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Overview of boson stars

• In asymptotically flat spacetime: stationary configurations of 
general relativistically self-gravitating, massive, complex scalar 
field, possibly with nonlinear self-interaction

• Long history: First constructed by Kaup (1968) and shortly 
thereafter and independently by Ruffini and Bonazzola (1969)

• Astrophysical/cosmological significance remains unclear, but at 
various times have been proposed as, e.g:

– Candidates for gravitationally compact objects in lieu of black holes

– Candidates for dark matter halos of galaxies, and dark matter in 
general

• Computationally: less challenging to simulate in many respects 
than fluid matter (no shocks); basis for good model problems



Overview of boson stars

• Lagrangian (with quartic self-interaction)

• Impose spherical symmetry, and time-harmonic ansatz for 
scalar field

• Get eigenvalue problem (set of ODEs) for any         finite 
energy solution exists only for specific values of     (or vice 
versa; in general have countable infinity of solutions)  
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Boson star evolution



Families of boson stars
(Colpi, Wassermann & Shapiro (1986))



Multi-oscillating Boson Stars in AdS
(MWC, Santos, Way, (2018))



Motivation

• Asymptotically de Sitter and asymptotically flat spacetime 
known to be stable (Friedrich (1986), Christodoulou & 
Klainerman (1993))

• What about AdS (with reflecting boundary)?

• Heuristic considerations suggest arbitrarily small excitations 
can form black holes (Dafermos & Holzegel (2006), Dafermos
(2006))

• Convincing numerical evidence presented by Bizon and 
Rostworowski (2011) based on collapse of massless scalar field

• As we heard yesterday, work by Moschidis makes heuristic 
ideas from numerical results and elsewhere rigorous



Scalar collapse in AdS: Black hole mass versus initial field 
amplitude

(from Bizon & Rostworowski (2011))



Motivation

• Numerical evidence relatively quickly suggested that not all 
scalar field configurations would be unstable

• Example: Buchel, Liebling and Lehner (2013)—constructed 
stationary configurations of a massless, complex field

• Numerical calculations indicated that at least some of these 
AdS boson stars might be nonlinearly stable

• Current view is that the noncollapsing data constitute “islands 
of stability”; extent of the islands remains an open problem

• Has implications for interpretation within the field theory dual 
provided by the AdS/CFT correspondence



Prelude

• Consider perturbation theory about AdS, with massless scalar 
field, 

• Take perturbative expansion

• Linear order: perturbative soln is linear combination of normal 
modes

If            for at least two distinct n, secular term proportional 
to      appears, leading to breakdown in pert. theory at 
timescale        ; evidence suggests this is timescale at which 
collapse occurs  
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Prelude

• Now consider           for only one value of n.  Then secular 
terms can be removed and can construct scalar field 
configuration that oscillates at a single frequency

• This is precisely a boson star in AdS

• Other oscillating configurations

– Real scalar field: oscillon

– Pure gravitational field (non spherically symmetric): geon

• Are all stable (or quasi-stable) configurations close to 
oscillators?

• What other types of oscillators are there?
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Construction of an oscillator

• Linearly perturb AdS to find normal mode with frequency

• Correct mode with higher orders in perturbation theory 
(frequency also picks up corrections)

• Nonperturbatively, oscillators have spectral expansion

where     can be used as a parameter, with AdS recovered for

• Solutions can be computed by treating t as a periodic variable 
and solving resulting boundary value problem
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Construction of a double oscillator

• Iterate process: perturb (single) oscillator

where           is periodic in time with frequency

• Note:                                                      are not necessarily 
commensurate

• However, at linear order in       will appear as an eigenvalue in 
the EOM; all perturbation functions will remain periodic in time 
with frequency

• Can thus solve system as  BVP using standard approach for 
solving eigenvalue problems   
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Construction of a double oscillator

• Reflecting boundary of AdS leads to spectrum of normal modes 
for the frequency

• Nonpertubatively, solution takes spectral form

which is “periodic” on the two frequencies 

• Now consider alternative spectral expansion

which is periodic on t1 and t2
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Construction of a double oscillator

• Then make the replacement

• Double oscillator can now be constructed by solving a BVP in 
x, t1 and t2 where t1 and t2 are periodic with frequencies

• Clearly, can extend this process indefinitely, leading to multi-
oscillators that are periodic on more and more frequencies
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Details of construction

• Set AdS length scale, Newton constant to unity; spacetime 
dimension 5

• Metric and massless complex scalar field ansatz:
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Details of construction

• Time dependence in factor       cancels out in equation of 
motion so can treat                 as periodic in time with 
frequency   

• Scalar field is doubly periodic with frequencies

• Introduce first order variables 

• Momentum constraint (used as independent check)
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Details of construction

• Slicing condition, Hamiltonian constraint, scalar field evolution 
equations
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Details of construction

• Stage 1: Find boson stars and their perturbations; set

• With         get a set of ODEs that can be solved to obtain a 
boson star; then linearly expand in   to get another set of 
ODEs for perturbation functions as an eigenvalue problem with 
eigenvalue  

• Solve these ODE systems using Fourier spectral methods
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Details of construction

• Stage 2: Use perturbed boson stars as initial conditions for 
Newton-Raphson solution of full, nonlinear BVP resulting from 
treating t as a periodic coordinate with frequency 2



Boson star energy (total mass) vs 
1



Double oscillators: Energy vs 
2



Double oscillators: Parameter space

Black: Boson stars
Red: Turning point in energy
Blue: Turning point in frequency  



Multi-oscillating Boson Stars in 
Asymptotically Flat Spacetime

(MWC, Masachs, Way (2019))



Early Work
(Hawley & MWC (2003))

• Seidel and Suen (1991) numerically constructed oscillating, 
quasi-stationary self-gravitating configurations of a real, 
massive scalar field

• Consider two components of complex scalar field with boson 
star ansatz

• Then setting         can resolve Einstein equations, find 
configuration very close to Seidel & Suen solution 

• Can then generalize to arbitrary 
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“Multi-scalar” star

Provided strong evidence for existence of multi-field, multi-frequency, 
quasi-stationary solutions



Prelude

• Consider massive (m = 1) complex scalar field

• Boson star ansatz

• Again, boson stars constitute one-parameter family (family 
parameter                 e.g.)

• Can determine lowest perturbative mode; has frequency

• As with AdS case, perturbative mode can be “promoted” into 
nonlinear regime, resulting in double oscillator  
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Boson star energy vs frequency



Perturbative frequency of boson stars



Details of construction

• Metric and field ansatz

• Introduce compactified spatial coordinate
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Details of construction

• Redefine basic dependent variables via

• Now consider quasiperiodic function f on k frequencies

• Has same spectral information as
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Details of construction

• Double oscillators can then be found by setting
promoting                             and demanding that each time 
coordinate ti be periodic with frequency     

• In general this process yields a BVP in 3 coordinates but 
problem is simplified by incorporating     into an overall phase, 
which removes the dependence on t1

• Adopt time Fourier series

• Diagnostic quantities
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Details of construction

• Solve double-oscillator equations using Fourier spectral 
methods in t2 and fourth order finite differences in

• Use an overall Newton-Raphson method with boson star 
solutions as initial estimates
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Size of star as function of energy



Conclusions



Conclusions

• Although we have constructed only double oscillators, it seems 
clear that process can be extended to produce configurations 
that oscillate on any number of incommensurate frequencies

• For AdS case is tempting to conjecture that islands of stability 
are precisely mapped out by such configurations

• Stability of these double-oscillators (and multi-oscillators in 
general) remains an open question, but fact that perturbed 
single-oscillator stars appear stable for both AdS and AF cases 
suggest that at least some of them are (quasi)-stable (as well 
as evidence from previous calculations, e.g. Hawley & MWC 
(2003))

• Construction should extend to related models, such as Q-balls 
(stationary configurations of nonlinearly self-coupled scalar 
fields in flat spacetime)


