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Overview of boson stars

In asymptotically flat spacetime: stationary configurations of
general relativistically self-gravitating, massive, complex scalar
field, possibly with nonlinear self-interaction

Long history: First constructed by Kaup (1968) and shortly
thereafter and independently by Ruffini and Bonazzola (1969)

Astrophysical/cosmological significance remains unclear, but at
various times have been proposed as, e.g:

— Candidates for gravitationally compact objects in lieu of black holes

— Candidates for dark matter halos of galaxies, and dark matter in
general

Computationally: less challenging to simulate in many respects
than fluid matter (no shocks); basis for good model problems



Overview of boson stars

Lagrangian (with quartic self-interaction)
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Impose spherical symmetry, and time-harmonic ansatz for
scalar field

ds? = —B(r)dt* + A(r)dr? + r’dQ’

#(t,r) = y(r)e™

Get eigenvalue problem (set of ODEs) for any w(0) finite
energy solution exists only for specific values of @ (or vice
versa; in general have countable infinity of solutions)



Boson star evolution

(3.2e+01, 1.5e+00)

Q-ball evolution

(0.0e+00, -1.5e+00)




Families of boson stars
(Colpi, Wassermann & Shapiro (1986))
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Multi-oscillating Boson Stars in AdS



Motivation

Asymptotically de Sitter and asymptotically flat spacetime
known to be stable (Friedrich (1986), Christodoulou &
Klainerman (1993))

What about AdS (with reflecting boundary)?

Heuristic considerations suggest arbitrarily small excitations
can form black holes (Dafermos & Holzegel (2006), Dafermos
(2006))

Convincing numerical evidence presented by Bizon and
Rostworowski (2011) based on collapse of massless scalar field

As we heard yesterday, work by Moschidis makes heuristic
ideas from numerical results and elsewhere rigorous



Scalar collapse in AdS: Black hole mass versus initial field

amplitude
(from Bizon & Rostworowski (2011))




Motivation

Numerical evidence relatively quickly suggested that not all
scalar field configurations would be unstable

Example: Buchel, Liebling and Lehner (2013)—constructed
stationary configurations of a massless, complex field

Numerical calculations indicated that at least some of these
AdS boson stars might be nonlinearly stable

Current view is that the noncollapsing data constitute “islands
of stability”; extent of the islands remains an open problem

Has implications for interpretation within the field theory dual
provided by the AdS/CFT correspondence



Prelude

Consider perturbation theory about AdS, with massless scalar
field, ¢

Take perturbative expansion

HEX) = TEPOE ) g, (6X) = 2GR X)

Linear order: perturbative soln is linear combination of normal
modes

¢(1)(t X) _ (a e+/w O a;e_iw'('O)t)Pn(X)

nO

If a =0 for at least two distinct n, secular term proportional
to 3t appears, leading to breakdown in pert. theory at
timescale 1/ ¢?; evidence suggests this is timescale at which
collapse occurs



Prelude

Now consider a; # 0 for only one value of n. Then secular
terms can be removed and can construct scalar field
configuration that oscillates at a single frequency

This is precisely a boson star in AdS

Other oscillating configurations

— Real scalar field: oscillon
— Pure gravitational field (non spherically symmetric): geon

Are all stable (or quasi-stable) configurations close to
oscillators?

What other types of oscillators are there?



Construction of an oscillator

Linearly perturb AdS to find normal mode with frequency «'”

Correct mode with higher orders in perturbation theory
(frequency also picks up corrections)

Nonperturbatively, oscillators have spectral expansion

Ht,x)= 3 TA EP(X)

k=—xo [=0

where @, can be used as a parameter, with AdS recovered for
w, = a)(o)
1~ “n

Solutions can be computed by treating t as a periodic variable
and solving resulting boundary value problem



Construction of a double oscillator

Iterate process: perturb (single) oscillator

it %) = 3 A " PX) |+ ce ot )
k,l ‘
where §(t, x) is periodic in time with frequency o,

Note: ¢(t, x) is not periodic since o, and @, are not necessarily
commensurate

However, at linear order in ¢, o, will appear as an eigenvalue in
the EOM; all perturbation functions will remain periodic in time
with frequency o,

Can thus solve system as BVP using standard approach for
solving eigenvalue problems



Construction of a double oscillator

o Reflecting boundary of AdS leads to spectrum of normal modes
for the frequency o,

e Nonpertubatively, solution takes spectral form




Construction of a double oscillator

e Then make the replacement

0y > 0, +0,

e Double oscillator can now be constructed by solving a BVP in




Details of construction

e Set AdS length scale, Newton constant to unity; spacetime
dimension 5

e Metric and massless complex scalar field ansatz:




Details of construction

Time dependence in factor €' cancels out in equation of

motion so can treat A, 6 and ¢, as periodic in time with
frequency o,

Scalar field is doubly periodic with frequencies @, and o,



Details of construction

e Slicing condition, Hamiltonian constraint, scalar field evolution
equations

COS X0, — sinx (8 + cos® xS )& = —sinxS




Details of construction

Stage 1: Find boson stars and their perturbations; set

D (t,x) = Dy(X) + €| cos(w,t)5D, (X) |
®_(t,x) = €| sin(a,t)5D_(X) ]
I1,(t, x) = e[ sin(@,t) (1)1 (x)]

I (t, x) = Hy(x) + €| cos(a,t )1 (x)]

A(t, x) = Ay(X) + €| cos(a,t )5 A(X) ]
5(t, X) = 5,(x) + €| cos(m,t)55(x) |

With ¢ =0 get a set of ODEs that can be solved to obtain a
boson star; then linearly expand in ¢ to get another set of
ODEs for perturbation functions as an eigenvalue problem with
eigenvalue o,

Solve these ODE systems using Fourier spectral methods



Details of construction

e Stage 2: Use perturbed boson stars as initial conditions for
Newton-Raphson solution of full, nonlinear BVP resulting from
treating t as a periodic coordinate with frequency o,




Boson star energy (total mass) vs o,




Double oscillators: Energy vs o,
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Double oscillators: Parameter space

0.
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—0.0025
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Black: Boson stars
Red: Turning point in energy
Blue: Turning point in frequency



Multi-oscillating Boson Stars in



Early Work
(Hawley & MWC (2003))

Seidel and Suen (1991) numerically constructed oscillating,
quasi-stationary self-gravitating configurations of a real,
massive scalar field

Consider two components of complex scalar field with boson
star ansatz

¢,(t,r) =w(r)cos(awt)
¢,(t,r) =w(r)cos(wt + 9)
O=*xr1/2

Then setting 6 = 0 can resolve Einstein equations, find
configuration very close to Seidel & Suen solution

Can then generalize to arbitrary 6 # 0



“Multi-scalar” star

[(0‘D¢]odooauyg

Provided strong evidence for existence of multi-field, multi-frequency,

quasi-stationary solutions



Prelude

e Consider massive (m = 1) complex scalar field

e Boson star ansatz

#(t,r) = e y(r)
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Boson




Perturbative frequency of boson stars




Details of construction

e Metric and field ansatz

p

ds® = —5 fdt? + d% + r2d0,




Details of construction

e Redefine basic dependent variables via

§=1-(1-p°)f
f=1-p*(2-p°)1-p*)f,

2\2




Details of construction

Double oscillators can then be found by setting d, - 0, + 9,
promoting f.(t, p) — f.(t,,t,, p) and demanding that each time
coordinate t; be periodic with frequency o,

In general this process yields a BVP in 3 coordinates but
problem is simplified by incorporating o, into an overall phase,
which removes the dependence on ¢,

Adopt time Fourier series
f1,2,3(tl ,O) = %":1(,5,)3(/7) COS(ka)th)

filty ) = LA (p)sin(kayt,)

Diagnostic quantities

r

r o3(2 — p2)3/2
E=Zh0)  Mp) =S )

2 2(,0)




Details of construction

Solve double-oscillator equations using Fourier spectral
methods in t, and fourth order finite differences in p

Use an overall Newton-Raphson method with boson star
solutions as initial estimates




Change in w, as function of o,

0.88 0.90 0.92 0.949 0.96 0.98 1.00
w1 /U

e, = fP(0) (equivalent to ,)




Size of star as function of energy
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Conclusions

Although we have constructed only double oscillators, it seems
clear that process can be extended to produce configurations
that oscillate on any number of incommensurate frequencies

For AdS case is tempting to conjecture that islands of stability
are precisely mapped out by such configurations

Stability of these double-oscillators (and multi-oscillators in
general) remains an open question, but fact that perturbed
single-oscillator stars appear stable for both AdS and AF cases
suggest that at least some of them are (quasi)-stable (as well
as evidence from previous calculations, e.g. Hawley & MWC
(2003))

Construction should extend to related models, such as Q-balls
(stationary configurations of nonlinearly self-coupled scalar
fields in flat spacetime)



