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Introduction: Anti-de Sitter spacetime

Simplest solution of the vacuum Einstein equations with negative
cosmological constant Λ: Anti-de Sitter spacetime (R3+1, gAdS),

gAdS = −
(
1− 1

3
Λr2
)
dt2 +

(
1− 1

3
Λr2
)−1

dr2 + r2gS2 .

Of central importance for high energy physics in the context of the
holographic principle.

AdS spacetime can be conformally identified with the interior of the cylinder
R× S3

+ equipped with the natural product Lorentzian metric.

S3
+

t I ' R× S2MAdS

Conformal boundary I at infinity: Of timelike
character.

Initial data at t = 0 are not sufficient to
uniquely determine a solution to a hyperbolic
equation on AdS: Boundary conditions should
also be imposed on I .
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The initial-boundary value problem

In view of the timelike character of the conformal boundary I , the right
setting to study the Einstein equations on asymptotically AdS spacetimes:
Initial-boundary value problem.

I

(Σ, ḡ , k)

(M, g)

Initial data (Σ3, ḡ , k) satisfying the constraint
equations

R[ḡ ] + (trk)2 − |k|2 = 2Λ,

div(k − trk · ḡ) = 0.

Conformal boundary conditions on I , plus
compatibility conditions at the “corner”
∂Σ = I ∩ Σ.



The initial-boundary value problem

Identifying the right asymptotic boundary conditions is non-trivial!

Theorem (Friedrich, 1995)

For any prescribed smooth conformal structure on I and any
asymptotically AdS initial data set (Σ3, ḡ , k) such that r−2ḡ , r−1k extend
smoothly to ∂Σ: ∃! smooth solution of the vacuum equations.

Reflecting boundary condition in this class: g |I ∼ gR×S2 .

Geometric uniqueness for the IBVP in the case of a regular
boundary: Fournodavlos–Smulevici.
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Confinement and weak turbulence

The well-posedness of the initial-boundary value problem allows the study of
the long time dynamics of asymptotically AdS solutions.

Question: What are the stability properties of small initial perturbations of
AdS under reflecting boundary conditions at I ?

t I

In the case of the linear toy model �gφ = 0:
The energy E [φ](t) ∼

∫
Σt
|∂φ|2 dx does not

decay as t →∞ when reflecting conditions are
assumed on I .

Non-linear effects can accumulate over long
timescales, possibly precipitating cascading
effects.
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The AdS instability conjecture

t I

B

In 2006, Dafermos–Holzegel conjectured the following
scenario:

AdS instability conjecture

Assuming a reflecting boundary condition on I for the
vacuum equations, there exist arbitrarily small perturbations
of the AdS initial data which lead to the formation of a
black hole region after sufficiently long time. In particular,
(MAdS , gAdS) is non-linearly unstable.

Black hole formation: Concentration of energy at small
scales.
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The AdS instability conjecture

Remarks:

Smallness of the perturbations: With respect to a suitable norm for
which well-posedness holds.

Example: Higher order, weighted Sobolev spaces Hk .
The conserved total ADM mass MADM is not suitable: The equations
are supercritical with respect to it.

The choice of reflecting boundary conditions on I is important.
Holzegel–Luk–Smulevici–Warnick: Superpolynomial decay at
the linearized level for maximally dissipative boundary conditions.

The conjecture is not restricted to the vacuum case; it also applies to
any “reasonable” matter model for which the stability of Minkowski
spacetime holds (in the case Λ = 0).
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Spherically symmetric models: Einstein–scalar field

It is natural to seek an unstable family of initial data having additional
symmetries. In 3 + 1 dimensions, the only surface symmetry for the initial
data which is compatible with the AdS asymptotics: Spherical symmetry.

Birkhoff’s theorem: The only spherically symmetric solution of the
vacuum equations with a regular center of symmetry is AdS
⇒ Trivial dynamics for the vacuum equations in this class.

A simple matter model admitting non-trivial dynamics in spherical
symmetry: The Einstein–scalar field system{

Ricμν − 1
2Rgμν + Λgμν = 8πTμν[φ],

�gφ+ 2
3 Λαφ = 0.
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The initial-boundary value problem for a scalar field

On AdS spacetime, solutions to the linear scalar field equation have an
asymptotic expansion near I of the form

φ = r−λ− φ−I︸︷︷︸
Dirichlet data

+ r−λ+ φ+
I︸︷︷︸

Neumann data

+O(r−2−λ−), λ± =
3

2
±
√

9

4
+ 2α.

When α 6= −1: Solutions are conformally singular at I .

Well-posedness of the linear scalar field equation on asymptotically AdS
spacetimes with homogeneous Dirichlet conditions when α > − 9

8 :
Vasy.

In the case of the non-linear Einstein–scalar field system in spherical
symmetry:

Holzegel–Smulevici: (Homogeneous) Dirichlet boundary
conditions when α > − 9

8 .

Holzegel–Warnick: More general boundary conditions (including
Neumann) for − 9

8 < α < − 5
8 .
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AdS Instability: The Einstein–scalar field system

First numerical and heuristic study of the instability of AdS in the setting of
the spherically symmetric Einstein–scalar field system with Dirichlet
conditions at I : Bizon–Rostworowski (2011).

Proposed instability mechanism: Perturbative analysis of the effective
scalar field equation

�(AdS)φ+
2

3
Λαφ ' 2m[φ]

r3
φ = N (3)[φ]

suggests that energy is transferred to high frequency modes of

φ(t, x) =
∑
k∈Z

e iωk tφk(t; x)

through resonant interactions (when ωk = ωl − ωm + ωn).
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AdS Instability: The Einstein–scalar field system

Subsequent numerical and heuristic works also explored the distribution of
unstable perturbations in the space of initial data, as well as different
boundary conditions:
Buchel–Lehner–Liebling, Dias–Horowitz–Marolf–Santos,
Balasubramanian–Buchel–Green–Lehner–Liebling,
Bizon–Maliborski, Craps–Evnin–Vanhoof,
Dimitrakopoulos–Freivogel–Lippert–Yang...

AdS

Collapsing data

Collapsing data

Islands of
stability

Major questions:

Do all perturbations of AdS spacetime collapse
into black holes? Are there “islands of
stability”, i.e. open sets in the moduli space of
initial data close to AdS giving rise to
quasiperiodic, non-collapsing solutions?

Once a black hole is formed, what are its long
time dynamics? Does its exterior become
asymptotically stationary?
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An alternative approach

The resonant mode mixing mechanism: relevant for the first stage of the
instability, where perturbation theory is still valid.

No rigorous proof so far using this approach!

An alternative approach for a rigorous proof of the AdS instability
conjecture: Study the interaction of short pulses in physical space and use
the monotonicity properties of the Einstein equations.
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Instability via beam interactions

Let us assume that the initial perturbation is chosen so that it gives rise to
a number of spherically symmetric, narrow beams which are initially ingoing.

r
=

0

r
=

+
∞

Away from r = 0: Narrow beams approximately satisfy the
Einstein–null dust system (geometric optics approximation).

Near r = 0: Each beam turns from ingoing to outgoing through a
self-interaction process.
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AdS Instability via beam interactions

The region between the beams of matter is approximately vacuum. The
energy of each beam ζ can be expressed in terms of the renormalised
Hawking mass m̃:

E [ζ]
.

= m̃+ − m̃−,

where m̃
.

= m − 1
3 Λr3.

m̃ = m̃+

m̃ = m̃−

ζ

The nearly empty regions between the beams have approximately constant
renormalised Hawking mass.

Trapped surface at sphere of symmetry p if 2m
r (p) > 1.

E [ζ] changes each time ζ is intersected by another beam, but is
preserved at each reflection off I .
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AdS Instability via beam interactions

Let ζ, ζ̄ be a pair of intersecting beams, so
that the intersection lies in the regime
where the geometric optics approximation
holds.

In double null coordinates (u, v), the
relation

∂u∂v m̃ '
2

r
(
1− 2m

r

) (−∂um̃)∂v m̃

ζ̄ζ

E+[ζ̄]

E−[ζ̄]E−[ζ]

E+[ζ]

∂u ∂v

yields the approximate energy exchange formulas:

E+[ζ̄] = E−[ζ̄] · exp
(2

r

E−[ζ]

1− 2m
r

+ Err
)
,

E+[ζ] = E−[ζ] · exp
(
− 2

r

E−[ζ̄]

1− 2m
r

+ Err
)
.
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AdS Instability via beam interactions

Assume, for a moment, that our configuration consists of only two beams ζ̄
and ζ:

u
=

0

r
=

0

r
=

+
∞

N0

N∞

ζ̄ζ

As long as r |N0 � r |N∞ : E [ζ̄] increases and E [ζ] decreases after each
successive reflection.
If ζ̄ is narrower than ζ: energy is carried at smaller scales.

This is a non-linear instability mechanism!
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AdS instability: the Einstein–scalar field system

The previous heuristic mechanism can in fact lead to a rigorous proof of the
conjecture for certain matter models.

Einstein–massless Vlasov system (M. 2018): Allows for perfectly
localized matter beams.

It can also be applied to the case of the Einstein–scalar field system:

Theorem (M.):

There exists a family of spherically symmetric characteristic initial data
Dε(Ωε, rε, φε) on {u = 0} for the the conformally coupled (i.e. α = −1)
Einstein–scalar field system such that:

||Dε||BV
.

=
∫
u=0

∣∣∣ ∂v∂v r (∂v (rφε)
∂v r

)∣∣∣ dv ε→0−−−→ 0,

For any ε > 0, the evolution of Dε with Dirichlet or Neumann bc’s on
I leads to the creation of a black hole region after sufficiently long
time.
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AdS instability: the Einstein–scalar field system

Remarks:

Well-posedness of the initial-boundary value problem in the || · ||BV
topology when α = −1 follows by a simple modification of the work of
Christodoulou.

When Λ = 0: Minkowski spacetime is stable under spherically
symmetric perturbations which are initially small with respect to
|| · ||BV .



Main ideas of the proof

The proof proceeds by arranging the scalar field initially into a large number
of ingoing narrow beams, with each successive beam being much narrower
than the previous one.

r
=

0

r
=

+
∞

u
=

0

v
=
v
ε,i

v
=
v
ε,i+

1

v
=
v
ε,0

v
=
v
ε,N
ε

∆
r
(i

)

ε(i)
√
−Λ

u
=

0

Narrower beams are exected to approach closer to r = 0.

Energy is expected to flow towards the narrowest beam through the
mechanism sketched before.
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Main ideas of the proof

A serious technical obstacle to implementing the heuristics: Beams lose
coherence over time.

∂u

r
=

0

∂v

Decoherence is most severe when a beam
reaches close to r = 0, due to non-linear
self-interactions:

∂u∂v (rφ) + V (φ)φ = 0,

where

V (φ)
.

= −2
(∂v r)(∂ur)

1− 2m
r

( m̃
r2
− 4

3
πΛrφ2

)
and m̃ is determined by

∂v m̃ = 2πr2(1− 2m

r
)

(∂vφ)2

∂v r
.
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Main ideas of the proof

In order to keep decoherence under control for sufficiently long time under
low regularity assumptions: The scalar field is split as

φ = φ1 + . . .+ φN + φErr ,

where φi satisfies initially ∂φi . δ, ∂2φi . δε
−1
i and solves the simpler

equation
∂u∂v (rφi ) = 0,

for which stronger coherence estimates can be established.

Regularity at r = +∞ is also important here.

The “error” term φErr measures the “total decoherence” of the beams and
solves:

∂u∂v (rφErr ) + V (φ)φErr = −
N∑
i=1

V (φ)φi

As long as ||φi ||BV . δ � 1: ||φErr ||BV . δ, even if 1� ||φ||BV � δ−1.

Choosing the hierarchy of scales εi , ∆ri carefully is crucial for this step.
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Main ideas of the proof

At the last step before trapped surface formation:

||φ
1
||B

V
&
δ

||φ
2
||B

V
&
δ

EN � εN

EN � εN

||φk ||BV ∼ δe−(k−1)δ

||φ2||BV ∼ δe−δ
||φ1||BV ∼ δ

Fine tuning of the initial data:
Before the final step, the beams φi
create a profile of exponential form,
resembling a discretely self-similar
background.

Trapped surface formation after final
interaction: Christodoulou.

Control of the decoherence of the
beams becomes more difficult at this
stage.
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Open questions and future directions

Generic spherically symmetric perturbations: Do all perturbations of
AdS eventually collapse into black holes?

Probably no; see also Chatzikaleas–Smulevici.

Do islands of stability exist for timescales beyond the ones provided by
scaling considerations?

Moving beyond spherical symmetry: In 3+1 dimensions, the vacuum
equations cannot be reduced under symmetry to a 1+1 dimensional
system. However, in principle, a similar physical space approach could be
followed in this case as well.

Major challenges:

Well-posedness in a class of initial data lying in a scale-invariant
topology, with additional regularity in the “angular directions”.

Boundary effects are expected to be highly non-trivial outside surface
symmetry.
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Thank you for your attention!


