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Wanted: Gravitational Waves at I +

We are concerned with the first principles computation of
gravitational waves at future null infinity.

State-of-the-art:

I Extrapolation.

I Characteristic-Extraction.

Wishlist:

I Well-posedness. Nice equations
and solutions.

I Extension of strong-field setup.

I Proveably good numerics.
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Timelike outer boundary. Vañó-Viñuales. 2015.



The weak-field

The wavezone is weak, so how is it a problem? Infinity is really big.

Fundamental ingredients:

I Compactify whilst resolving
outgoing waves. Introduces
blow-up quantities.

I Asymptotic Flatness: Metric
decays near infinity.

Key to any computational strategy is
the management of this competition.

Examples: CEFES. CCE/CCM.
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CCM Cartoon. Vañó-Viñuales. 2015.
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Hyperboloidal foliation. Vañó-Viñuales. 2015.



Compactification: dual-foliation strategy

I Observation: global inertial
representation of MK regular.

I Asymptotically flat spacetimes
looks like MK plus small terms.

I Choose such a basis carefully,
exploit this decay.

Potential strength: developments in
nonlinear stability of GR in GHG!

Illustration of DF setup.



Compactification: dual foliation formalism

Relationship between geometry with Xµ = (T ,X i ) or xµ = (t, x i )?

I Parametrize the inverse Jacobian J−1 = ∂αx
α as,

J−1 =

(
α−1W (A− B jVj) (A− B jVj) Πi + B j(ϕ−1)i j
−α−1WVi (ϕ−1)i i − ΠiVi

)
.

I Suppose we have a system

∂Tu = (AAp + Bp1)∂pu + AS ,

I Then in the lowercase coordinates we have

(1 + AV )∂tu = αW−1(Ap(ϕ−1)pp + (1 + AV )Πp)∂pu + αW−1S.

How to choose Jacobian?



Compactification: hyperboloidal initial value problem

T = T (t, r) = t + H(R), R = R(r) = Ω(r)−1r , θA = θA .

I Height function H,
compression function Ω.

I Hyperboloidal Jacobian;

Jhyp =


1 0 0 0

H ′R ′ R ′ 0 0
0 0 1 0
0 0 0 1


i0

I +

T = 0
t = 0

Rough Idea: R ′ ' Rn and H ′ ' 1− 1/R ′, 1 < n ≤ 2 achieves
desirable coordinate lightspeeds whilst compactifying.



Compactification: blow-up quantities

For systems with wave-equation like principal part (KG, GR in
GHG) combining with the Jhyp gives;

(1 + AV )−1 =

 1 0 0

−γ2W
2Vi

(N)gj i W 2Vi

−γ2(W 2 − 1) W 2V j W 2


Observations:

I Composite lower case principal part matrices regular by
construction; symmetric hyperbolicity invariant.

I On the other hand R ′ ∼ Rn ⇒W ∼ α ∼ Rn/2. Therefore
need decay in sources S to absorb growth. But is sufficient
decay present?



Asymptotics: The GBU(F)-model I

Consider a toy model for GR in GHG:

�g = 0, �b ' 1
R ∂T f + (∂Tg)2, �u ' 2

R ∂Tu,

with free choice of the equation of motion for f .

Asymptotic system recipe:

I Rescale: G = Rg , B = Rb, U = Ru, F = Rf .

I Change coordinates u = T − R, s = log(R).

I Turn krank, collect leading order in R−1.

For the model this gives

∂s∂uG = 0, 2∂s∂uB = −∂uF − (∂uG )2, ∂s∂uU = −∂uU.



Asymptotics: The GBU(F)-model II

Interesting case I: f = 0

∂s∂uG = 0, 2∂s∂uB = −(∂uG )2, ∂s∂uU = −∂uU.

Solution to asymptotic system

I ∂s∂uG = 0⇒ G = Fg (u, θA).

I ∂s∂uB = −1
2 (∂uG )2 ⇒

∂uB = −1
2s(∂uG )2.

I B = (lnR) Fb(u, θA).

i0

I +ξξ

ξ = 2
R ∂s
ξ = 2∂u

Predicts asymptotics of original fields:

g =
1

R
Fg (u, θA), b =

log(R)

R
Fb(u, θA), u =

1

R
mu(θA) .

Analogy with GR?



Asymptotics: The GBU(F)-model III

Interesting case II: Take

�f = 2
R ∂T f + 2(∂Tg)2.

Then asymptotically:

∂s∂uF = −∂uF − (∂uG )2 ⇒ ∂uF = −(∂uG )2,

... so now we recover instead:

g =
1

R
Fg (u, θA), b =

1

R
Fb(u, θA), u =

1

R
mu(θA) .

We have all of this worked out for GR in GHG together with high
order asymptotic expansions. Really interesting: “TT” gauge!



Spherical GR I

Can we capture stratification without extra structure? Defining
suitable null vectors σ and σ, the field equations take the form:

−DσDσR̊ + 1
κDσR̊(DσC+ − DσC+) = 4πR̊Tσσ ,

−DσDσR̊ + 1
κDσR̊(DσC− − DσC−) = 4πR̊Tσσ ,

plus

−Da

(
σaDσe

δ − eδ

κ2 (σaDσC− − σaDσC+)
)

+ 2
R̊3

MMS

+ eδ

κ3 (DσC+DσC− − DσC+DσC−) = 8π
R̊2

Tθθ ,

Da( e
δ

κ σ
aDσR̊

2) + 1 = 0 ,

... which is surprisingly pretty!



Spherical GR II

Imposing GHG gives

1
R̊
Dσ( 2

κ R̊
2DσC+) + Dσ(RF σ)− 2

κ(DσR̊)DσC+ + 8πR̊Tσσ = 0 ,

1
R̊
Dσ( 2

κ R̊
2DσC−)− Dσ(RF σ)− 2

κ(DσR̊)DσC− − 8πR̊Tσσ = 0 ,

for the speeds, and

Da

(
2
κσ

aDσe
δ − F a

)
− 2

R̊2

(
1− 2MMS

R̊

)
+ 2eδ

κ3 (DσC+DσC− − DσC+DσC−) = 16π
R̊2

Tθθ ,

Da( e
δ

κ σ
aDσR̊

2) + 1 = 0 .

for the det variables... which is still surprisingly pretty!



Hyperboloidal numerics with the DF-wave equation

A first numerical sanity check:

I For wave equation S small.

I Can even evolve radiation
field Rφ. [Target for GR].

I Respectable pseudospectral
convergence achieved.
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Hyperboloidal numerics with the GBU-model

Second numerical sanity check:

I ‘Radiation fields’ evolved.

I Implemented GBU-model in
spherical FD code.

I Convergence despite logs.

I (Spectral numerics desirable
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Summation by parts and hyperboloidal slices

SBP methods offer a path to
formal stability. Subtleties:

I Singular coefficients.

I Non-degenerate norms.

I Undesirable reflections.

These can be overcome, paving
the way for similar discretizations
for GR. 0.0 0.2 0.4 0.6 0.8 1.0
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Summation by parts and hyperboloidal slices

SBP methods offer a path to
formal stability. Subtleties:

I Singular coefficients.

I Non-degenerate norms.
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the way for similar discretizations
for GR.
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(Preliminary) hyperboloidal numerics for spherical GR

Numerical work with spherical GR
ongoing:

I Gauge sources compatible with
Schwarzschild in KS coodinates.

I Convergence with constraint
violating data promising.

I Initial data (and technicalities)
outstanding.

Near-term aspiration: critical
collapse.
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(Preliminary) hyperboloidal numerics for spherical GR

Numerical work with spherical GR
ongoing:
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Schwarzschild in KS coodinates.
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Conclusions

Motivated by need for GWs at null infinity we are developing a new
regularization using compactified hyperboloids. Features include:

I Dual-foliation formalism.

I Exploiting null-structure for NR.

I Careful choice of gauge and constraint addition to suppress
spurious radiation fields (and logs).

Comprehensive GR numerics on the way, stay tuned!


