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Two take home messages

/

-

» Certain open sets of solutions ¥ blow up
as we approach the Big Bang singularity

/>The homogeneous wave equation )
O, =0
can serve as a ‘“poor” linear proxy for the
\_ full Einstein field equations W
~




Behavior of 9 near the Big Bang

Sneak Preview:
e Stability of the singularity

e Investigation of 0,1 = 0 as a “poor man’s” linearisation to the Einstein
field equations,

e using renormalized energy estimates, commutation with spatial derivatives
and control of error and bulk terms.



Friedmann-Lemaltre-Robertson- Walker
spacetimes

Spacetimes (Ry x T°, g) with metrics:
grLRW = —dt* + t%(daﬁ + drs + dz3), % <y <2,

is a solution to the Einstein-Euler system for ideal fluids with

p=(v—1)p, with p pressure and p energy density.

v = %, coasting universe without spacelike singularity

<v< for the softer phase

Leo

for the stiffer phase

Lol
N
2
N
N

\ v =2, for stiff luids = p = p, incompressibility: c¢s =c=1



Kasner spacetimes

Spacetimes (R x T2, g) with metrics:

3
JKasner — _dtQ + Z tij d.CE?,
j=1

3 3
i=1 j=1

is a solution to the Einstein vacuum equations.

For both spacetimes we have a Big Bang singularity at ¢ = 0,
where curvature blows up |Riem| ~ t72, as t — 0.




Motivation

e Derive condition under
which the Big Bang singu-
larity is stable.

e Show that the singularity
is not just an artefact
of cosmology (isotropy,
homogeneity).

e Establish the boundaries of
validity of general relativ-

ity.




Previous investigations:

Stability of the Big Bang (and the Big Crunch)

e Rodninanski, I. & Speck, J. (2014) :
Perturbations of FLRW data for the Einstein-scalar field, with spatial
topology T2, linearized around generalized Kasner solutions,
— linear stability result for Big Bang.
Einstein-stiff-fluid systems, v = 2, with spatial topology T
— non-linear stability result for Big Bang,
— asymptotically velocity term dominated behavior close to singularity.

e Speck, J. (2017) :
Perturbations of FLRW data for the Einstein-scalar field system with spa-
tial topology S3.
— non-linear stability result for Big Bang and Big Crunch,
— asymptotically velocity term dominated behavior close to singularity.

= Monotonic blow-up behavior might not hold for typical matter models



Previous investigations:

Linear stability of the Big Bang:

e Allen, P. T. & Rendall, A. D. (2010):

Scalar perturbations for fixed Einstein-Euler background, in T° topology
— near the singularity and at late times

e Petersen, O. (2016):

Kasner modes with R? topology.
— modes in non-flat Kasner spacetimes grow logarithmically for

small times,
— modes in flat Kasner spacetimes stay bounded for small times,

— modes in general Kasner spacetimes oscillate with a polynomially
decreasing amplitude for large times.

e Ringstrom, H. (2017):
Linear systems of wave equations on cosmological backgrounds with con-
vergent asymptotics
— asymptotically velocity term dominated behavior




Goal:

l

analyze behaviour of smooth solutions to 0,9 = 0
towards the singularity as an initial value problem

formulation method
Characterize open sets of ini- Derive appropriate energy es-
tial data at a given time timates 1 physical Space,
to > 0 for which such blow up which may also prove useful
behaviour occurs at ¢t = 0. for dynamical studies.




Main results

/ Main Theorem [Asymptotic profile] \

Let v be a smooth solution to the wave equation, Ll 1y = 0, for
either of the metrics grLRW, GKasner, @7iSing from initial data
(10, O1hg) on Xy, . Then, ¥ can be written in the following form:

YrLrw (t, @) = ApLrw (2)t 7 + urLrw (¢, @), (1)
wKasner (ta ZU) — AKasner (37) 1Ogt + UKasner (ta LE), (2)
where A(z),u(t, x) are smooth  functions and

uFLRWt%_l,uKasneT(log t)~1 tend to zero, ast — 0.

. 4




Main results

Main Theorem [Blow-up/
Let ¢ be a smooth solution to the wave equation, Uz = 0, for either of the metrics

JFLRW YKasner, arising from initial data (g, 0itbg) on Xy, to > 0. If Owpg is non-zero in
L2(T?), tg is sufficiently small such that

4

2— 3
2t >
1_0(—1)2 Z Hataﬂiz'@bOH%Q(’I[‘?’) < E”atqybOH%?(’ﬂ‘B); (FLRW) (1)
3v/ =1
D ) ,
Z (1 —p;)2 Hata@“iwDHLQ(TS) < €||3t¢0||L2(T3), (Kasner) (2)
i=1 !

and g, Ostbg satisfy the open conditions

8

3 — 3~ 3
— oty >
(1 - ool >t0 7 3 100 vol3aimy + =g 3 10,00 Yollaes),  (FLRW)

_ 2
1=3 1 (37) i,j=1
(3)
3 2t2—2p7—2’p3

aiﬁinH%Q(Tﬁ") + Z (01 _p_)g Haﬂfja%;wOHLz’(TS): (Kasner)
(4)

3
(1 = &)llowol ey > D to
=3

2,j=1

for some 0 < e < 1, then ||A(z)||g2(rs) > 0.




Preliminaries

Emnergy currents and vector field method

The wave equation

Og¢ =0

can be derived from the matter field Lagrangian:

£, dg™) = [ 90,00, dVol.

M

A symmetric stress energy-momentum tensor can be identified:

1
Ty = 0,000 — 59”,,9@58&108@.
Energy conservation:

VAT, = (Og)dy = 0.



Preliminaries

Define the current:

and the divergence:
Vi, = VT, V") =K" +&Y,
with the two scalar currents

KV() = T@)VV) =3 (Lvo) Tu(¥)
EV () = (VATL)VY = (0,0)V (¥).



Preliminaries

The divergence theorem

To obtain Energy Theorem use versions of the divergence theorem.
Consider a spacetime region S which is bounded by the homologous
hypersurfaces >, and >y and obtain

/Z JY (Y)nk dVols, + /S VAT (1h)dVol = /E JY ()&, dVolSy.
T 0



Sketch of the proof

Applying the divergence theorem to V2J:X [1)], over the spacetime domain 1Us Fselt tol
in the whole torus, U;, = ¥;, we get

/ Jg[w]n%tvolyt —/ Jg[w]n%tovolmo _ tto fU.S VaJX [¢]voly. ds,
U, U

to

where ny, = —0¢, voly, is the intrinsic volume form of Uy.




Sketch of the proof

For open initial conditions in a neighbourhood of >,
U;, we obtain blow-up for the L?(Uy) norm

0

Applying the divergence theorem in the domain of dependence of an open neigh-
borhood Uy, of the initial hypersurface >y, , we get

to
| It volu s STy o TN WS volys = fy, Xt ol — [ [ verX vl ds,
U: ! 0 ¢ t Jus



Sketch of the proof

We will choose the vector field X to be a suitable rescaling of ny, = —0;:

g X0 = T = 5[0+ [FOP] T [l 20

where V is the covariant derivative intrinsic to the level sets of t.
Controlling the bulk in terms of J5 [¢], gives an energy estimate for 1.

Commuting the wave equation with spatial derivatives and applying the
above energy argument, gives higher order energy estimates.

Spatially homogeneous spacetimes: the spatial coordinate derivatives {J,, }
are Killing and hence [O,,0,,] =0,i=1,2,3.

This means that the energy estimates for ¢ are also valid for 054y = 971 052073,
la| = a1 + as + a3 (multi-index notation).

In this notation, the H*(2;) norm of a smooth function f : (0, +o00) x T3
equals

T L (0% F)2vol pue,

la|<k

where volg,. = dridzadzs.



Flat FLRW

Let 7 be a smooth solution to the scalar wave equation
DQFLwa = 0.

Consider the orthonormal frame adapted to the constant ¢ hypersurfaces
>+ with the past normal vector field ey pointing towards the singularity

_2
eg = —O, e; =1t 370,,.

Second fundamental form Kj;; of X
1 _
Kiz' = g(veie()aei):___: ?':]-:273'

Intrinsic volume form on >;

2
voly;, = t7 volgye.



Flat FLRW

ﬂroposition (upper energy and pointwise bound):

The following energy inequality holds:

2
£ /
2

e loelvols, <t [
>

to

| tx]<C’(

Jo° [0z w]vols, ,

for all ¢ € (0,%0] and any multi-index a. Moreover, 1 satisfies the pointwise
bound

Lo
> tg / J5° 103 ¢]vols, )

|| <2

w

\here C > 0 is a constant independent of £g, 7.

+ W(toaﬂ?)’a

4




Flat FLRW N

Proof (upper energy bound): Lo

2

o Take X = t%eg, and compute the divergence of J(’feﬁ []:

VLTl = Vo) Tl
= 3 K™Top[th] — eot™ Toolt)]
41 2 —
= 5|Vl
3vt Vol

e From divergence theorem (holding for 95t as well)

i%/J?Mm@ = @f
PP 2y

¢
o 4 2_4 =
Jo° [Y]vols, —f f — 55 V| ?voly, ds
t Y. 3y

e Bounds for 01:

oot <2 | Jelozvivls,,

Stq

for all t € (0,%p] and «.



Flat FLRW "

Proof (upper pointwise bound):

e Integrating 9y in [t,tg] and Sobolev embedding H?(T3) — L>(T?) :

t
|w(t:$)‘ - | 88¢(S7$)d3+¢(t07$)|
to
to
< [ oulmds + 0. )
t
C 1-2 1__ 80 1
< TN W [ domivetn, )+ it
v || <2
for (v < 2). ]

Remark :

e From the above we saw that t'~7 is the leading order of ¢ at t = 0.
P

1—

t

e Therefore, we derive energy bounds for the renormalised variable

-2 b

with the wave equation:




Flat FLRW

Proposition (renormalized energy estimates and asymptotic profile):

Let v be a smooth solution to the wave equation in FLRW backgrounds with
% < v < 2. Then, the following bounds hold uniformly in ¢ € (0, ty]:

[ ) 48 [ 4
£ / Jo |07 isz voly, < t; ° / Jo° |07 tfz vols, , 3 S <
2 L . 215() B v
] _ ., _ _ 7
VR / JEO |92 ;’_Dz voly,, < t5 7 JEO |92 1162 voly, 3 <y <
30, R A I S A

for all ¢ € (0,%y] and any multi-index «. Moreover, the limit

A(z) := lim 4

t—0 tl—%

exists, it is a smooth function and the difference u(t, x) := ¢ — A(:E)tl_% satisfies

lim 2 / Jeo[9%u]vols, = 0.
2y

t—0

DD

s

Q| =




Flat FLRW "

Proof (renormalized energy estimates): Lo

e Let n > 0. We compute

at”eoi_—liﬂ_w2 ﬂi_ ¥
VD = 0 G DI (2 - e

B

)
e This leads to different choices of 1 depending on the value of ~, given by
4 : :
n = 4——, for - <~v<2, stiffer region,

4 :
<7< 3 softer region.

4

The case v = 3 corresponds to radiation.

e For the two cases, the divergence reads

a 47%6 w 8 -5 = %D
Vv (Jé D[tl—% ]) - (2 - 5)753 v vtl_%. ‘27
a t_%e w 8 12 ’Q/) 2
0 = (0= -2 % .
V4(Ja [tl_%]) (37 ) [60(751_%)]

: X[ _¥ : _ 44-2 4
e The divergence theorem for J*[—*=], with X =#""7eg, 3 < v <2, and
1 ¥

X = t*%eg, % < v < %, gives the first part of the proposition.




Flat FLRW N

Proof (pointwise estimates and asymptotic profile):

e In particular, taking into account the volume form vols;,, = £% vol Euc, We
have the bounds:

C _6 1 4
’attlwz‘ ﬁCH@t wz HH2 < 2 ( Z to ’Y/ JSO[ 17’[}2]\/01&0) )3 <y <2
)y

1 2—
~ t t° v o <2 to tO ~
W W C — 2 2 2 4
O 1_2| < C|0 1—2 g2 < 2 Z to Jo° [0 1_21‘7012% o5 <Y 5
e t Loy || <2 X t 3 3

e 9y(t,x) € L*([0,%0]), uniformly in z, for all £ < v < 2.

e Thus, 1?’7”2 has a limit function A(x), as £ — 0.
t ¥

e The smoothness of A(x) follows by repeating the preceding argument for

(8%
oy ——+.

t




Flat FLRW oo

Proof (asymptotic profile limy_o ™ Is, J6°103 ulvols, = 0):

e Energy flux of u(t,z) = ¢ — A(z)t' >

_2 2 4

Sl R Y (1"*”2 — A@)P + V(=L — A@)Pvols,

pIN t v Y t _7 t
< 2tf‘%/ 273 Jeo— 2\ -2y )+ [ P 4 7 [T A@) o,

2y t

2 eq w 2 w 2 2 — 2

< 4 Jy > [volguye + 2(1 — —) | — — A(z)|"volgye + 2t |V A(x)|"vol Eue

¥y =5 Y s, 175 >,
< 0(1)+2(1_3)2 |—— — A(z)[*volgue + 26° 372/ 102, A(z)|*vol gue,

Y > t GG

e The third term in the preceding RHS clearly tends to zero, as £ — 0, and
by the definition of A(x), so does the second term.

e Since the above argument also applies to 9% [w—A(:E)tl_%], the proposition
validates the asymptotic profile of v, as stated earlier for flat FLRW.



Main results

/ Main Theorem [Asymptotic profile] \

Let v be a smooth solution to the wave equation, Ll 1y = 0, for
either of the metrics grLRW, GKasner, @7iSing from initial data
(10, O1hg) on Xy, . Then, ¥ can be written in the following form:

YrLrw (t, @) = ApLrw (2)t 7 + urLrw (¢, @), (1)
wKasner (ta ZU) — AKasner (37) 1Ogt + UKasner (ta LE), (2)
where A(z),u(t, x) are smooth  functions and

uFLRWt%_l,uKasneT(log t)~1 tend to zero, ast — 0.

. 4




Flat FLRW

Remarks (improved control and asymptotic profile):

e The renormalised estimate yields an improved control over Vi for all

t € (O,to]

— 4—8 4
tz—%t%f Vi Pvoly, <t / JE sz}volgs, - <y <2,
N I t 3

— -2 2 4
ti‘i’v’_zt%/ ‘V@/)FVO]ES < it o / JSO[ 2 ]VOIZS, — <y < o
¥, Zto t 5 3 3

e For v > %, the main contribution of the energy flux generated by J€[4]
comes from the ey term.

5 / To [Wlvols, = 5 [, £ (9th)*volgye + O(#")
2y

whcren:%—2>0,f0rfy€[%,Z)andn:2—%>0,forfy€(%,

COl =

Proof (blow-up):
e HHence, taking the limit £ — 0

1

2 2
: > €q — - - 2 2
%1_{%15 Lt Jg" [Y]vols, 2(1 ’)/) A“(z)vol gy

2
=t8f
>

to

>0
. 4 to 2 4 = 19
J5° [¢]voly, — — 87 Vip|“vols_ ds.
37 Jo ¥,



Flat FLRW

Lemma:
The following estimate for the L? norm of 9, holds:

2

Jgo [a:cz w]V(ﬂEuc) )

1—2 1_2
ty T —ti¥) 2
100225 < Woaetlzngsg + VERT =503 ([

Y o

for all ¢t € (0,1¢].

Proof:
Differentiating in ey we have:

1
§€0Haxi¢||,252(zt) < N0zl 2= le00z, ¥ 22 (s,

1 2
< — (2755’ /
t~ )y

Jﬂ%Mmm)W%wwm

to

or

2

a
col sl sy < VIS (|
by

S

Joeo [8$L w]V01Euc>

tp

Integrating the above on [t, tg] for v < 2, proves the Lemma. =




Flat FLRW

Proof (blow-up):

e Putting together improved estimate, asymptotic profile, the divergence
theorem, and the L? norm of the spatial derivatives, we get

1 2 2 4 fto 5 L .
—(1——)2/ A (z)volgye = ta/ JS“[@b]VolgS—_—/ swl/ |V4)|*voly,_ds
2 B Yo I 37 Jo ¥,
3
1 4 1] 4_4
= St 106011725, ) + gto D N0l 7es, )
i=1
3

/Jo i1

16 (% s g a(ty " —s ; : = [ jeorn
o 57T i_2p2 dsz{,{) o [0, 0] vols,

. Js
=1 0

3
1 4 1 &
= 5lo 100011725, ) — §t37 > 102,00 725,
i=3

tlz_% 3 , . 3
0 Y1A.a 2 3y - RAE:
{t[) |01 0., 2| L2(%4,) + 1o Z |\()rj()z,“@/HLZ(E,U)

1 (22
1 (3‘7) i=1 J=1

e If the assumptions of the blow-up Theorem for FLRW are satisfied, then ]
|A(@)[ 212y > 0.



Main results

Main Theorem [Blow-up/
Let ¢ be a smooth solution to the wave equation, Uz = 0, for either of the metrics

JFLRW YKasner, arising from initial data (g, 0itbg) on Xy, to > 0. If Owpg is non-zero in
L2(T?), tg is sufficiently small such that

4

2— 3
2t >
1_0(—1)2 Z Hataﬂiz'@bOH%Q(’I[‘?’) < E”atqybOH%?(’ﬂ‘B); (FLRW) (1)
3v/ =1
D ) ,
Z (1 —p;)2 Hata@“iwDHLQ(TS) < €||3t¢0||L2(T3), (Kasner) (2)
i=1 !

and g, Ostbg satisfy the open conditions

8

3 — 3~ 3
— oty >
(1 - ool >t0 7 3 100 vol3aimy + =g 3 10,00 Yollaes),  (FLRW)

_ 2
1=3 1 (37) i,j=1
(3)
3 2t2—2p7—2’p3

aiﬁinH%Q(Tﬁ") + Z (01 _p_)g Haﬂfja%;wOHLz’(TS): (Kasner)
(4)

3
(1 = &)llowol ey > D to
=3

2,j=1

for some 0 < e < 1, then ||A(z)||g2(rs) > 0.




Related subsequent work

e Bachelot, A. (2018):
Considers Klein-Gordon type equations on FLRW backgrounds. In prac-
tice, he considers warped product type geometries (in this sense, the re-
sults are more general than FLRW). Moreover, he considers Big Bang, Big
Crunch, Big Rip, Big Brake and Sudden Singularities.

e Ringstrom, H. (2018):
Considers different classes of Bianchi spacetimes and investigates singu-
larities that are matter dominated as well as singularities that are vacuum
dominated; and even when the asymptotics of the underlying Bianchi
spacetime are oscillatory. Further, he analyzses Klein-Gordon type equa-
tions on flat Kasner backgrounds.

e Girao, P., Natério, J. and Silva, J. (2018):
Show boundedness for a certain class of solutions approaching the FLRW
Big Bang singularity on scalar wave equation level.




Conclusion

For certain open sets of smooth initial data,
the resulting solutions v, to the wave equation
for Friedmann-Lemaitre-Robertson-Walker
and Kasner spacetimes, blow up close to the
Big Bang singularity.




773 campuses of US colleges as of August 24, 2021, have issued
vaccination requirements for at least some students and/or employees.

U

Scientific evidence

U

Ronald N. Kostoff, Daniela Calina, Darja Kanduc, Michael B. Briggs, Panayiotis
Vlachoyiannopoulos, Andrey A. Svistunov, Aristidis Tsatsakis

Why are we vaccinating children against COVID-19? Toxicology Reports, Volume 8, 2021, Pages
1665-1684

“»
L[]

o

loannidis JPA. COVID-19
Vaccination in children and university students. Eur J Clin Invest. 2021;51:e13678.

Luckhaus, Stephan: Mathematical epidemiology : SIR models and COVID-19
MIS-Preprint: 60/2020

Luckhaus, Stephan: Corona, mathematical epidemiology, herd immunity, and data
MIS-Preprint: 105/2020 LINK: https://www.math.uni-leipzig.de/preprints/p2010.0010.pdf



https://www.sciencedirect.com/science/article/pii/S221475002100161X
http://www.mis.mpg.de/publications/preprints/2020/prepr2020-60.html
http://www.mis.mpg.de/publications/preprints/2020/prepr2020-105.html
https://www.math.uni-leipzig.de/preprints/p2010.0010.pdf

All races, genders, social-, financial- and

vaccination- statuses.



