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Wanted: Gravitational Waves at .+

We are concerned with the first principles computation of
gravitational waves at future null infinity.

State-of-the-art: i
» Extrapolation.

» Characteristic-Extraction.

Wishlist:

» Well-posedness. Nice equations
and solutions.

t — t=const

» Extension of strong-field setup.

» Proveably good numerics.

Timelike outer boundary. Vafié-Vifiuales. 2015.



The weak-field

The wavezone is weak, so how is it a problem? Infinity is really big.

Fundamental ingredients: i

» Compactify whilst resolving
outgoing waves. Introduces
blow-up quantities.

» Asymptotic Flatness: Metric
decays near infinity.

Key to any computational strategy is
the management of this competition.

— matched

Examples: CEFES. CCE/CCM' CCM Cartoon. Vafié-Vifiuales. 2015.
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Examples: CEFES. CCE/CC M. Hyperboloidal foliation. Vafié-Vifiuales. 2015.



Compactification: dual-foliation strategy

» Observation: global inertial
representation of MK regular.

» Asymptotically flat spacetimes
looks like MK plus small terms.

» Choose such a basis carefully,
exploit this decay.

Potential strength: developments in
nonlinear stability of GR in GHG!

lllustration of DF setup.



Compactification: dual foliation formalism

Relationship between geometry with X = (T, X%) or x* = (t,x')?

» Parametrize the inverse Jacobian J=! = 9,x? as,

—a~twy; (e )i-Ny;
» Suppose we have a system
Otu = (AAP + BP1)0pu + AS,
» Then in the lowercase coordinates we have
(1+AY)0m = aW H(AR(p )P, + (1+ AY)MP)Opu + aW 'S,

How to choose Jacobian?



Compactification: hyperboloidal initial value problem

T=T(tr)=t+HR), R=R(r)=Q(r)*r, 0A=0"

» Height function H,
compression function 2.

» Hyperboloidal Jacobian;

1 0 00

HR R 0 0
=19 0 1 0
0 0 0 1

Rough Idea: R' ~ R" and H' ~1—1/R’, 1 < n < 2 achieves
desirable coordinate lightspeeds whilst compactifying.



Compactification: blow-up quantities

For systems with wave-equation like principal part (KG, GR in
GHG) combining with the J,, gives;

1 0 0
R e Y L I
—yo(W? —1) W2vL W2

Observations:
» Composite lower case principal part matrices regular by
construction; symmetric hyperbolicity invariant.
» On the other hand R’ ~ R" = W ~ a ~ R"2. Therefore
need decay in sources S to absorb growth. But is sufficient
decay present?



Asymptotics: The GBU(F)-model |

Consider a toy model for GR in GHG:
Og=0, Ob~ Lorf+(97g)% DOu~ %0ru,

with free choice of the equation of motion for f.

Asymptotic system recipe:
P> Rescale: G=Rg, B=Rb, U=Ru, F=Rf.
» Change coordinates u=T — R, s = log(R).
» Turn krank, collect leading order in R71.

For the model this gives

9s0,G = 0, 20,0,B = —0,F — (0,G)?, 9s0,U = —9, U.



Asymptotics: The GBU(F)-model

Interesting case |: f =0

0s0,G =0,  20,0,B=—(0,G)?,  9:0,U=—0,U.

Solution to asymptotic system 5
A f - ﬁas
» 0:0,G =0= G = Fg(u,07). ¢ =20
> 0.0,B = —1(0,G)? = ¢ ¢ s
0,8 = —15(0,G)2. NP ARG
» B = (InR) Fp(u, 04).
0
1
Predicts asymptotics of original fields:
_1 A _ log(R) A _ 1 A
g_ R‘Fg(u79 )7 b_ R ‘Fb(uae )a u= RmU(9 )

Analogy with GR?



Asymptotics: The GBU(F)-model Il

Interesting case Il: Take
Of = 207f +2(97g)>
Then asymptotically:
OsOuF = —0uF — (04G)? = 0uF = —(0,G)?,

.. SO now we recover instead:

1 1 1
8= E‘Fg(ua 0A)7 b= ﬁfb(u7 HA)v u= ﬁmu(eA) :

We have all of this worked out for GR in GHG together with high
order asymptotic expansions. Really interesting: “TT" gauge!



Spherical GR |

Can we capture stratification without extra structure? Defining
suitable null vectors o and o, the field equations take the form:

~D,D,R+ 1D,R(D,C} — D,Cy) = 4nRT,,,
~DyDyR + LDyR(D,C- — D,C_) = 47R T4y

plus

D, (aangS — (0D, C_ — QQDQQ_)) + 2 Mys

D.(£0°D,R?) +1 =0,

.. which is surprisingly pretty!



Spherical GR I

Imposing GHG gives
(DyR)D,C, +87RT,, =0,

£D,(2R*D,Cy) + Dy (RF?) — 2(D,
(D,R)D,C_ —87RT,, =0,

%DQ(ERZDUC,) — Dy(RF%) —

RH\J ZN\N

for the speeds, and

2 2 2My
D, (20°Dye’ — F*) — Z (1 — 2Mus)
+H3(D CyD,C_ -~ D,C;D,C_) = 16”T99,
D,(£6°DyR?) +1=0.

for the det variables... which is still surprisingly pretty!



Hyperboloidal numerics with the DF-wave equation

t=2.02 t=4.05 t= 8.1

A first numerical sanity check:

» For wave equation S small.

» Can even evolve radiation
field R¢. [Target for GR].

» Respectable pseudospectral
convergence achieved.

)

Numerics with the wave equation in bamps.



Hyperboloidal numerics with the GBU-model

Second numerical sanity check:

Convergence at 7"
‘ .. . , 0.00002 )
» ‘Radiation fields' evolved. . A A
A 0.00001
» Implemented GBU-model in E o000
spherical FD code. 8 00001
» Convergence despite logs. £ oo N ST
£ B-: med-high )
» (Spectral numerics desirable s , C Umedchigh
too; patience needed!) B L

Numerics with GBU-model.



Summation by parts and hyperboloidal slices

SBP methods offer a path to
formal stability. Subtleties:

» Singular coefficients.
» Non-degenerate norms.
» Undesirable reflections.

These can be overcome, paving
the way for similar discretizations
for GR.
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Summation by parts and hyperboloidal slices

SBP methods offer a path to

Discrete vs Continuum Energy

formal stability. Subtleties:

» Singular coefficients.

B
» Non-degenerate norms. E°
» Undesirable reflections. .
These can be overcome, paving ok 1 - - -
the way for similar discretizations pime

for GR. Energy comparison with SBP.



(Preliminary) hyperboloidal numerics for spherical GR

Numerical work with spherical GR

ongoing:
» Gauge sources compatible with ; ey —T—
Schwarzschild in KS coodinates. £ o s
» Convergence with constraint ,
violating data promising. i rin
» Initial data (and technicalities) l %EzMM
outstanding. P S S DU NS

Near-term aspiration: critical
collapse.

Norm convergence. Gautam 2021.
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» Convergence with constraint
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collapse.

Differences for 6

6.x10°"

4.x107"

2,107

~2.x10°"

—4.x10"

~6.x10°"

Evaluated at r = 0.99, conv.order = 2

—
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— high-higher

— (med-high)/2?
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t

Pointwise convergence near .# T,



Conclusions

Motivated by need for GWs at null infinity we are developing a new
regularization using compactified hyperboloids. Features include:

» Dual-foliation formalism.
» Exploiting null-structure for NR.

» Careful choice of gauge and constraint addition to suppress
spurious radiation fields (and logs).

Comprehensive GR numerics on the way, stay tuned!



