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Einstein’s equations
Cosmological setting

I Main unknown: A metric g of signature (−1, 1, . . . , 1) defined
over I × Σ, for Σ closed of dimΣ = D ≥ 3.

I Vacuum or massless-scalar field:

Ricµν(g) = ∂µψ∂νψ

�gψ = 0

I Evolutionary part: wave-type system 1 + D dimensions.

I Initial data: (Σ, g , k , ψ, ϕ)

I Constraint equations (elliptic):

R(g)− |k |2 + (trk)2 =ϕ2 + |∇ψ|2

divk −∇trk =− ϕ∇ψ

I Well-posed initial value problem, there exists a unique
maximal solution (Choquet-Bruhat–Geroch ’69).



Generalized Kasner solutions
Homogeneous, anisotropic

I Defined for all (t, x) ∈ (0,+∞)× TD :

gKasner = −dt2 +
D∑
i=1

t2pi (dx i )2, ψ = B log t.

I Kasner relations:

D∑
i=1

pi = 1,
D∑
i=1

p2
i = 1− B2, pi < 1.

I There is a Big Bang singularity at {t = 0} (spacelike):

V (Σt) ∼ t, |Riem(g)|2 ∼ t−4, as t → 0.

I Is this due to the symmetries or a general new phenomenon?



“Singularity” theorems
Cosmological setting

I Generic conditions on initial data that lead to a breakdown of
solutions.

I Valid for perturbations of exact Big Bang solutions.

Theorem (Hawking ’65)

Let (M, g) be a (maximal) cosmological solution with initially
negative past mean curvature:

trk
∣∣
Σ
< 0.

Then it is past causally geodesically incomplete.

Q: Is this breakdown related to a singularity formation?

A: Not always. The Taub-NUT solution possesses a smoothly
extendible Cauchy horizon. Failure of determinism. Unstable?



General solutions
Predictions

Strong cosmic censorship (Penrose ’69)
Maximal cosmological solutions arising from generic initial data are
inextendible as suitably regular Lorentzian manifolds.

I Inextendibility for Hawking’s theorem: Singularity formation.

Spacelike or null?

I Big Bang generically expected in the cosmological setting of
Hawking’s theorem.

I Cf. Black hole interior, generic Cauchy horizon near timelike
infinity (Dafermos-Luk ’17).

Kasner-like Big Bang singularity or of other type?

I Kasner-like Big Bangs in the subcritical regime, stability
(F.-Rodnianski-Speck ’20).

I Oscillatory scenario (Belinskii-Khalatnikov-Lifshitz ’70).

I Spikes? (Ringström ’09)



Kasner-like singularities
Asymptotic profile

The asymptotic profile is given by a metric of the form

g = −dt2 +
D∑
I=1

t2pi (x)ωi ⊗ ωi , ψ = B(x) log t,

for (t, x) ∈ (0,T ]× TD , T > 0, where

ωi =
D∑
j=1

c ij (x)dx j

and

D∑
i=1

pi (x) = 1,
D∑
i=1

p2
i (x) = 1− B2(x), pi (x) < 1.



Heuristics
KL ’63, BK ’72, Demaret-Henneaux-Spindel ’85

I Consider the spatial frame ei = t−pi (x)(ωi )# and
kij = g(Dei ej , ∂t).

I Using the form of g : kij = −δij pi (x)
t (no sum), trk = −1

t .

I kij satisfies the evolution equation:

∂tkij +
1

t
kij = Ricij(g)− Ricij(g)

I On the other hand, the form of g gives:

|Ric(g)|(x) ∼ t−2 maxi,j,b{pi (x)+pj (x)−pb(x)}, i 6= j 6= b 6= i .

I For consistency we need the subcriticality condition:

|Ric(g)|(x) ≤ Ct−2+σ ⇔ max
i 6=j 6=b 6=i

{pi (x) + pj(x)− pb(x)} < 1,

for some σ > 0.



Heuristics
KL ’63, BK ’72, Demaret-Henneaux-Spindel ’85

The subcritical regime includes:

I Scalar field, D ≥ 3, e.g. D = 3 and p1, p2, p3 > 0:
pi + pj − pb = 1− 2pb < 1.

I Higher dimensional vacuum, D ≥ 10.

1+3 vacuum violates the subcriticality condition:

I Let p1 < 0. Then p2 + p3 − p1 = 1− 2p1 > 1, for all Kasner
exponents.

I The crucial estimate |Ric(g)| ≤ Ct−2+σ is valid if

ω1 ∧ dω1 = 0.

This eliminates one degree of freedom (one of the c ij ’s).

I Kasner-like singularities in 1 + 3 vacuum should be
non-generic (instabilities).



Heuristics
BKL ’69

Oscillatory scenario in 1+3 vacuum:

I Going back to Einstein’s equations:

∂tkii +
1

t
kii = Ricii (g) ∼ t−2+4p1

I There exists a tc � 1 where t−2+4p1 dominates.

I For t � tc , the original Kasner-like behavior is valid. For
t ∼ tc , a different evolution will follow.

I The solution will remain Kasner-like, but with new Kasner
exponents:

p′1 = − p1

1 + 2p1
, p′2 =

p2 + 2p1

1 + 2p1
< 0, p′3 =

p3 + 2p1

1 + 2p1

I Then there exists a t ′c � tc where the Kasner exponents will
change again in the same fashion etc.

I Infinite oscillations of the Kasner exponents, chaotic behavior.



What is known?

Oscillations: Part of the picture confirmed for homogeneous
solutions (Bianchi VIII and IX), Ringström ’01, Heinzle-Uggla ’09,
Reiterer-Trubowitz ’10.

Numerics: In accordance with heuristics, apart from some “spiky”
behavior at certain points, not predicted by BKL! (Berger,
Garfinkle, Grubǐsić, Isenberg, Moncrief, Weaver, . . .)

Gowdy symmetry:

I 1+3 vacuum with two surface orthogonal Killing fields.

I Kasner-like behavior in the polarized case
(Chruściel-Isenberg-Moncrief ’90).

I Kasner-like behavior in the general case, apart from finitely
many spikes (Ringström ’09).

I Discontinuity of the asymptotic data, rate of blowup.

I Construction of spikes (Rendall-Weaver ’08).

More general spikes: Heinzle-Uggla-Lim ’12, Moughal-Lim ’21.



What is known?
Constructions of Kasner-like singularities:

I Prescribe the asymptotic data at t = 0 and solve a singular
initial value problem in (0,T ]× TD .

I Ames, Andersson, Beyer, Damour, Elery, Fournodavlos,
Henneaux, Isenberg, Kichenassamy, Klinger, LeFloch, Luk,
Moncrief, Nützi, Reiterer, Rendall, Trubowitz, Weaver, . . .

Stability of generalized Kasner singularities:
I Prescribe near-Kasner initial data at t = 1 and prove a

Kasner-like singularity formation towards the past.
I Subcritical regime.
I 1+3 vacuum with polarized symmetry.

I Rodnianski-Speck ’14-’18, F.-Rodnianski-Speck ’20,
Ames-Beyer-Isenberg-Oliynyk ’21.

Conditions for Kasner-like behavior:

I Scale invariant curvature bounds (Lott ’20).

I Bounds on the normalized Weingarten map (Ringström ’21).



Construction of smooth Kasner-like singularities
1+3 vacuum, without symmetries

Theorem (w/ Jonathan Luk ’20)

Let cij , pi : T3 → R be smooth functions satisfying:

1.
∑3

i=1 pi (x) =
∑3

i=1 p
2
i (x) = 1, p1(x) < p2(x) < p3(x) < 1,

2. cij(x) = cji (x), c11(x), c22(x), c33(x) > 0,

3. The differential constraints1

3∑
`=1

1

2

∂ic``
c``

(p` − pi ) +
∑
`>i

∂`(
√
c11c22c33κi

`)
√
c11c22c33

= ∂ipi .

Then there exists a smooth solution
(
g , (0,T ]× T3

)
to the

Einstein vacuum equations with the asymptotic profile:

g =− dt2 +
∑3

i ,j=1cij(x)t2 max{pi (x),pj (x)}dxidxj + l.o.t.

1for κ1
2 = (p1 − p2) c12

c22
, κ2

3 = (p2 − p3) c23
c33

, κ1
3 = −κ1

2 c23
c33

+ (p1 − p3) c13
c33



Method of proof
Two main steps

I Compute asymptotic expansions to all orders, using the ADM
equations

∂tgij = −2gajki
a, ∂tki

j − trkki
j = Rici

j(g),

I Derive weighted energy estimates for the remainder of a
truncated series, using the second order equation:

∂2
t ki

j −∆gki
j =−∇i∇jk`

` +N (k , ∂tk)i
j .

Main difficulties:

I Approximate propagation of constraints for the expansions
(Bianchi equations).

I The second order equation for ki
j is not exactly wave type,

loss of derivatives (need for elliptic estimates).



Stability of Kasner singularities
Subcritical regime

Let gKasner = −dt2 +
∑D

i=1 t
2pi (dx i )2, ψ = B log t, be a

generalized Kasner solution, satisfying the subcriticality condition

maxi 6=j 6=b 6=i{pi + pj − pb} < 1,

either for the scalar field D ≥ 3 or in vacuum D ≥ 10.

Theorem (w/ Igor Rodnianski, Jared Speck ’20)

Solutions arising from sufficiently small perturbations of the above
Kasner initial data at t = 1, in high-order Sobolev spaces, satisfy:

|tkij + piδij |+ |t∂tψ − B| ≤Cinitial .data

|Ric(g)| ≤Cinitial .datat
−2+σ,

relative to the CMC foliation, trk = −t−1, for all t ∈ (0, 1].



Key ingredients

I Synchronization of the singularity at t = 0, using a CMC
gauge (elliptic, infinite speed of propagation).

I Key variables: The structure coefficients of a
Fermi-propagated frame {ei}D1 (from t = 1)

Sijb = g([ei , ej ], eb), i 6= j 6= b 6= i

I Asymptotic diagonalization of their ODE part:

∂tSijb +
pi + pj − pb

t
Sijb = l.o.t. ⇒ |Sijb| ≤Ctpb−pi−pj

≤Ct−1+ε.

I This is the only place where the subcritical condition is used!



Thank you!


