvature components
ra (W), r?3 (W) have limits on Cy, as t — oo

lim ra(W) = Aw (u,-), lim r?8(W) =By (u,-) ,

Cy ,t—00 Cy,t—00

where the limits are on S? and depend on u. These limits satisfy

Aw (u,-)] < C (14 [ul)>? 1By (4, )| < C (1 + |uf) 2.

Moreover, the following limit exists
1

—= lim ry = lim rH==2(u,-
2 Cy t—o0 X C,t—00 " ( ’ )

Further, it follows that
0= 1
ou 4



Curvature Components p, o and Derivatives p3, o3

p3s— Ap(r,u,) = pi(r,u,-) +ps(r,u,-) + By(r,u, ) +lodt.
——
will cancel in Bianchi equ. will impact gravitational radiation, more structures
o3 — As(r,u,) = oi(r,u,-)+os(r,u,) + Bo(r,u,-) +lot.
will cancel in Bianchi equ. will impact gravitational radiation, more structures

Theorem [L. Bieri (2020)]

For (B) spacetimes the following holds for the domain of dependence of the
complement of a sufficiently large compact subset of the initial hypersurface.
The quantities rsp%,rspg, 7"30'%,1"30'[3 have limits on any null hypersurface C.,

as t — co. Namely, for 0 < 8 < 2,

c litH_{OO(TBP%) =Ri(uw,") , . 1iggoo(7”3/3/3) =Rp(u, ")
Cu,l,itrgoo(r'?)o-%) = S% (ua ) ) Cul,itrgoo(rg)o—ﬁ) = SB (u7 )

Ry )] < cO+luh)™?, [Rs(u,) <O+ u) ™+

Sy o] < CO+lD™, 1Sa () <O+ [u) ™+



Gravitational Radiation

Gravitational waves travel from their source along null hypersurfaces to
future null infinity Z+. At ZT the detectors observe these waves.

as I+

observe gravitational waves



Gravitational Radiation: Geodesic Equation and Detector

mirror

.-
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>
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INSTANTANEOUS DISPLACEMENTS (while the wave packet is traveling
through, measured by LIGO/VIRGO, first LIGO 2015).

PERMANENT DISPLACEMENTS, (cumulative, stays after wave packet
passed, expected to be measured in the near future). This is called the
memory effect of gravitational waves. Two types of this memory.



Measurements - Beginning of a New Era

——

LIGO Facility at Livingston LA

The Nobel Prize in Physics 2017 was awarded with one half to Rainer
Weiss, and the other half jointly to Barry C. Barish, and Kip S. Thorne.
LIGO/VIRGO CO||ab0rati0n. Photos: Weiss and Thorne, Courtesy of Gruber Foundation; Barish, public domain.



Memory Effect of Gravitational Waves

e Ordinary (formerly called “linear") effect
=> in the slow motion limit [Ya.B. Zel'dovich, A.G. Polnarev 1974]

e Null (formerly called “nonlinear”) effect
=> in the fully nonlinear case [D. Christodoulou 1991].

e Early Works on Memory: T. Damour, L. Blanchet, V. B. Braginsky,
L. P. Grishchuk, C. M. Will , A. G. Wiseman, K. S. Thorne, J.
Frauendiener.

e Other Related Early Works: [A. Ashtekar and various co-authors
(1970s and 1980s)] Studies of asymptotic symmetries in GR and
infrared problems in quantum field theory.

e 2016: A paper by P. Lasky, E. Thrane, Y. Levin, J. Blackman and Y.
Chen suggests a method for detecting gravitational wave memory
with aLIGO by stacking events.



Memory - Continued - Isolated Systems

Recent results and new memory effects:

e Contribution from electro-magnetic field to null effect
=> was found by [L. Bieri, P. Chen, S.-T. Yau 2010 and 2011].

e Contribution from neutrino radiation to null effect
=> was found by [L. Bieri, D. Garfinkle 2012 and 2013].

e For the first time outside of GR, for pure Maxwell equations:
We find an electromagnetic analog of gravitational wave memory.
EM Memory. [L. Bieri, D. Garfinkle 2013]
= charged test masses observe a residual kick.

e Recent works on memory include Wald, Tolish, Favata, Flanagan,
Nichols, Strominger, Winicour, Loutrel, Madler, Yunes, Hawking,
Perry, Zhiboedov, Pasterski, Prabhu, Satishchandran, Hollands,
Ishibashi, and more.

A growing field of research....



Memory - Permanent Displacement

Structures at Z7. Intricate local structures have implications at Z™.
Certain geometric quantities take well-defined limits at Z and obey
specific equations.

The permanent displacement Ax of geodesics (marked by test masses in
a detector) is related to the difference (Chi~ — Chit) at Z:

I Y
Azx = . (Chi~ — Chi™) , (36)

where dy denotes the initial distance between the test masses, and Chi
the null limit of a geometric quantity related to the shear (in spacetimes
with stronger fall off it is the limit of the shear).

Contributions to the permanent displacement Az:

AF systems with O(r~!) fall off. “Simple" structure. The ordinary
memory is sourced by the change in the radial component of the electric
part of the Weyl tensor. The null memory is sourced by F', the energy
per unit solid angle radiated to infinity (including shear and component
of energy-momentum tensor).

(B) spacetimes: NEW and rich structures. Let's investigate these now.



Parity of Gravitational Waves and Memory

(M, g) denote our solution spacetimes.

The Weyl tensor W,z,s is decomposed into its electric and magnetic
parts, which are defined by

Eab = Watbt (37)

Hab = %EefaWefbt (38)
Here €45 is the spatial volume element and is related to the spacetime
volume element by €45 = €tape- The electric part of the Weyl tensor is

the crucial ingredient in the equation governing the distance between two
objects in free fall. In particular, their spatial separation denoted by Axz®:

P Aze

5 = —E"Ax® (39)

In this decomposition, it is

Enn=p , Hyn=0.



Electric and Magnetic Memory

Memory effect caused by the electric part of the curvature tensor
= called electric parity memory (i.e. electric memory).

Memory effect caused by the magnetic part of the curvature tensor
= called magnetic parity memory (i.e. magnetic memory).

So far

AF systems with O(r~!) decay towards infinity
= only electric parity memory, no magnetic memory occurs.

New (B, 2020 and 2021)

AF spacetimes of slower decay like (B) spacetimes
=> magnetic memory occurs naturally.

Overall memory is growing and new structures arise.

Shown for the Einstein vacuum equations and Einstein-null-fluid
equations describing neutrino radiation. The new results hold as well for
the Einstein equations coupled to other fields of slow decay towards
infinity and obeying other corresponding properties.



“Unusual” Examples Versus Generic. New Structures

e G. Satishchandran and R. Wald (2019): An interesting and “unusual”
example of stress-energy of an expanding shell in linearized gravity gives rise to
an ordinary magnetic memory.

e T. Méadler and J. Winicour (2016): In a linearized setting, they showed that
the special case of homogeneous, source-free gravitational waves coming in
from past null infinity gives a magnetic memory. We can think of this as
putting in magnetic memory by hand by placing these incoming waves at past
null infinity.

e In both these examples (Satishchandran-Wald and Madler-Winicour),
magnetic memory is put in through the data.

New (B): We find magnetic memory and a wealth of new structures
contributing to electric and magnetic memory for the Einstein vacuum as well
as for the Einstein-null-fluid equations describing neutrino radiation. [t is not
included in the initial data, but emerges in the evolution. We show that this
new magnetic memory occurs naturally for slowly decaying AF spacetimes. The
new effects grow. In (A) spacetimes we find yet another new type of magnetic
memory due to a cyrl T term.

Further results in a different direction: Lower order structures generate further
interesting dynamics. [L. Bieri (2021)].



Gravitational Waves

Outgoing radiation is dominated by X.

Incoming radiation is dominated by Y.

Next, we are going to derive electric and magnetic parity memory for
1) the Einstein vacuum equations and

2) the Einstein-null-fluid equations describing neutrino radiation.



Main Theorem and Proof

Recall from above that (Chi~ — Chi™) is related to permanent displacement.

Simplified and first version of the main result:

(Chi~ — Chi™) determined by equations at T

e including terms sourced by “electric part of curvature” (always present)
e including terms sourced by “magnetic part of curvature” (only for slow
fall-off)

On S? at T: Let Z := difp (Chi~ — Chi™1). Equations for Z involve

dip Z = {structures involving electric part of curvature}
crl Z = {structures involving magnetic part of curvature}
plus further new structures
Next:
e |deas and main steps of the proof of the main theorem.
e Includes intermediate theorems leading up to the main theorem.
e Presented as a “flow”, focussing on the main structures.

o Official Version of the Main Theorem



Derivation of Electric Memory

Einstein vacuum equations:
Consider the Bianchi equation for ) ,p.
Notation p3 := D ,p + %trxp.

In the Bianchi equation for [ ,p

Dap + gtrxp = —dz%}ﬁ-%f(@ + (e=QB + 268 (40)

we focus on the higher order terms,

1
p3 = — dipB §)Z~g + lot
1
=0(r=3r_7) =0(r 57—,%)



A short computation shows that

, o 1
ps = — dibf — (%) + Xl + Lot
—~— u
. ~—— —
=00 _opi,o8) =0T

Thus it is

9. . , LU 3,73
prt 5o (X-X) = _dz/z;§+1trX|X|2 = O(r~37 %) (41)

Structures:

For large data, various terms of order 7‘_%7__1_0‘ with « > 0 on the left
hand side of (41), but these cancel.

Limit at Z* of the left hand side of (41)

= leading order term originates from p3 and is of order O(r=37_2).



Future Null Infinity and Electric Memory

Notation for the corresponding limit of the LHS of (41):

0
L . 3 oo
PS T Cul}trgoor (,03 + ou (X X)) (42)
P o= / Py du (43)

Note that P is defined on S2 x R up to an additive function Cp on S?
(thus the latter is independent of w). Later, when taking the integral

fj:f Ps du, the term Cp will cancel.

Taking the limit of (% (41)) on C,, as t — oo, each term on the right
hand side takes a well-defined limit. This yields

Ps = —dipB+2|Z]? (44)



Details for P in (43):
Taking into account all these structures we derive:
P has the following structure for 0 < 8 < % and v > 0,

P o= (5 4 (P 4 (Fw)) + ) 4 Cp (45)
—_— ——— N——
=Ppy :sz_%D

where F(u,-) < C. Again {-} as explained above. And Cp is an additive
function on S? introduced above. Terms of order O(7%) with 0 < o < %
originate from the integral of the limits of the ps part. Denote this part
by P,,. In (45), the quantity F(u,-) has pieces that are sourced by p3
and pieces that are sourced by %(X - X), we denote the former by P,,
and the latter by —1D.



Next, we define

0
. e 2 ~
Chis = o) htm_>O<J (r —X) (46)
Chi := /C’hzg du (47)

We have (see before)
= =2dip=E , Chiz=—-E (48)
Using these with the above we obtain
Ps = —2dibdip Chiz + 2|=|? (49)

Integrating (49) with respect to u gives

(P~ —Pt) - /+O° 22 du = dibdib(Chi~ — Chi™) (50)

— 00

In (P~ — P*) an abundance of new terms, leading order |u|tz.



Derivation of Magnetic Memory

Consider the Bianchi equation for J) ;0.

Notation o3 = 0 + %trza. In the Bianchi equation for o3
1 ~ * * * *
o3 = —cyirl@fix' at+e B-20"B-20"p
we concentrate on the higher order terms
1 ~ *
o3 = —crl - oX a+l.o.t. (51)
A short computation yields
9 o -3_—3
o3+ %(X ANX) = —arlB = O(r >71_7) (52)

For X A X the orders of the terms are at the level of x - ¥ above.



Multiply the left hand side of (52) by 7® and and take the limit on each
C, for t — oo denoting this limit by Q3. Then introduce Q as follows:

) o, .
Qs = Cul,lgoo (o5 + %(X AX)) (53)
Q = / Qs du (54)

Note that Q is defined on S% x R up to an additive function Cg on 52
(thus the latter is independent of u). Later, when taking the integral

sz Q3 du, the term Cg will cancel.

Taking the limit of (% (52)) on C,, as t — oo, the term on the right
hand side takes a well-defined limit. This yields

Q3 = —ciriB (55)



Details for Q in (54):
Taking into account all these structures we derive:
@ has the following structure for 0 < 8 < % and v > 0,

Q = [} 4 () 4 (Fw)) + {77 + Co  (56)
—_— ——
:Qal 29627%G

where F(u,-) < C. Again {-} as explained above. And Cg is an additive
function on S? introduced above. Terms of order O(7%) with 0 < o < £
originate from the integral of the limits of the o3 part. Denote this part
by Q,,. In (56), the quantity F(u,-) has pieces that are sourced by o3
and pieces that are sourced by a%(f( A X), we denote the former by Q,

and the latter by —1G.



Continue to compute using equation (55):
Consider (55) and employ the derived relations between X, X and j3 as
well as the corresponding limits (35) and (48) to compute

Q3 = -2 C’l/h“l dzﬁj Chlg (57)
Integrating (57) with respect to u yields
(Q™ — Q") = crldi (Chi~ — Chi™) (58)

In (Q~ — Q%) an abundance of new terms, leading order |u|*=.



We obtain

(0, ~ Q1) + (25, ~ QL) — (G ~G")  (59)
= ofrl dip (Chi~ — Chit)

m Behavior of (Q~ — QT) as well as cifrl dip (Chi~ — Chi™):
Fix a point on the sphere S? at fixed uy and consider O(up). Next,
take Q(u) at the corresponding point for some value of u # wy.
Keep ug fixed and let u tend to 400, respectively to —oco. Then the
difference Q(u) — Q(ug) is no longer finite, but it grows with |u| 2.
A corresponding argument holds for Chi(u) — Chi(ug).

m (G~ — G™) s finite. Contributions rooted in magnetic Weyl
curvature and shears (shears: sourced by f Fo (XA X) du).

m In AF systems with fall-off O(r~1) towards infinity, each term in the
above equation is identically zero.

m Q part features terms of diverging order [u[*2, |u|™F for 0 < 8 < L.
Rooted in magnetic Weyl curvature.



Gravitational Waves: New Structures

Gravitational Wave Memory: Electric and Magnetic

The above gives the main ingredients in the proof of the following
theorem.

Theorem [L. Bieri (2020)]

The following holds for (B) spacetimes.
(Chi~ — Chi™) is determined by equation (63) on S? where W solves
(64) and @ solves (65).

Electric and Magnetic Parts

Next, we are going to COMBINE the two parts.



Electric and Magnetic Memory

There exist functions ® and ¥ such that

dib (Chi~ — Chit) =V & + Y - 0.

Let Z := dit (Chi~ — Chi™). Note that then the following holds:
dwZz = A® , cofrlZ = AT .
We obtain the system on 52

dip (Chi~ — Chit) = YO +YV 0 (60)
cirl dip (Chi~ — Chit) = AT
= Q-9 —-(Q-9*" (61
dip dip (Chi~ — Chit) = A®
= (P-P) —(P-P)*
—2(F — F) (62)



Taking into account the detailed structures, we have the following system
on S?, that is solved by Hodge theory.

dib (Chi~ — Chit) = Y&+ YU (63)
cirl dip (Chi~ — Chit) = AU
= (QUl - QUI)_ - (le - Q01)+
+(QU2 - QU2)7 - (foz - Q02)+
e R (I c) M ")
dip dip (Chi~ — Chit) = A®
= (P ﬁpl) (Ppl _7501)+

(sz _p) _(sz_ P2)+
—2(F — F) (65)



For the more general spacetimes of slow decay (like (B)) we conclude:

1. There is the new magnetic memory effect growing with |u|% sourced
by Q, rooted in the magnetic Weyl curvature and finite
contributions rooted in curvature and the shears.

2. Q has further diverging terms at lower order.

3. There is the electric memory, previously established. This electric
part is growing with |u|2 sourced by P, further lower-order growing
terms and finite contributions from P and from F' (the latter may
be unbounded for systems of decay O(r~2)).

4. cyrl dip (Chi~ — Chit) being non-trivial allows for the magnetic
structures to appear in gravitational radiation and to enter the
permanent changes of the spacetime. Thus, these more general
spacetimes generate memory of magnetic type.

Points 1, 2, 4 are NEW.

Point 3, the leading order behavior as well as the null memory were
established in (B, 2018). The finer structures are new.



Adding Neutrinos

(B 2020) Einstein-null-fluid equations describing neutrino radiation:

R,, = 87Ty, .
Describe the neutrinos in this equation, represented via the
energy-momentum tensor given by
™ = NK!KY (66)
with K being a null vector and N' = N (61,02, 7,7_) a positive scalar
function depending on 7, 7_, and the spherical variables 6, 05.

When coupled to the Einstein equations in the most general settings, the
energy-momentum tensor T#” obeys those loose decay laws. No symmetry nor
other restrictions imposed.

In particular, we do not have stationarity outside a compact set, but
instead a distribution of neutrinos decaying very slowly towards infinity.

“Geometric terms”: same growth rate as in EV case.

“T" terms: growing at rate +/|ul.



Outlook

m Cosmological setting: Study the corresponding problem.

m Dark matter of certain types may behave as described here.
Investigate dark matter, including dark matter halos of galaxies.

m Couple Einstein equations to other types of matter-energy to
investigate similar questions.

m Many more fascinating questions....

Thank you!



