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Investigate the Cauchy problem for the Einstein equations for physical
systems to gain information on gravitational radiation.
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Measuring Gravitational Waves

LIGO detected gravitational waves from a binary black
hole merger for the first time in September 2015.

Several times since then.

LIGO and VIRGO together observed gravitational waves
from a binary neutron star merger in 2017. At the same
time, several telescopes registered data.



Einstein Equations and Spacetimes

Einstein Equations

Rµν −
1

2
gµν R = 8π Tµν , (1)

with

Rµν the Ricci curvature tensor,

R the scalar curvature tensor,

g the metric tensor and

Tµν the energy-momentum tensor.

Investigate dynamics of spacetimes (M, g), where M a 4-dimensional
manifold with Lorentzian metric g solving Einstein’s equations (1).



Einstein Vacuum Equations

For the main parts of the discussion we concentrate on the
Einstein-Vacuum equations.

Solutions of the Einstein-Vacuum (EV) equations:

Rµν = 0 . (2)

Spacetimes (M, g), where M is a four-dimensional, oriented,
differentiable manifold and g is a Lorentzian metric obeying (2).



Foliations of the Spacetime

Let t denote a maximal time function foliating the spacetime into
complete Riemannian hypersurfaces Ht.

Let u be an optical function foliating the spacetime into null
hypersurfaces Cu.

St,u = Ht ∩ Cu



Evolution Equations, Constraints and Lapse

Evolution equations of a maximal foliation:

∂ḡij
∂t

= −2Φkij

∂kij
∂t

= −∇i∇jΦ + (R̄ij − 2kimk
m
j )Φ

Constraint equations of a maximal foliation:

trk = 0

∇i kij = 0

R̄ = | k |2

Lapse equation of a maximal foliation:

4Φ − | k |2 Φ = 0



Given an outgoing null vectorfield L, we define a conjugate (incoming)
null vectorfield L by requiring that

g(L,L) = −2 .

L and L are orthogonal to St,u.

For further purposes denote L by e4 and L by e3.
Complement e4 and e3 with an orthonormal frame e1, e2 on St,u
⇒ We obtain a null frame.

The null decomposition of a tensor relative to a null frame e4, e3, e2, e1 is
obtained by taking contractions with the vectorfields e4, e3.



Shears and Expansion Scalars

Viewing S as a hypersurface in C, respectively C:

Denote the second fundamental form of S in C by χ, and the
second fundamental form of S in C by χ.

Their traceless parts are the shears and denoted by χ̂, χ̂ respectively.

The traces trχ and trχ are the expansion scalars.

Null Limits of the Shears:
limCu,t→∞ r2χ̂ = Σ(u) (in (A) spacetimes) and
limCu,t→∞ rχ̂ = Ξ(u).

4.6 The Characteristic Initial Value Problem

In Section 3.3 we discussed about the Cauchy problem for the Einstein equations. In par-
ticular, we saw that the initial data set consists of the triplet (H0, g, k), where H0 is a
three-dimensional Riemannian manifold, g is the metric on H0 and k is a symmetric (0,2)
tensor field on H0 and such that g, k satisfy the constraint equations. Recall that g, k are to
be the first and second fundamental forms of H0 in M, respectively.

In this section, we will discuss in detail the formulation of the characteristic initial value
problem, i.e. the case where the initial Riemannian (spacelike) Cauchy hypesurface H0 is
replaced by two degenerate (null) hypersurfaces C ∪ C intersecting at a two-dimensional
surface S.

Motivation

Let us first motivate the formulation of the characteristic initial value problem. Let us
assume that g/ is a given degenerate metric on C ∪ C and let M be the arising spacetime
manifold and g the Lorentzian metric which satisfies the Einstein equations extending g/ on
C∪C. Let us consider the double null foliation of (M, g) such that Ω = 1 on C∪C. Let L be
the geodesic vector field on C, which coincides with the normalized and equivariant vector
field, and let u be its affine parameter such that u = 0 on S. Then, we obtain a foliation of
C which consists of the (spacelike) surfaces Sτ = {u = τ}. The crucial observation is that
the null second fundamental form χ on C, which recall that is defined to be the following
(0,2) tensor field on C

χ(X,Y ) = g(∇Xe4, Y ),

where X,Y ∈ TpC, is in fact, an tensor field which depends only on the intrinsic geometry of
C (although ∇XL depends on the spacetime metric g). Indeed, the first variational formula
gives us

χ =
1

2
L/4g/ ,

and since the Lie derivative L/L is intrinsic to the hypersurface C, we deduce that g/ com-
pletely determines χ on C. On the other hand, by the Raychaudhuri equation we have

e4(trχ) = −|χ|2 − trα,

and since χ and trχ (and ω = L(log Ω) = 0) are determined from g/ , we deduce that trα is
also determined. However, in view of the Einstein equations (see Section 4.3) we have

trα = Ric(e4, e4) = 0.

This shows that one cannot arbitrarily prescribe a degenerate metric g/ on C ∪ C, since
otherwise trα would in general be non-zero.
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Foliation of Null Infinity

Future null infinity I+ is defined to be the endpoints of all
future-directed null geodesics along which r →∞. It has the topology of
R× S2 with the function u taking values in R.

Thus a null hypersurface Cu intersects I+ at infinity in a 2-sphere S∞,u.

Here we observe gravitational radiation.



General Spacetimes

Theorem [L. Bieri (2007)]

Every asymptotically flat initial data obeying appropriate smallness
assumptions (controlled via weighted Sobolev norms) gives rise to a
globally asymptotically flat solution of the Einstein vacuum equations
that is causally geodesically complete.

Small data ensures existence.

Large data

Main behavior along null hypersurfaces towards future null infinity

⇒ Largely independent from the smallness.

Pioneering stability results:

Global Result by S. Klainerman and D. Christodoulou, 1991, proving the
global nonlinear stability of Minkowski spacetime.

Semiglobal Result: [H. Friedrich (1986)]



Asymptotic Flatness

(B) (Most general asymptotically-flat spacetimes.) Asymptotically flat
initial data set in the sense of (B): an asymptotically flat initial data set
(H0, ḡ, k), where ḡ and k are sufficiently smooth and for which there
exists a coordinate system (x1, x2, x3) in a neighbourhood of infinity

such that with r = (
∑3
i=1(xi)2)

1
2 →∞, it is:

ḡij = δij + o3 (r−
1
2 ) (3)

kij = o2 (r−
3
2 ) . (4)

(D Christodoulou-Klainerman) Strongly asymptotically flat initial data
set in the sense of (D): an initial data set (H, ḡ, k), where ḡ and k are
sufficiently smooth and there exists a coordinate system (x1, x2, x3)
defined in a neighbourhood of infinity such that, as
r = (

∑3
i=1(xi)2)

1
2 →∞, ḡij and kij are:

ḡij = (1 +
2M

r
) δij + o4 (r−

3
2 ) (5)

kij = o3 (r−
5
2 ) , (6)

where M denotes the mass.



Asymptotic Flatness

Asymptotic Flatness

Situation (H). Consider initial data of the asymptotic type

ḡij − δij = lij + O (r−1−ε) (7)

kij = O (r−2−ε) , (8)

with lij being homogeneous of degree −1.

Situation (C). Consider initial data of the asymptotic type

ḡij − δij = O (r−
1
2−ε) (9)

kij = O (r−
3
2−ε) , (10)

with 0 < ε < 1
2 .

Situation (A). As in (B) but with big O instead of o.



Theorems for Large Data

Stability proofs that established the relevant properties of the spacetimes:

(D) D. Christodoulou and S. Klainerman: 1993

(B) L. Bieri: 2007

Stability Theorems: For data as in definition (B) under a smallness
condition ⇒ established global existence and decay theorem for the
Einstein vacuum equations.

Large data: It follows easily by a corollary that there exists a complete
domain of dependence of the complement of a sufficiently large compact
subset of the initial hypersurface. Thus, we have a solution spacetime
with a portion of future null infinity corresponding to all values of the
retarded time u not greater than a fixed constant.

⇒ This provides the solid foundation to investigate the asymptotic
behavior at future null infinity for large data for (B) spacetimes, and to
prove theorems on the nature of gravitational radiation.

Naturally, our investigations will extend to these spacetimes coupled to
neutrinos via a null fluid.



Data of type (B): total energy finite, total angular momentum diverges.
Data of type (A):
• total energy no longer finite,
• no existence theorem is known for a development which includes a
portion of future null infinity.
• Study of type (A) gives conjectures furnished with supporting evidence.

Definition

We define the null components of the Weyl curvature W as follows:

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ e
γ
3 e

δ
3 (11)

β
µ

(W ) =
1

2
Π ρ
µ Wρσγδ e

σ
3 e

γ
3 e

δ
4 (12)

ρ (W ) =
1

4
Wαβγδ e

α
3 eβ4 e

γ
3 e

δ
4 (13)

σ (W ) =
1

4
∗Wαβγδ e

α
3 eβ4 e

γ
3 e

δ
4 (14)

βµ (W ) =
1

2
Π ρ
µ Wρσγδ e

σ
4 e

γ
3 e

δ
4 (15)

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ e
γ
4 e

δ
4 . (16)



Thus we have the following with the capital indices taking the values 1, 2:

WA3B3 = αAB (17)

WA334 = 2 β
A

(18)

W3434 = 4 ρ (19)
∗W3434 = 4 σ (20)

WA434 = 2 βA (21)

WA4B4 = αAB (22)

Notation: Hodge duals ∗W and W ∗ defined as

∗Wαβγδ =
1

2
εαβµνW

µν
γδ

W ∗αβγδ =
1

2
W µν
αβ εµνγδ



Let τ2− = 1 + u2 and r(t, u) is the area radius of the surface St,u.

Weyl curvature components

(D)
α(W ) = O (r−1 τ

− 5
2

− )

β(W ) = O (r−2 τ
− 3

2
− )

ρ(W ) = O (r−3)

σ(W ) = O (r−3 τ
− 1

2
− )

α(W ), β(W ) = o (r−
7
2 )

(B)
α = O (r−1 τ

− 3
2

− )

β = O (r−2 τ
− 1

2
− )

ρ, σ, α, β = o (r−
5
2 )

Correspondingly, obtain decay rates for cases (A) and (C).



Structures in (B) Spacetimes

χ̂ = o (r−
3
2 ) (23)

χ̂ = O (r−1τ
− 1

2
− ) (24)

ζ = o (r−
3
2 ) (25)

trχ =
2

r
+ l.o.t. (26)

trχ = −2

r
+ l.o.t. (27)

Further, we have

kAB = ηAB η̂ = O(r−1τ
− 1

2
− )

kAN = εA ε = o(r−
3
2 )

kNN = δ δ = o(r−
3
2 )

Here, ζ is the torsion-one-form. Ricci rotation coefficients of the null frame are:

χAB = g(DAe4, eB) , χ
AB

= g(DAe3, eB) , ξ
A

=
1

2
g(D3e3, eA) , ζA =

1

2
g(D3e4, eA)

ζ
A

=
1

2
g(D4e3, eA) , ν =

1

2
g(D4e4, e3) , ν =

1

2
g(D3e3, e4) , εA =

1

2
g(DAe4, e3)



The Bianchi equations for D/ 3ρ as well as D/ 3σ are

D/ 3ρ +
3

2
trχρ = −div/ β − 1

2
χ̂α + (ε− ζ)β + 2ξβ (28)

+
1

4
(D3R34 −D4R33)

D/ 3σ +
3

2
trχσ = −curl/ β − 1

2
χ̂∗α+ ε∗β − 2ζ∗β − 2ξ∗β (29)

+
1

4
(DµR3ν −DνR3µ)εµν34



For small as well as large data, the following is a consequence of the
relations between the shears, the shear and curvature, and the stability
proof (B).

χ̂ = [r−
3
2 ] + {r−2τ+

1
2

− }+ l.o.t. (30)

χ̂ = {r−1τ−
1
2

− }+ [r−
3
2 ] + l.o.t. (31)

Notation: In (B) spacetimes, we denote the part of χ̂ with decay o(r−
3
2 )

and which is non-dynamical (i.e. which does not evolve with u) by [r−
3
2 ].

Denote the leading order dynamical part of χ̂ (i.e. which evolves with u)

by {r−2τ+
1
2

− }. More generally, for any of the non-peeling curvature
components and any of the Ricci coefficients which have a leading order
non-dynamical part, let [·] denote the leading order non-dynamical part
(thus not evolving in u) of this component; and let {·} denote its leading
order dynamical part (thus evolving in u).



By the proof (B) and the smallness conditions therein for the
e3-derivative of ρ, respectively σ:∫

H

r4|ρ3|2 6 cε∫
H

r4|σ3|2 6 cε

it is a consequence that

ρ3 = O(r−3τ
− 1

2
− ) , σ3 = O(r−3τ

− 1
2

− )

For small data it follows that

ρ = [r−
5
2 ] + {r−3τ+

1
2

− }+ {r−3}+ {r−3τ+β− }+O(r−3ω−α) (32)

and

σ = [r−
5
2 ] + {r−3τ+

1
2

− }+ {r−3}+ {r−3τ+β− }+O(r−3ω−α) (33)

with ω denoting r or τ− and α > 0, 0 < β < 1
2 .

For large data, there are more terms present with a variety of decay,
including terms in ρ, respectively σ, of the order r−

5
2 τ−α− with α > 0.



Limits at null infinity I+

Limits at null infinity I+
More general phenomenon. Several quantities, which are defined locally
on the surface St,u, do not attain corresponding limits on a given null
hypersurface Cu as t→∞. However, the difference of their values at
corresponding points on Su and Su0

does tend to a limit.
For instance, consider χ̂ defined locally on St,u. Recall (23). Even
though r2χ̂ does not have a limit as r →∞ on a given Cu, the
difference at corresponding points on Su in Cu and on Su0 in Cu0 does
have a limit. In particular, these points being joined by an integral curve
of e3, the said difference attains the limit∫ u

u0

D/ 3χ̂ du
′

The part of χ̂ with slow decay of order o(r−
3
2 ) is non-dynamical, that is,

it does not evolve with u. We see that this part does not tend to any
limit at null infinity I+. Similarly, the components of the curvature that
are not peeling have leading order terms that are non-dynamical (and do
not attain corresponding limits at I+). Taking off these pieces gives us
the dynamical parts of these (non-peeling) curvature components.



Theorem [L. Bieri (2007)]

For the spacetimes of types (B), the normalized curvature components
rα (W ), r2β (W ) have limits on Cu as t→∞:

lim
Cu,t→∞

rα (W ) = AW (u, ·) , lim
Cu,t→∞

r2β (W ) = BW (u, ·) ,

where the limits are on S2 and depend on u. These limits satisfy

|AW (u, ·)| 6 C (1 + |u|)−3/2 |BW (u, ·)| 6 C (1 + |u|)−1/2 .

Moreover, the following limit exists

−1

2
lim

Cu,t→∞
rχ̂ = lim

Cu,t→∞
rη̂ = Ξ (u, ·)

Further, it follows that

∂Ξ

∂u
= −1

4
AW (34)

B = −2div/ Ξ (35)



Curvature Components ρ, σ and Derivatives ρ3, σ3

ρ3 − Aρ(r, u, ·)︸ ︷︷ ︸
will cancel in Bianchi equ.

= ρ 1
2
(r, u, ·) + ρβ(r, u, ·) +Bρ(r, u, ·)︸ ︷︷ ︸

will impact gravitational radiation, more structures

+l.o.t.

σ3 − Aσ(r, u, ·)︸ ︷︷ ︸
will cancel in Bianchi equ.

= σ 1
2
(r, u, ·) + σβ(r, u, ·) +Bσ(r, u, ·)︸ ︷︷ ︸

will impact gravitational radiation, more structures

+l.o.t.

Theorem [L. Bieri (2020)]

For (B) spacetimes the following holds for the domain of dependence of the
complement of a sufficiently large compact subset of the initial hypersurface.
The quantities r3ρ 1

2
, r3ρβ , r

3σ 1
2
, r3σβ have limits on any null hypersurface Cu

as t→∞. Namely, for 0 < β < 1
2

,

lim
Cu,t→∞

(r3ρ 1
2
) = R 1

2
(u, ·) , lim

Cu,t→∞
(r3ρβ) = Rβ(u, ·)

lim
Cu,t→∞

(r3σ 1
2
) = S 1

2
(u, ·) , lim

Cu,t→∞
(r3σβ) = Sβ(u, ·)∣∣∣R 1

2
(u, ·)

∣∣∣ 6 C (1 + |u|)−1/2 , |Rβ (u, ·)| 6 C (1 + |u|)−1+β∣∣∣S 1
2
(u, ·)

∣∣∣ 6 C (1 + |u|)−1/2 , |Sβ (u, ·)| 6 C (1 + |u|)−1+β



Gravitational Radiation

Gravitational waves travel from their source along null hypersurfaces to
future null infinity I+. At I+ the detectors observe these waves.

source

I
+

I
+

H

observe gravitational waves

Gravitational radiation: gravitational waves traveling from source along outgoing null hypersurfaces.



Gravitational Radiation: Geodesic Equation and Detector
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Figure 2. Permanent displacement of test masses caused by Christodoulou memory effect. Test
masses m1 and m2 are displaced permanently after the passage of a gravitational wave train.

p 1488: ‘When matter (i.e. electromagnetic or neutrino) radiation is present then if T is the
energy tensor of matter, φ∗

u (r2 1
4 T (l, l)) tends to a limit E as r∗

0 → ∞ and in (7)–(9) | � |2
is replaced by | � |2 +32πE.’ This is a suggestion, in which direction one would have to
search to find other contributions to the nonlinear memory effect. It was not known, what
the limit E would be. This limit E depending on u could behave in such a way that there
were no additive contribution from E to the memory, or that it was negligible. Studying the
adapted formulas (7)–(9) in Christodoulou (1991), one has to keep in mind that formula (9)
governs the nonlinear memory effect. It is an additive effect. How do we know that E is in fact
contributing? What is the structure of this limit? We give the answer in our formulas (15) and
(6) based on Bieri et al (2010) and on (2) from Zipser (2009). Our formula (6) corresponds to
Christodoulou’s formula (9). We find that the limit AF has the same decay behavior in u as the
limit �. Namely they satisfy

| AF (u, ·) | � C1(1+ | u |)− 3
2

| �(u, ·) | � C2(1+ | u |)− 3
2

Knowing these structure, we investigate our formula (6) more closely. Integrating with
respect to u from −∞ to +∞ yields a positive constant for F . This value contains the
corresponding positive constants coming from the electromagnetic field term AF and from
the purely gravitational term �. This proves that the contribution from the electromagnetic
field is of the same order6 as the purely geometric part. Our result being exact, it holds for all
corresponding physical situations. The constants C1 and C2 have to be determined or estimated
from astrophysical data of the many scenarios. This will be the purpose of the following
section, where we give rough estimates. It will be a challenge for the future to work on the
many details.

Summarizing, we have in (6) a general formula that always holds. Thus we can apply it to
all situations. From astrophysical data we can now determine the corresponding contributions
in every scenario.

6 Here, the word ‘order’ refers to decay behavior of the exact solution, not to any approximations. That is, ‘higher
order’ means ‘less decay’. For details, see Bieri et al (2010), Bieri (2009), Zipser (2009).
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Instantaneous displacements (while the wave packet is traveling
through, measured by LIGO/VIRGO, first LIGO 2015).

Permanent displacements, (cumulative, stays after wave packet
passed, expected to be measured in the near future). This is called the
memory effect of gravitational waves. Two types of this memory.



Measurements - Beginning of a New Era

LIGO Facility at Livingston LA

The Nobel Prize in Physics 2017 was awarded with one half to Rainer
Weiss, and the other half jointly to Barry C. Barish, and Kip S. Thorne.
LIGO/VIRGO collaboration. Photos: Weiss and Thorne, Courtesy of Gruber Foundation; Barish, public domain.

Prepublication copy provided to Rachel Rossi. 

Not for print or electronic distribution. This file may not be posted electronically.

Figure 15. (from top to bottom) Ronald Drever, Kip
Thorne, and Rainer Weiss pioneered the effort to
detect gravitational waves with laser interferometers.

Figure 16. One of the two aLIGO facilities, this one in
Livingston, Louisiana, where the interference pattern
associated with a gravitational wave produced in the
merger of two black holes was recorded within days
of the first science run.

Figure 17. Top: Filtered GW strain as a function of
time detected at the Hanford location of aLIGO.
Bottom: Best fit reconstruction of the signal using a
numerical relativity simulation (red), an analytical
waveform template (gray), and a set of Morley
wavelets. The latter two are shown as 90 percent
confidence regions, while the simulation is a
particular run with a choice of parameters within this
the 90 percent confidence region.

are suspended from wires like a pendulum, but this
means that for short time motion in the horizontal
direction, the motion of each mirror can be treated as
a spacetime geodesic. But the interferometer measures
distance between the mirrors, so what we want to know

22 Notices of the AMS Volume 64, Number 7
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Memory Effect of Gravitational Waves

• Ordinary (formerly called “linear”) effect
=> in the slow motion limit [Ya.B. Zel’dovich, A.G. Polnarev 1974]

• Null (formerly called “nonlinear”) effect
=> in the fully nonlinear case [D. Christodoulou 1991].

• Early Works on Memory: T. Damour, L. Blanchet, V. B. Braginsky,
L. P. Grishchuk, C. M. Will , A. G. Wiseman, K. S. Thorne, J.
Frauendiener.

• Other Related Early Works: [A. Ashtekar and various co-authors
(1970s and 1980s)] Studies of asymptotic symmetries in GR and
infrared problems in quantum field theory.

• 2016: A paper by P. Lasky, E. Thrane, Y. Levin, J. Blackman and Y.
Chen suggests a method for detecting gravitational wave memory
with aLIGO by stacking events.



Memory - Continued - Isolated Systems

Recent results and new memory effects:

• Contribution from electro-magnetic field to null effect
=> was found by [L. Bieri, P. Chen, S.-T. Yau 2010 and 2011].

• Contribution from neutrino radiation to null effect
=> was found by [L. Bieri, D. Garfinkle 2012 and 2013].

• For the first time outside of GR, for pure Maxwell equations:
We find an electromagnetic analog of gravitational wave memory.
EM Memory. [L. Bieri, D. Garfinkle 2013]
⇒ charged test masses observe a residual kick.

• Recent works on memory include Wald, Tolish, Favata, Flanagan,
Nichols, Strominger, Winicour, Loutrel, Mädler, Yunes, Hawking,
Perry, Zhiboedov, Pasterski, Prabhu, Satishchandran, Hollands,
Ishibashi, and more.

• A growing field of research....



Memory - Permanent Displacement

Structures at I+. Intricate local structures have implications at I+.
Certain geometric quantities take well-defined limits at I+ and obey
specific equations.

The permanent displacement 4x of geodesics (marked by test masses in
a detector) is related to the difference (Chi− − Chi+) at I+:

4x = −d0
r

(
Chi− − Chi+

)
, (36)

where d0 denotes the initial distance between the test masses, and Chi
the null limit of a geometric quantity related to the shear (in spacetimes
with stronger fall off it is the limit of the shear).

Contributions to the permanent displacement 4x:

AF systems with O(r−1) fall off: “Simple” structure. The ordinary
memory is sourced by the change in the radial component of the electric
part of the Weyl tensor. The null memory is sourced by F , the energy
per unit solid angle radiated to infinity (including shear and component
of energy-momentum tensor).

(B) spacetimes: NEW and rich structures. Let’s investigate these now.



Parity of Gravitational Waves and Memory

(M, g) denote our solution spacetimes.

The Weyl tensor Wαβγδ is decomposed into its electric and magnetic
parts, which are defined by

Eab := Watbt (37)

Hab := 1
2ε
ef
aWefbt (38)

Here εabc is the spatial volume element and is related to the spacetime
volume element by εabc = εtabc. The electric part of the Weyl tensor is
the crucial ingredient in the equation governing the distance between two
objects in free fall. In particular, their spatial separation denoted by ∆xa:

d2∆xa

dt2
= −Eab∆xb (39)

In this decomposition, it is

ENN = ρ , HNN = σ .



Electric and Magnetic Memory

Memory effect caused by the electric part of the curvature tensor
⇒ called electric parity memory (i.e. electric memory).

Memory effect caused by the magnetic part of the curvature tensor
⇒ called magnetic parity memory (i.e. magnetic memory).

So far

AF systems with O(r−1) decay towards infinity
⇒ only electric parity memory, no magnetic memory occurs.

New (B, 2020 and 2021)

AF spacetimes of slower decay like (B) spacetimes
⇒ magnetic memory occurs naturally.

Overall memory is growing and new structures arise.

Shown for the Einstein vacuum equations and Einstein-null-fluid
equations describing neutrino radiation. The new results hold as well for
the Einstein equations coupled to other fields of slow decay towards
infinity and obeying other corresponding properties.



“Unusual” Examples Versus Generic. New Structures

• G. Satishchandran and R. Wald (2019): An interesting and “unusual”
example of stress-energy of an expanding shell in linearized gravity gives rise to
an ordinary magnetic memory.

• T. Mädler and J. Winicour (2016): In a linearized setting, they showed that
the special case of homogeneous, source-free gravitational waves coming in
from past null infinity gives a magnetic memory. We can think of this as
putting in magnetic memory by hand by placing these incoming waves at past
null infinity.

• In both these examples (Satishchandran-Wald and Mädler-Winicour),
magnetic memory is put in through the data.

New (B): We find magnetic memory and a wealth of new structures
contributing to electric and magnetic memory for the Einstein vacuum as well
as for the Einstein-null-fluid equations describing neutrino radiation. It is not
included in the initial data, but emerges in the evolution. We show that this
new magnetic memory occurs naturally for slowly decaying AF spacetimes. The
new effects grow. In (A) spacetimes we find yet another new type of magnetic
memory due to a curl/ T term.

Further results in a different direction: Lower order structures generate further
interesting dynamics. [L. Bieri (2021)].



Gravitational Waves

Outgoing radiation is dominated by χ̂.

Incoming radiation is dominated by χ̂.

Next, we are going to derive electric and magnetic parity memory for

1) the Einstein vacuum equations and

2) the Einstein-null-fluid equations describing neutrino radiation.



Main Theorem and Proof

Recall from above that (Chi− − Chi+) is related to permanent displacement.

Simplified and first version of the main result:

(Chi− − Chi+) determined by equations at I+
• including terms sourced by “electric part of curvature” (always present)
• including terms sourced by “magnetic part of curvature” (only for slow
fall-off)

On S2 at I+: Let Z := div/ (Chi− − Chi+). Equations for Z involve

div/ Z = {structures involving electric part of curvature}
curl/ Z = {structures involving magnetic part of curvature}

plus further new structures

Next:

• Ideas and main steps of the proof of the main theorem.

• Includes intermediate theorems leading up to the main theorem.

• Presented as a “flow”, focussing on the main structures.

• Official Version of the Main Theorem



Derivation of Electric Memory

Einstein vacuum equations:

Consider the Bianchi equation for D/ 3ρ.

Notation ρ3 := D/ 3ρ + 3
2 trχρ.

In the Bianchi equation for D/ 3ρ

D/ 3ρ +
3

2
trχρ = −div/ β − 1

2
χ̂α + (ε− ζ)β + 2ξβ (40)

we focus on the higher order terms,

ρ3 = − div/ β︸ ︷︷ ︸
=O(r−3τ

− 1
2

− )

− 1

2
χ̂ · α︸ ︷︷ ︸

=O(r−
5
2 τ

− 3
2

− )

+ l.o.t.



A short computation shows that

ρ3 = − div/ β︸ ︷︷ ︸
=O(r−3τ

− 1
2

− )

− ∂

∂u
(χ̂ · χ̂)︸ ︷︷ ︸

=O(r−
5
2 τ

− 3
2

− )

+
1

4
trχ|χ̂|2︸ ︷︷ ︸

=O(r−3τ−1
− )

+ l.o.t.

Thus it is

ρ3 +
∂

∂u
(χ̂ · χ̂) = −div/ β +

1

4
trχ|χ̂|2 = O(r−3τ

− 1
2

− ) (41)

Structures:

For large data, various terms of order r−
5
2 τ−1−α− with α > 0 on the left

hand side of (41), but these cancel.

Limit at I+ of the left hand side of (41)

⇒ leading order term originates from ρ3 and is of order O(r−3τ
− 1

2
− ).



Future Null Infinity and Electric Memory

Notation for the corresponding limit of the LHS of (41):

P3 := lim
Cu,t→∞

r3
(
ρ3 +

∂

∂u
(χ̂ · χ̂)

)
(42)

P :=

∫
u

P3 du (43)

Note that P is defined on S2 × R up to an additive function CP on S2

(thus the latter is independent of u). Later, when taking the integral∫ +∞
−∞ P3 du, the term CP will cancel.

Taking the limit of
(
r3 (41)

)
on Cu as t→∞, each term on the right

hand side takes a well-defined limit. This yields

P3 = −div/ B + 2|Ξ|2 (44)



Details for P in (43):
Taking into account all these structures we derive:
P has the following structure for 0 < β < 1

2 and γ > 0,

P = {τ+
1
2

− } + {τβ−}︸ ︷︷ ︸
=Pρ1

+ {F(u, ·)}︸ ︷︷ ︸
=Pρ2−

1
2D

+ {τ−γ− } + CP (45)

where F(u, ·) 6 C. Again {·} as explained above. And CP is an additive
function on S2 introduced above. Terms of order O(τα−) with 0 < α 6 1

2
originate from the integral of the limits of the ρ3 part. Denote this part
by Pρ1 . In (45), the quantity F(u, ·) has pieces that are sourced by ρ3
and pieces that are sourced by ∂

∂u (χ̂ · χ̂), we denote the former by Pρ2
and the latter by − 1

2D.



Next, we define

Chi3 := lim
Cu,t→∞

(
r2

∂

∂u
χ̂
)

(46)

Chi :=

∫
u

Chi3 du (47)

We have (see before)

B = −2div/ Ξ , Chi3 = −Ξ (48)

Using these with the above we obtain

P3 = −2div/ div/ Chi3 + 2|Ξ|2 (49)

Integrating (49) with respect to u gives

(P− − P+)−
∫ +∞

−∞
|Ξ|2 du = div/ div/ (Chi− − Chi+) (50)

In (P− − P+) an abundance of new terms, leading order |u|+ 1
2 .



Derivation of Magnetic Memory

Consider the Bianchi equation for D/ 3σ.

Notation σ3 = D/ 3σ + 3
2 trχσ. In the Bianchi equation for σ3

σ3 = −curl/ β − 1

2
χ̂ · ∗α+ ε ∗β − 2ζ ∗β − 2ξ ∗β

we concentrate on the higher order terms

σ3 = −curl/ β − 1

2
χ̂ · ∗α+ l.o.t. (51)

A short computation yields

σ3 +
∂

∂u
(χ̂ ∧ χ̂) = −curl/ β = O(r−3τ

− 1
2

− ) (52)

For χ̂ ∧ χ̂ the orders of the terms are at the level of χ̂ · χ̂ above.



Multiply the left hand side of (52) by r3 and and take the limit on each
Cu for t→∞ denoting this limit by Q3. Then introduce Q as follows:

Q3 := lim
Cu,t→∞

r3
(
σ3 +

∂

∂u
(χ̂ ∧ χ̂)

)
(53)

Q :=

∫
u

Q3 du (54)

Note that Q is defined on S2 × R up to an additive function CQ on S2

(thus the latter is independent of u). Later, when taking the integral∫ +∞
−∞ Q3 du, the term CQ will cancel.

Taking the limit of
(
r3 (52)

)
on Cu as t→∞, the term on the right

hand side takes a well-defined limit. This yields

Q3 = −curl/ B (55)



Details for Q in (54):
Taking into account all these structures we derive:
Q has the following structure for 0 < β < 1

2 and γ > 0,

Q = {τ+
1
2

− } + {τβ−}︸ ︷︷ ︸
=Qσ1

+ {F(u, ·)}︸ ︷︷ ︸
=Qσ2−

1
2G

+ {τ−γ− } + CQ (56)

where F(u, ·) 6 C. Again {·} as explained above. And CQ is an additive
function on S2 introduced above. Terms of order O(τα−) with 0 < α 6 1

2
originate from the integral of the limits of the σ3 part. Denote this part
by Qσ1

. In (56), the quantity F(u, ·) has pieces that are sourced by σ3
and pieces that are sourced by ∂

∂u (χ̂ ∧ χ̂), we denote the former by Qσ2

and the latter by − 1
2G.



Continue to compute using equation (55):
Consider (55) and employ the derived relations between χ̂, χ̂ and β as
well as the corresponding limits (35) and (48) to compute

Q3 = −2 curl/ div/ Chi3 (57)

Integrating (57) with respect to u yields

(Q− −Q+) = curl/ div/ (Chi− − Chi+) (58)

In (Q− −Q+) an abundance of new terms, leading order |u|+ 1
2 .



We obtain

(Q−σ1
−Q+

σ1
) + (Q−σ2

−Q+
σ2

) − 1

2
(G− −G+) (59)

= curl/ div/ (Chi− − Chi+)

Behavior of (Q− −Q+) as well as curl/ div/ (Chi− − Chi+):
Fix a point on the sphere S2 at fixed u0 and consider Q(u0). Next,
take Q(u) at the corresponding point for some value of u 6= u0.
Keep u0 fixed and let u tend to +∞, respectively to −∞. Then the
difference Q(u)−Q(u0) is no longer finite, but it grows with |u|+ 1

2 .
A corresponding argument holds for Chi(u)− Chi(u0).

(G− −G+) is finite. Contributions rooted in magnetic Weyl
curvature and shears (shears: sourced by

∫
u
∂
∂u (χ̂ ∧ χ̂) du).

In AF systems with fall-off O(r−1) towards infinity, each term in the
above equation is identically zero.

Q part features terms of diverging order |u|+ 1
2 , |u|+β for 0 < β < 1

2 .
Rooted in magnetic Weyl curvature.



Gravitational Waves: New Structures

Gravitational Wave Memory: Electric and Magnetic

The above gives the main ingredients in the proof of the following
theorem.

Theorem [L. Bieri (2020)]

The following holds for (B) spacetimes.
(Chi− − Chi+) is determined by equation (63) on S2 where Ψ solves
(64) and Φ solves (65).

Electric and Magnetic Parts

Next, we are going to COMBINE the two parts.



Electric and Magnetic Memory

There exist functions Φ and Ψ such that

div/ (Chi− − Chi+) = ∇/ Φ +∇/ ⊥Ψ.

Let Z := div/ (Chi− − Chi+). Note that then the following holds:

div/ Z = 4/ Φ , curl/ Z = 4/ Ψ .

We obtain the system on S2

div/ (Chi− − Chi+) = ∇/ Φ +∇/ ⊥Ψ (60)

curl/ div/ (Chi− − Chi+) = 4/ Ψ

= (Q− Q̄)− − (Q− Q̄)+ (61)

div/ div/ (Chi− − Chi+) = 4/ Φ

= (P − P̄)− − (P − P̄)+

−2(F − F̄ ) (62)



Taking into account the detailed structures, we have the following system
on S2, that is solved by Hodge theory.

div/ (Chi− − Chi+) = ∇/ Φ +∇/ ⊥Ψ (63)

curl/ div/ (Chi− − Chi+) = 4/ Ψ

= (Qσ1
− Q̄σ1

)− − (Qσ1
− Q̄σ1

)+

+(Qσ2
− Q̄σ2

)− − (Qσ2
− Q̄σ2

)+

−1

2
(G− Ḡ)− +

1

2
(G− Ḡ)+ (64)

div/ div/ (Chi− − Chi+) = 4/ Φ

= (Pρ1 − P̄ρ1)− − (Pρ1 − P̄ρ1)+

(Pρ2 − P̄ρ2)− − (Pρ2 − P̄ρ2)+

−2(F − F̄ ) (65)

−1

2
(D − D̄)− +

1

2
(D − D̄)+



For the more general spacetimes of slow decay (like (B)) we conclude:

1. There is the new magnetic memory effect growing with |u| 12 sourced
by Q, rooted in the magnetic Weyl curvature and finite
contributions rooted in curvature and the shears.

2. Q has further diverging terms at lower order.

3. There is the electric memory, previously established. This electric
part is growing with |u| 12 sourced by P, further lower-order growing
terms and finite contributions from P and from F (the latter may

be unbounded for systems of decay O(r−
1
2 )).

4. curl/ div/ (Chi− − Chi+) being non-trivial allows for the magnetic
structures to appear in gravitational radiation and to enter the
permanent changes of the spacetime. Thus, these more general
spacetimes generate memory of magnetic type.

Points 1, 2, 4 are NEW.

Point 3, the leading order behavior as well as the null memory were
established in (B, 2018). The finer structures are new.



Adding Neutrinos

(B 2020) Einstein-null-fluid equations describing neutrino radiation:

Rµν = 8π Tµν .

Describe the neutrinos in this equation, represented via the
energy-momentum tensor given by

Tµν = NKµKν (66)

with K being a null vector and N = N (θ1, θ2, r, τ−) a positive scalar
function depending on r, τ−, and the spherical variables θ1, θ2.

When coupled to the Einstein equations in the most general settings, the

energy-momentum tensor Tµν obeys those loose decay laws. No symmetry nor

other restrictions imposed.

In particular, we do not have stationarity outside a compact set, but
instead a distribution of neutrinos decaying very slowly towards infinity.

“Geometric terms”: same growth rate as in EV case.

“T” terms: growing at rate
√
|u|.



Outlook

Outlook

Cosmological setting: Study the corresponding problem.

Dark matter of certain types may behave as described here.
Investigate dark matter, including dark matter halos of galaxies.

Couple Einstein equations to other types of matter-energy to
investigate similar questions.

Many more fascinating questions....

Thank you!


