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This talk is about the stability of Kerr-de Sitter (KdS) black holes,
as solutions of Einstein’s equation. While it matters little, I will use
the (+,−, . . . ,−) signature convention for the Lorentzian metric,
so in 4 dimensions Einstein’s equation in vacuum is an equation for
the metric tensor of the form

Ric(g) + Λg = 0,

where Λ is the cosmological constant, and Ric(g) is the Ricci
curvature of the metric. If there were matter present, there would
be a non-trivial right hand side of the equation, given by (a
modification of) the matter’s stress-energy tensor.

E.g. the Minkowski metric solves this with Λ = 0. Another
solution, with Λ > 0, is de Sitter space, which is the one-sheeted
hyperboloid in one higher dimensional Minkowski space. We will
mostly be interested in Λ > 0, which corresponds to the current
understanding of the universe.
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In local coordinates, the Ricci curvature is a non-linear expression
in up to second derivatives of g ; thus, this is a partial differential
equation. The type of PDE that Einstein’s equation is most similar
to (with issues!) are (tensorial, non-linear) wave equations. The
typical formulation of such a wave equation is that one specifies
‘initial data’ at a (spacelike) Cauchy hypersurface Σ0.

For linear wave equations �u = f on globally hyperbolic spaces
like Minkowski space and de Sitter space, the solution u for given
data exists globally and is unique. For nonlinear equations this is
not automatic. In both cases another natural question is one
perturbs the Cauchy data for a solution u0, does the solution u
asymptote to u0? (Asymptotic stability.)
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Since Ric is diffeomorphism invariant, if Ψ is a diffeomorphism,
and g solves Einstein’s equation, then so does Ψ∗g . This means
that if there is one solution, there are many (even with same IC).
In practice (duality) this means that it may not be easy to solve
the equation at all!

This already indicates that Einstein’s equation is not quite a wave
equation, but it can be turned into one by imposing extra gauge
conditions. One version is the harmonic/wave/DeTurck’s gauge:
one fixes a background metric g0, and requires that the identity
map (M, g)→ (M, g0) be a wave map (solve a wave equation)...
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One version is the harmonic/wave/DeTurck’s gauge: one fixes a
background metric g0, and requires that the identity map
(M, g)→ (M, g0) be a wave map (solve a wave equation). This is
implemented using the second key property, the 2nd Bianchi
identity, δgGgRic(g) = 0 for all g , where δg is the (negative)
divergence (adjoint of the symmetric gradient δ∗g ), and

Gg r = r − 1
2(trg r)g . An implementation is

Ric(g) + Λg − Φ(g , g0) = 0,

where
Φ(g , g0) = δ∗gΥ(g), Υ(g) = gg−10 δgGgg0.

The point is that this is a (quasilinear) wave-type equation, so the
problems with diffeomorphism invariance have been eliminated,
thus at least one has local existence and uniqueness near the initial
surface Σ0! That this relates to Einstein’s equation is assured by
the 2nd Bianchi identity which gives rise to �CP = 2δgGgδ

∗
g , a

one-form wave operator. This enabled Choquet-Bruhat to show
local well-posedness: Υ = 0.
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The first stability results were obtained for Minkowski space and de
Sitter space, respectively, and are due to Christodoulou and
Klainerman (1990s), later simplified by Lindblad and Rodnianski
(2000s) (and extended by Bieri and Zipser, and in a different
direction by Hintz and V.), resp. Friedrich (1980s).

Our result with Peter Hintz is the stability of Kerr-de Sitter (KdS)
black holes (slowly rotating). These are family of metrics
depending on two parameters, called mass m and angular
momentum a. The a = 0 members of the family are called the
Schwarzschild-de Sitter (SdS) black holes; hS2 the metric on S2:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 hS2 , µ(r) = 1− 2m

r
− Λr2

3
,

Λ = 0 gives the Schwarzschild metric, discovered in about a
month after Einstein’s 1915 paper.

m = 0 gives the de Sitter metric.
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Recall:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 h, µ(r) = 1− 2m

r
− Λr2

3
.

µ(r) = 0 has two positive solutions r+, r− if m,Λ > 0; if
Λ = 0 the only root is 2m, if m = 0, the only root is

√
3/Λ.

In this form the metric makes sense where µ > 0:
Rt × (r−, r+)r × S2.

However, r = r± are coordinate singularities; with c± smooth,

t∗ = t − F (r), F ′(r) = ±(µ(r)−1 + c±(r)) near r = r±

desingularizes them and extends the metric to

Rt∗ × (0,∞)r × S2ω,

r = r− is called the event horizon, r = r+ the cosmological
horizon; they are very similar for the geometry.

∂t is a Killing vector field, i.e. translation in t preserves the
metric, and it is spherically symmetric.
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Figure: Setup for the initial value problem for perturbations of a
Schwarzschild–de Sitter spacetime (M, gb0), showing the Cauchy surface
Σ0 of Ω and a few translates (level sets of the nonsingular time t∗) Σt∗ ;
here εM > 0 is small. Left: Product-type picture, illustrating the
stationary nature of gb0 . Right: Penrose diagram of the same setup. The
event horizon is H+ = {r = r−}, the cosmological horizon is
H+ = {r = r+}, and the (idealized) future timelike infinity is i+.
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Without specifying the general KdS metric, we just mention that
the underlying manifold is a Rt∗ × (0,∞)r × S2, and ∂t∗ is a
Killing vector field, i.e. translation in t∗ preserves the metric.
These metrics are axisymmetric around the axis of rotation.

In general, for a manifold M with Σ0 a codimension 1 hypersurface,
the initial data are a Riemannian metric h and a symmetric
2-cotensor k which satisfy the constraint equations (needed for
solvability), and one calls a Lorentzian metric g on M a solution of
Einstein’s equation with initial data (Σ0, h, k) if the pull-back of g
to Σ0 is −h, and k is the second fundamental form of Σ0 in M.

Our main result is the global non-linear asymptotic stability of the
Kerr-de Sitter family for the initial value problem for small angular
momentum a on the space

Ω = [0,∞)t∗ × [r− − δ, r+ + δ]r × S2.
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Theorem (Hintz-V ’16; informal version)

Suppose (h, k) are smooth initial data on Σ0, satisfying the
constraint equations, which are close to the data (hb0 , kb0) of a
Schwarzschild–de Sitter spacetime, b0 = (m0, 0), in a high
regularity norm. Then there exist a solution g of Einstein’s
equation in Ω attaining these initial data at Σ0, and black hole
parameters b = (m, a) which are close to b0, so that

g − gb = O(e−αt∗)

for a constant α > 0 independent of the initial data; that is, g
decays exponentially fast to the Kerr–de Sitter metric gb.
Moreover, g and b are quantitatively controlled by (h, k).
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What the theorem states is that the metric ‘settles down to’ a
Kerr-de Sitter metric at an exponential rate. Note that even if we
perturb a Schwarzschild-dS metric, we get a KdS limit!

This ‘settling down’ means that gravitational waves are being
emitted; far away observers can see this ‘tail’. LIGO exactly aimed
(successfully!) at capturing these waves, using numerical
computations as a template to see what one would expect from
the merger of binary black holes.

Figure: LIGO/Virgo collaboration 2016
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For Λ = 0, at this point the strongest nonlinear result is that of
Dafermos, Holzegel, Rodnianski and Taylor (2021) which is a finite
codimension Schwarzschild stability result; this followed the earlier
restricted (symmetry) stability result for Schwarzschild of
Klainerman and Szeftel (2017).

Linearized Λ = 0 black hole results: Schwarzschild, plus Teukolsky
in the slowly rotating case: Dafermos, Holzegel and Rodnianski
(2016, 2017), as well as the stability result of Andersson,
Bäckdahl, Blue and Ma (2019), also in the slowly rotating case,
with also a more restricted general result, under a strong
asymptotic assumption, and the slowly rotating stability result of
Hintz-Häfner-V. (2019) which allows more slow decay on data.

Other works by Wald, Kay, Finster, Kamran, Smoller, Yau, Tataru,
Tohaneanu, Marzuola, Metcalfe, Sterbenz, Donninger, Schlag,
Soffer, Sá Barreto, Wunsch, Zworski, Wang, Bony, Dyatlov, Luk,
Ionescu, Shlapentokh-Rothman, Giorgi, Teixera da Costa, Casals...
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The analytic framework we use

non-elliptic linear global analysis with coefficients of finite
Sobolev regularity,

with a simple global Nash-Moser iteration to deal with the
loss of derivatives corresponding to both non-ellipticity and
trapping

gives global solvability for quasilinear wave equations like the
gauged Einstein’s equation provided

certain dynamical assumptions are satisfied (only trapping is
normally hyperbolic trapping, with an appropriate subprincipal
symbol condition) and

there are no exponentially growing modes (with a precise
condition on non-decaying ones), i.e. non-trivial solutions of
the linearized equation at gb0 of the form e−iσt∗ times a
function of the spatial variables r , ω only, with Imσ > 0.
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Let us start by discussing the analytic aspects.

The main point that forces one to face major issues from the start
is that we solve all the linear and non-linear problems globally on
the underlying ‘physical space’ Ω.

The non-linear aspects can be reduced to a precise understanding
of underlying linear problems, via linearization and an iteration
such as Newton or Nash-Moser (requiring the finite coefficient
regularity linear theory), so I will not talk about these.

The finite coefficient regularity version of the usual theory mostly
simply requires slightly more care, so again I will not discuss this.
A sharp version was worked out in Hintz’ thesis (cf. Beals and
Reed in the 1980s), but if one uses Nash-Moser, one can be much
more forgiving.

So let us discuss the smooth coefficient linear analysis briefly.
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For this, one needs to specify some function spaces (usually with
considerable freedom) X ,Y , and consider the continuous map (the
linearization)

P : X → Y .

In spite of the considerable freedom, it is crucial to be able to fix
these spaces. Note also that while many choices may be
equivalent, other choices may result in very different operators (cf.
boundary conditions)!

For us, X ,Y are (almost) decaying exponentially weighted, in t∗,
Sobolev spaces, Hs,` = e−`t∗Hs (with some extra information on
the initial/final ‘Cauchy surfaces’.

Solvability is a surjectivity statement...



Setup and results Idea of proofs

Solvability is a surjectivity statement. The almost-surjective
version is the semi-Fredholm estimate

‖v‖Y ∗ ≤ C (‖P∗v‖X∗ + ‖v‖Z ),

where the inclusion map X ∗ → Z is compact. For us this has the
form

‖v‖H−s+m−1,−` ≤ C (‖P∗v‖−s,−` + ‖v‖−N,−`′);

then Y = Hs−m+1,`, X = {u ∈ Hs,` : Pu ∈ Y }.

It is proved in a 2-step process. First one proves

‖v‖H−s+m−1,−` ≤ C (‖P∗v‖−s,−` + ‖v‖−N,−`);

here the error term on the right hand side hand is non-compact
because it has not become weaker in decay. This uses microlocal
analysis. Here all the ingredients are in principle unchanged for the
full subextremal range, provided one checks the dynamical
hypotheses... this is being written up with Lindblad Petersen for
the full subextremal range (the basic writeup is done).
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Then in Step 2 one proves an estimate for a model operator at
infinity (this will be Kerr-de Sitter as our solution is decaying to it)

‖v‖H−s′+m−1,−` ≤ C‖P∗0v‖−s′,−`;

Applying this to v (with −s ′ + m − 1 ≥ −N) or its localized to
large t∗ version, and using that P − P0 has decaying coefficients,
thus maps into a more decaying space, one gets the semi-Fredholm
estimate

‖v‖H−s+m−1,−` ≤ C (‖P∗v‖−s,−` + ‖v‖−N,−`′).

In order to have the P0 estimate, one conjugates it by the Fourier
transform to obtain a family P̂0(σ) where σ is the (complex!)
Fourier dual of −t∗; this is where the stationarity is used. One
then automatically has a(n analytic) Fredholm theory for P̂0(σ),
corresponding to the Step 1 estimate...
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In order to have the P0 estimate, one conjugates it by the Fourier
transform to obtain a family P̂0(σ) where σ is the (complex!)
Fourier dual of −t∗; this is where the stationarity is used. One
then automatically has a(n analytic) Fredholm theory for P̂0(σ),
corresponding to the Step 1 estimate. (Actually, there is a small
wrinkle for large |a| in that one would like a non-trapping Fredholm
theory for simplicity: this requires a better choice of φ∗, i.e. ∂t∗ ;
this is possible due to work with Lindblad Petersen.)

Thus, the question is invertibility, i.e. whether P̂0(σ) has a
non-trivial nullspace (index 0 follows from large σ considerations);
this is how the resonances play a role. The net result is that as
long as −` is not the imaginary part of a resonance σ, one has the
desired estimate, and so the Fredholm theory for P for all but a
discrete set of weights (at least as long as the Step 1 theory allows
this: trapping!).
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In combination, when one is a weaker (more growing) space than
given by all the resonances, one gets surjectivity/solvability. As one
makes the decay stronger, crossing the resonances, one loses
surjectivity, but it is simple to explain what happens: the solution
in general will have a quasinormal mode component, corresponding
to the resonances crossed.

Thus, one can solve these wave equations in exponentially
decaying spaces, modulo a finite quasinormal mode expansion. Of
course, for the non-linear problem the latter is an issue; one would
want solvability in decaying spaces...

This completes the analytic discussion, modulo the mode analysis.
(Cf. recent work of Casals and Texeira da Costa!)
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Unfortunately, in the harmonic/wave/DeTurck gauge, while the
dynamical assumptions are satisfied, there are growing modes,
although only a finite dimensional space of these. The key to
proving the theorem (given the analytic background) is to
overcome this issue.

The Kerr-de Sitter family automatically gives rise to non-decaying
modes with σ = 0, but as these correspond to non-linear solutions,
one may expect these not to be a problem with some work.

One might then expect that the other non-decaying (including
growing!) modes come from the diffeomorphism invariance, i.e.
gauge issues, but this is not true at this stage: there are growing
modes! (Explicit for de Sitter.)

However, we can arrange for a partial success: we can modify Φ by
changing δ∗g by a 0th order term:
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δ̃∗ω = δ∗g0ω + γ1 dt∗ ⊗s ω − γ2g0 trg0(dt∗ ⊗s ω),

Φ(g , g0) = δ̃∗Υ(g).

For suitable choices of γ1, γ2 � 0, this preserves the dynamical
requirements, and while the gauged Einstein’s equation does still
have growing modes, it has a new feature:

�̃CP
g = 2δgGg δ̃

∗, g = gb0

has no non-decaying modes! (There was no reason to expect that
the DeTurck gauge is well-behaved in any way except in a high
differential order sense, relevant for the local theory!)

Such a change to the gauge term, called ‘constraint damping’ or
‘stable constraint propagation’ (SCP), has been successfully used
in the numerical relativity literature by Pretorius and others,
following the work of Gundlach et al, to damp numerical errors in
Υ(g) = 0; here we show rigorously why such choices work well.
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SCP is useful because it means that, for g = gb0 , any non-decaying
mode h of the linearized gauge fixed Einstein equation is a solution
of Dg (Ric(g) + Λg)h = 0.

Indeed this follows by applying δgGg to the gauge fixed Einstein’s

equation, using Bianchi’s second identity, giving that �̃CP
g (DgΥ)h

and thus (DgΥ)h vanish. Thus, properties of a gauge dependent
equation are reduced to those of one independent of the gauge!
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Growing modes are disastrous for non-linear equations, such as
Einstein’s, so we also need a statement that the above modes are
actually pure gauge modes, i.e. given by linearized diffeomorphisms,
so of the form δ∗gω for a one-form ω, corresponding to infinitesimal
diffeomorphisms. We call this, together with a precise treatment of
the zero modes, UEMS, ungauged Einstein mode stability.

UEMS is actually well-established in the physics literature in a
form that is close to what one needs for a precise theorem; this
goes back to Regge-Wheeler, Zerilli and others; the invariant form
we use is due to Ishibashi, Kodama and Seto.
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Now, without the KdS-family zero modes (we call such a setting
UEMS*, which holds for dS), we could easily have a framework to
show global stability: namely consider

Φ(g , g0; θ) = δ̃∗(Υ(g)− θ),

where θ is an unknown, lying in a finite dimensional space Θ of
gauge terms of the form Dgb0

Υ(δ∗gb0
(χω)), where χ ≡ 1 for

t∗ � 1, χ ≡ 0 near t∗ = 0, and such that δ∗gb0
ω is a non-decaying

resonance of the gauged Einstein operator.

As Dgb0
Υ(δ∗gb0

(ω)) = 0 by SCP, Dgb0
Υ(δ∗gb0

(χω)) is compactly
supported, away from Σ0, i.e. elements of Θ are also such.
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Then we could solve

Ric(g) + Λg − Φ(g , g0; θ) = 0

for g and θ, with g − gb0 in a decaying function space. Crucially θ
is also treated as an unknown.

This can be seen by solving the linearized equation without θ in a
space which is decaying apart from finitely many non-decaying
resonant modes, and then subtracting away cut off versions of
these resonant terms and checking the equation they satisfy.
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However, it is not hard to actually deal with the full KdS family by
modifying our equation by adding another term to it which
corresponds to the family and somewhat enlarging the space Θ.

The result is that for an appropriate finite dimensional space Θ the
nonlinear equation

(Ric(g) + Λg)− δ̃∗(Υ(g)−Υ(gb0,b)− θ) = 0

with prescribed initial condition is solvable for g , θ, b with θ ∈ Θ, b
near b0, and g − gb exponentially decaying; here
gb0,b = (1− χ)gb0 + χgb is the asymptotic Kerr-de Sitter metric
with parameter b. Thus, both b and θ are found along with g in
the nonlinear iteration! This proves the nonlinear stability of the
KdS family with small a.
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Thank you!


	Setup and results
	Idea of proofs

