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Schwarzshild and Kerr black holes
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Strong cosmic censorship

Conjecture

For generic asymptotically flat initial data, the maximal Cauchy
development solving the Einstein vacuum equations is
inextendible as a suitably regular Lorentzian manifold.

The Schwarzschild case, not the rotating Kerr case, is
expected to be generic.

Small perturbations of Kerr data are expected to lead to
singularities in the black holes.
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Stability of the Kerr Cauchy horizon

Theorem (Dafermos–L. (2017))

If the exterior region to the black hole converges to Kerr with
0 < |a| < M (sufficiently fast), then

the black hole interior has a null Cauchy horizon.

Moreover, the metric is continuously extendible to the Cauchy
horizon, and

(in appropriate coordinate systems) is close to the Kerr metric
in amplitude.

If the Kerr exterior is stable (as is widely expected), then
small perturbations of Kerr data lead to Cauchy developments
which are C 0 extendible.
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Stability of the Kerr Cauchy horizon
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Stability of the Kerr Cauchy horizon
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Figure: The global stability of the Kerr Penrose diagram
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Instability of Kerr Cauchy horizon?

Conjecture

For generic small perturbations of the Kerr data, the Cauchy horizon is
“singular”.

Theorem

Consider the Einstein–Maxwell–scalar field system in spherical
symmetry with two-ended asymptotically flat admissible smooth initial
data.

1 (Dafermos, Dafermos–Rodnianski (2005)) The black hole interior
has a Cauchy horizon across which the metric extends in C 0.

2 (L.–Oh (2019)) There exists an open and dense set of data such

that the maximal Cauchy development is C 2-future-inextendible.

A key step of the proof is to show that generically, the scalar field
obeys a lower bound in the exterior of the black hole.
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Price’s law

Price suggested that

�gφ = 0,

φ initially compactly supported,

φ supported on the spherical harmonics of degree `

then, on a finite r region

|φ|(t, r) ∼ (1 + t)−2`−3.
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Price’s law

�gφ = 0 on Schwarzschild spacetime, φ initially compactly supported.

Theorem (Price’s law)

The following bounds hold on a finite r region:

1 (Dafermos–Rodnianski (2005), Tataru (2013), Donninger–Schlag–Soffer (2012),

Metcalfe–Tataru–Tohaneanu (2012))

|φ| . (1 + t)−3.

2 (Donninger–Schlag–Soffer (2011)) If φ is supported on `-th spherical harmonics,

|φ| . (1 + t)−2−2`.

3 (Angelopoulos–Aretakis–Gajic (2018, 2021), Hintz (2020)) Generic φ supported on
spherical harmonics ≥ ` obeys,

(1 + t)−3−2` . |φ| . (1 + t)−3−2`.
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Remarks on Price’s law

1 Upper bound results known for more general — dynamical or
stationary — spacetimes (Tataru,
Metcalfe–Tataru–Tohaneanu).

2 Precise asymptotics known for more generally on subextremal
Reissner–Nordström and Kerr (Hintz,
Angelopoulos–Aretakis–Gajic).

3 See Angelopoulos–Aretakis–Gajic for more precise information
as well as the extremal cases.

4 See also Barack–Ori, Bičák, Bizoń–Chmaj–Rostworowski, Blaksley–Burko, Burko–Khanna, Casals–Ottewill,

Gómez–Winicour–Schmidt, Gundlach–Price–Pullin, Hod, Krivan–Laguna–Papadopoulos–Andersson,

Leaver, Lucietti–Murata–Reall–Tanahashi, Marsa–Choptuik, Poisson, Szpak, Zenginoǧlu–Khanna–Burko,

..., Aretakis, Baskin–Vasy–Wunsch, Gajic, Guillarmou–Hassell–Sikora, Kehrberger, Looi, L.–Oh, Ma,

Ma–Zhang, Morgan, Morgan–Wunsch, Moschidis, Oliver–Sterbenz, Schlue, ...
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Strong Huygen’s principle

To understand Price’s law, we first think about late-time tails on
Minkowski.

The strong Huygen’s principle immediately implies

Lemma

Solutions to the wave equation on (3 + 1)-dimensional Minkowski
spacetime with compactly supported data decay O(t−∞) on any
compact set {|x | ≤ R}.

Late-time tails on Minkowski can only arise if the initial data
are not compactly supported.

See blackboard.
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Why is Price’s law true?

We try to understand Price’s law as follows:

Justify rφ = Φ0 + r−1Φ1 + r−2Φ2 + . . . , with Φi = Φi (u, ϑ).

Analyze the Φi near null infinity (for r & u large).

Find the first i such that

Φi,∞(ϑ) := limu→∞Φi (u, ϑ) 6= 0, and
rφ �C0 = cr−iΦi,∞(ϑ) gives a non-trivial late-time tail on
Minkowski.

Prove that the late time tail is exactly the late-time Minkowski
tail for rφ �C0= cr−iΦi ,∞(ϑ), at least in {r ≥ R}, R large.

Jonathan Luk A tale of two tails



Wave equation on Schwarzschild

The wave equation on Schwarzschild with fixed ` mode is given in
Bondi–Sachs coordinates by

[2∂u−(1−2M

r
)∂r ][(1−2m

r
)∂r (rφ)]+

`(`+ 1)

r2
rφ+

2M

r2
(1−2M

r
)φ = 0.

Assume an expansion rφ = Φ0 + r−1Φ1 + r−2Φ2 . . . with
Φi = Φi (u, ϑ).
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Schwarzschild in the case ` = 0

Assume an expansion rφ = Φ0 + r−1Φ1 + r−2Φ2 . . . with
Φi = Φi (u, ϑ).

When ` = 0, only Φ0 does not contribute to the late-time tail

The wave equation gives

∂uΦ1 = 0, ∂u(Φ2 −MΦ1) =
1

2
MΦ0.

Generically L :=
∫∞
−∞

1
2MΦ0 du 6= 0.

Hence, rφ = Φ0 + Lr−2 + . . . , which gives a late time tail
φ ∼ t−3 on compact r region.
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Schwarzschild in the case ` = 1

When ` = 1, Φ0 and Φ1 do not contribute to late time tails,
so we expect Φ0, Φ1 → 0.

Using the wave equation, we obtain the recursion relations:

∂uΦ1 = Φ0,

∂u(Φ2 −MΦ1) =
1

2
MΦ0,

∂u(3Φ3 − 4MΦ2) = −2Φ2 + 14MΦ1 − 2M2Φ0.

The first two equations can be combined to

∂u(Φ2 −
3M

2
Φ1) = 0,

so that Φ2 → 0 as well!

Φ3 in general 6→ 0. Hence, the main contribution far-away
comes from rφ ∼ r−3, which gives a late time tail φ ∼ t−5 on
compact r region.
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What if we turn to dynamical spacetimes?

Spherically symmetric spacetime

g = −Ω2du dv + r2σS2(1).

Define m(u, v) = r
2 (1 + 4(∂v r)(∂ur)

Ω2 ), and the Bondi mass

M(u) = lim
v→∞

m(u, v).

The previous condition suggests if

L =

∫ ∞
−∞

M(u)[ lim
r→∞

(rφ)∂ur(u, r)] du 6= 0,

then |φ| gets a (1 + t)−3 tail.
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Nonlinear but spherically symmetric tails

Consider the Einstein–(Maxwell)–scalar field system in spherical
symmetry.

Theorem

1 (L.–Oh 2015) For dispersive solutions (with zero charge)
converging to Minkowski, if L 6= 0, then on {r ≤ R},

(1 + t)−3 . |∂u(rφ)|, |∂v (rφ)| . (1 + t)−3.

2 (L.–Oh 2019) For black hole solutions with non-zero charge, if
L 6= 0, then |∂vφ| obeys an averaged lower bound on the
event horizon, and the Cauchy horizon is singular.
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Precise tails on Ultimately Schwarzschildean spacetimes

Theorem (L.–Oh, in preparation)

Let (M, g) be a spacetime settling down to the Schwarzschild
exterior suitably.
Then

1 given a solution φ to �gφ = 0 with compactly supported
data, if L 6= 0, then

(1 + t)−3 . |φ| . (1 + t)−3

on {r ≤ R}.
2 Moreover, generic solutions satisfy L 6= 0.

Jonathan Luk A tale of two tails



The ` = 1 mode in the dynamical case

Suppose we now have a spherically symmetric dynamical
spacetime converging to Schwarzschild.

For the ` = 1 mode, we revisit the recurrence relations:

∂uΦ1 = Φ0,

∂u(Φ2 −MΦ1) =
1

2
MΦ0.

If M(u) is not a constant, then in general∫ ∞
−∞

M(u)Φ0(u) du 6= 0!
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Instability of Price’s law under dynamical perturbations

Theorem (L.–Oh, in preparation)

Consider a spherically symmetric spacetime (M, g) converging to
Schwarzschild exterior suitably, but the Bondi mass is
non-constant. Then, for generic compactly supported initial data
supported on ` ≥ 1, the solution to the wave equation �gφ = 0
satisfies

(1 + t)−4 . |φ| . (1 + t)−4

on a region {r ≤ R}.

Contrast this with the t−5 Price’s law tail!
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General spacetimes, higher dimensions, etc.

The theorem applies to more general (not necessarily
ultimately Schwarzschildean) spacetimes.

Need only (1) (strong) asymptotic flatness, (2) asymptotic
stationarity and (3) some integrated local energy decay
estimate.
We obtain the sharp tail at least in {R ≤ r ≤ R ′}, for R large.

Similarly phenomenon for higher `’s and higher dimensions on
dynamical spacetimes.

The phenomenon of different late-time tails in the dynamical
setting in (5 + 1) dimensions was previously observed
numerically by Bizoń–Chmaj–Rostworowski.
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Returning to the strong cosmic censorship problem

The higher ` problems can be viewed as model problems for
electromagnetic and gravitational perturbations.

Conjecture

1 Generic solutions to the Maxwell equation on a dynamical
spacetime settling down to Kerr (sufficiently fast) decays with
an exact rate of (1 + t)−4.

2 Generic small perturbations of Kerr initial data lead to
solutions to the Einstein vacuum equations which converge to
Kerr with an exact rate of (1 + t)−6.

Again, contrast this with Price’s law.
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Failure of peeling and corrections to late-time tails

If initial characteristic data have a slower tail, then by the
recurrence relations it will dominate the late-time asymptotics.

In the spherically symmetric setting, this observation gives an
easy proof of strong cosmic censorship with slow initial tail
(L.–Oh (2019)).

Christodoulou (2002) argued that slower tails on characteristic
hypersurfaces with logarithmic terms arise naturally in
physical situations.

The corresponding corrections to late-time tails for (1)
spherically symmetric waves on spherically symmetric
dynamical spacetimes, (2) higher `-modes on Schwarzschild
are recently proven by Kehrberger (2021).

Problem

Understand the effect of the extra logarithmic terms in dynamical
spacetimes.
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Nonlinear example: wave maps

Our method is sufficiently general to consider other settings.

Σ a 2-dimensional Riemannian manifold

φ : R3+1 → Σ a wave map

�φI = ΓI
JK (φ)mαβ∂αφ

J∂βφ
K .

Theorem (Christodoulou, Klainerman (80s))

Let p ∈ Σ. Suppose the initial data (φ, ∂tφ) are smooth, agree
with (p, 0) on R3 \ B(0,R) and are sufficiently close to (p, 0)
everywhere.
Then there exists a global-in-time solution to the wave map
problem. Moreover, the map converges pointwise to the constant
map R3 7→ p.
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Polynomial tails for wave maps

Theorem (L.–Oh, in preparation)

1 The global-in-time wave map in the previous theorem obeys

sup
x :|x |≤R

distΣ(φ(t, x), p) . (1 + t)−3.

2 Suppose the Gauss curvature K (p) 6= 0. Then, for an open
and dense subclass of small initial data, the solution obeys

inf
x :|x |≤R

dist(φ(t, x), p) & (1 + t)−3.
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Idea of the proof

0 Basic structure of the proof

Divide the spacetime into (1) wave zone, (2)
intermediate/near region.
Based on an iteration argument, starting with some slower
decay rate.
Use vector field commutators T , rotations and scaling.
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Idea of the proof

1 Justify an expansion rφ = Φ0 + r−1Φ1 + r−2Φ2 . . . near null
infinity

Φi satisfies recursion relations determined by wave equation.
Differentiate with the (conformally regular) commutator
K = r2∂v .
For lower angular modes, estimate this using the method of
characteristics.
For higher angular modes, use the Dafermos–Rodnianski rp

method.
Inspired by Angelopoulos–Aretakis–Gajic.
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Idea of the proof

2 In intermediate region {R ≤ r ≤ (1− η)t} (R large)

Show that “first terms” do not contribute by introducing
“correctors”.
Write �g = �Minkowski + better.

This allows use to use strong Huygen’s principle (!) to control
the error terms.
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Idea of the proof

3 Proof of the lower bound.

Justify a more precise expansion
rφ = Φ0 + r−1Φ1 + r−2Φ2 + · · ·+ Lr−iΦi + error.
Lr−iΦi is the first contributing term: if L 6= 0, this determines
the late time asymptotics.
Finally, prove that L 6= 0 generically.

This is an open condition by stability argument.
If L = 0, small perturbations near infinity give a non-trivial
contribution to L.
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Thank you!
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