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MULTI-MESSEMGER ORIGINS

COSMIC RAYS

My first contact with astronomy (1958)

GENERAL RELATIVITY -1960’s

Main Groups
Syracuse (Peter Bergmann) and Princeton (John Wheeler)

“If you are interested in physics, stay away from relativity.
It is the province of mathematicians and no physicist should
enter.”
— Leonard Schi↵ to Richard Isaacson

He was right in 1962!

It took a century, but now the field is a highly respectable
part of physics and astronomy.



RELATIVITY IN SYRACUSE (1960)

MAIN ACTIVITY
QUANTIZATION (Bergmann, Komar, Arnowitt)

NUMERICAL RELATIVITY DID NOT YET EXIST

IT WAS A GOLDEN ERA

Among long term visitors and postdocs to Syracuse

Ray Sachs: Bondi-Sachs description of gravitational waves

Roy Kerr: the solution for a rotating black hole

Roger Penrose: A new look at everything - asymptotics at
infinity, black hole singularity theorems, spinors

My PhD thesis: ASYMPTOTIC BEHAVIOR OF
COUPLED GRAVITATIONAL FIELDS

Multi-mesenger Bondi-Sachs theory

Integration of electromagnetic fields and other matter fields
into the Bondi-Sachs formalism





Curved space Bondi–Sachs coordinates

x↵ = (u, r, ✓A)

u labels family of outgoing spherical null hypersurfaces

r is areal coordinate along outgoing null rays

✓A = (✓,�) label the null rays

Bondi-Sachs metric

g↵�dx
↵dx� = �V

r
e2�du2�2e2�dudr+r2hAB(d✓

A�UAdu)(d✓B�UBdu)

Coordinate Conditions on Metric Components

Null conditions 0 = grr = grA

Areal coordinate r ) det[gAB] = r4 det[qAB] = r4q

Unit sphere metric qABd✓Ad✓B = d✓2 + sin2 ✓d�2 q = sin2 ✓

) gAB = r2hAB det[hAB] = q = sin2 ✓

Conformal 2-metric hAB has only two degrees of freedom

6 Metric functions: V, �, UA, hAB



Coupled Bondi-Sachs Equations

Einstein equations: E↵� := G↵� � 8⇡T↵� = 0

Main equations: E�
r = 0 , EAB � 1

2gABg
CDECD = 0

If main equations are satisfied the Bianchi identities
and matter conservation r�E�

↵ = 0 imply

Trivial equation: gABEAB = 0 and
@r(

p
�gEr

u) = 0 , @r(
p
�gEr

A) = 0

Integration ) Conservation Conditions Er
u = Er

A = 0 if
satisfied on a worldtube or at a nonsingular worldline r = 0
traced out by the vertices of the null cones

At null infinity I+ the conservation conditions give flux
conservation laws for energy-momentum and angular
momentum, including the famous Bondi mass loss equation

The main equations form the evolution system for the
Bondi-Sachs metric



Evolution of the Bondi-Sachs Metric

Bondi-Sachs metric

g↵�dx
↵dx� = �

V

r
e2�du2 � 2e2�dudr + r2hAB(dx

A
� UAdu)(dxB � UBdu)

Main equations separate into
Hypersurface equations: Er↵ = 0

and
Evolution equations: EAB �

1
2gABg

CDECD = 0

Given the data hAB on a null hypersurface Nu

the hypersurface Eqs are sequence of radial ODEs for the
values of the remaining metric variables (�, UA, V ) on Nu

@r� = H�(hAC) + 2⇡rTrr

@r
⇥
r4e�2�hAB(@rUB)

⇤
= HU(hAC, �) + 16⇡r2TrA

2e�2�(@rV ) = HU(hAC, �, UA) + 8⇡[hABTAB � r2T ↵
↵ ]

where H represents operators intrinsic to Nu. This also holds
for matter fields T↵� for which Nu are characteristic
(e.g. Klein-Gordon and Maxwell fields)

For such coupled fields, given characteristic matter data and
gravitational data hAB|Nu

on a null hypersurface Nu and the
boundary data (�, UA, @rUA, V )|� on an inner worldtube �,
along with the corresponding matter boundary data,
the hypersurface equations determine (�, UA, @rUA, V )|Nu

This lead to a simple evolution algorithm



Evolution Equations

Evolution of characteristic data hAB is simplified by

introducing a complex null polarization dyad

m↵ = (0, 0,mA) with hABmAmB = 0

tangent to Nu and spanning the angular directions

Evolution equations reduce to complex equation

EAB �
1
2gABg

CDECD = 0 ) mAmBEAB = 0

In terms of metric variables this is a radial ODE for @uhAB

mAmB@r(r@uhAB) = H(�, UA, V ) + 8⇡r�1e2�mAmBTAB

where the righthand side are hypersurface quantities

Given boundary data @uhAB|� this leads to a simple update

scheme for the gravitational data hAB



Brans-Dicke Scalar-Tensor Gravity

Spherically symmetric oscillation of neutron star would give

rise to monopole scalar radiation, unlike the conventional

spin-2 tensor component

After a supernova collapse the scalar radiation would damp

the spherical oscillation mode in less than a second,

producing an intense short burst which could be detectable

by a Weber bar antenna

Originally Dicke thought the antenna response to monopole

scalar radiation would be spherically symmetric

Instead, a Bondi-Sachs analysis showed the radiative

component of the Riemann tensor corresponding to the

scalar field is purely transverse to the propagation direction

and axially symmetric

An Observable Peculiarity of the Brans-Dicke Radiation Zone

David Robinson and JW (1969) Phys Rev Letters
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Cauchy-Characteristic Radiation Extraction

Worldtube-Null-Cone Problem

Given null data hAB|Nu
and boundary

data on inner worldtube �

(hAB, �, V, U
A, @rUA)|�

satisfying the supplementary conditions

the Main Equations determine a finite

di↵erence approximation for hAB|Nu+�u

Boundary data on � is furnished from numerical solution of

Einstein’s equations carried out by Cauchy evolution of the

interior such that it satisfies the supplementary conditions

Given the initial and boundary data the hypersurface

equations can be integrated numerically in sequential order

and the evolution algorithm can be iterated into the future

using a finite di↵erence time-integrator

Implemented as stable, convergent evolution code which

propagates the exterior solution to I+
where radiation strain

is computed

PITT NULL CODE (FINITE DIFFERENCE)

SpEC CODE (QUASI-SPECTRAL)



Advantages of
Cauchy-Characteristic Extraction

• Penrose compactification is implemented to conformally map I+ into
a finite grid boundary

• The Bondi-Metzner-Sachs (BMS) asymptotic symmetry group at I+

can be constructed

• The BMS group identifies coordinates corresponding to a distant
inertial observer

• The Bondi news function and radiation strain can be unambiguously
computed in inertial coordinates to within finite di↵erence or spectral
error.

• The Poincare subgroup of the BMS group provides a geometric
definition of energy-momentum and angular momentum

• The BMS group contains a supertranslation subgroup u ! u + ↵(✓A)
comprising a time-independent shift of the slicing of I+ into
spherical cross-sections. This introduces an angular momentum am-
biguity associated with a supertranslation of the origin

• A supertranslation shift between initial and final retarded times
results from the radiation memory e↵ect

�(Radiation strain) = �hAB = hAB(u = 1, ✓)� hAB(u = �1, ✓)

which produces net change in relative position x � y of neighboring
particles in the radiation zone

�(x� y) ⇠ r�1�(Radiation strain)

The angular momentum and memory e↵ects have only been roughly
explored in numerical simulations



The Electromagnetic Analogue

Minkowski metric in outgoing null coordinates (u, r, ✓A)

⌘↵�dx
↵dx� = �du2 � 2drdu + r2qABd✓

Ad✓B

Assume sources of electromagnetic field are inside a world-
tube � of radius r = R. The outgoing null cones Nu intersect
� in spheres Su with angular coordinates ✓A

The Maxwell field F↵� is represented by vector potential A↵,
F↵� = r↵A� �r�A↵ with gauge freedom A↵ ! A↵ +r↵⇤

Choice ⇤(u, r, ✓A) = �
R
Ar(u, r0, ✓A)dr0 leads to null gauge

Ar = 0, which is analogue of Bondi-Sachs coordinate condi-
tions grr = grA = 0

Remaining gauge freedom ⇤(u, xA) used to set Au|I+ = 0 at
future null infinity

Remnant freedom AB ! AB + @B ⇤(✓C) is Maxwell analogue of
Bondi-Metzner-Sachs supertranslation freedom



Bondi-Sachs Version of Maxwell Equations

Source-free Maxwell equations E
� := r↵F ↵� = 0

F ↵� = �F �↵
)

IDENTITY 0 ⌘ r�E
� = r�r↵F

↵�

0 ⌘ r�E
� =

1
p
�g

@�(
p
�gE�) = @uE

u +
1

r2
@r(r

2
E
r) +

1
p
q
@A(

p
qEA)

STRATEGY

Designate E
u = 0 and E

A = 0 as Main Equations

Designate E
r = 0 as Conservation Condition

If Main Equations satisfied then IDENTITY implies

0 = @r(r
2
E
r)

so Conservation Condition is satisfied if it is satisfied at any

specified value of r, e.g. on � or at I
+

Main Equations form hiearchy

Hypersurface Equation E
u = 0

@r(r2@rAu) = @r(gBAB) = Hu(AB)

Evolution Equation E
A = 0

@r@uAB = 1
2@

2
rAB �

1
2r

2gC(gBAC � gCAB) +
1
2@rgBAu = H(AB,Au)

gA is covariant derivative with respect to qAB



WorldTube-NullCone Evolution Algorithm
Electromagnetic version of Cauchy-Characteristic Extraction

INITIAL NULL DATA AB|Nu0
(Dynamical degrees of freedom)

INITIAL BOUNDARY DATA @rAu|�,u=u0
(Interior sources)

WORLDTUBE DATA @uAB|� (Dynamical degrees of freedom)

GAUGE DATA Au|�

SEQUENTIAL RADIAL INTEGRATION SCHEME

Hypersurface Equation @r(r2@rAu) = Hu(AB)

) Au|Nu0

Evolution Eq: @r@uAB = H(AB,Au)

) @uAB|Nu0

Finite di↵erence approximation ) AB|Nu0+�u

Conservation Condition r2@u@rAu = gB(@rAB � @uAB + gBAu)

) @u@rAu|�,u=u0

Finite di↵erence approximation ) @rAu|�,u=u0+�u and Au|Nu0+�u

GIVEN AB|Nu=u0+�u
and @rAu|�,u0+�u ITERATION

GIVES FINITE DIFFERENCE APPROXIMATION FOR

AB|Nu0+n�u
@rAu|�,u=u0+n�u Au|Nu0+n�u

UNFINISHED BUSINESS

IMPLEMENTATION AS EVOLUTION CODE

COUPLED EINSTEIN-MAXWELL CODE



ELECTROMAGNETIC RADIATION MEMORY
Bieri, Garfinkle

Radiation field at null infinity I+ EB(u, ✓C) = �@uAB(u, ✓C)

Retarded transverse angular components of E-field

NET KICK ON CHARGE q AFTER RADIATION PASSES

Integrate qEB = mdvB
du

�vB = vB|u=1
u=�1 = (q/m)

Z u=+1

u=�1
EB(u, ✓

C)du = �(q/m)�AB

MODE DECOMPOSITION

E-mode AB = @B� , B-mode AB = ✏BCgC 
Gauge freedom at I+ AB(u, ✓C) ! AB(u, ✓C) + @B⇤(✓C)

E-mode component of radiation memory �AB is gauge shift
between u = ±1 Analogue of supertranslation shift

IMPORTANT ASTROPHYSICAL SOURCE

Burst memory - Charge Q ejected to infinity

Dipole radiation EB ⇠ d̈B ⇠ QẍB ⇠ QV̇B

�AB = �
R +1
�1 EB(u, xC)du ⇠ Q�VB

For charge ejected with escape velocity V in z-direction

�AB|I+ =
QV

1� V cos ✓
@B cos ✓ (E-mode)



OUTSTANDING QUESTIONS

CAN THE MEMORY BE DETECTED
IN THE RADIO WAVEFORM?

IS THE STRENGTH OF THE KICK
STRONG ENOUGH TO AFFECT THE
DYNAMICS OF NEARBY PLASMA?

ARE ESCAPING CHARGES FROM A
BURST THE ONLY PHYSICALLY
SIGNIFICANT SOURCE OF ELECTRO-
MAGNETIC RADIATION MEMORY?

IS THERE ANY PHYSICALLY
REALISTIC SOURCE OF B-MODE
RADIATION MEMORY?





AFFINE-NULL VS BONDI-SACHS
ADVANTAGES - DISADVANTAGES

BOTH TREAT GEOMETRIC QUANTITIES AT I+

RADIATION STRAIN, ENERGY-MOMENTUM,
ANGULAR MOMENTUM, NP CONSTANTS

BONDI-SACHS

Einstein equations ! Sequence of ODE’s along outgoing null
rays ! Stable numerical evolution algorithm

BUT areal coordinate r breaks down inside event horizon
when null cones begin to refocus (@r@� = 0) so Bondi-Sachs
cannot penetrate the horizon

Except in spherical symmetry, event horizon is reached at
di↵erent retarded times for di↵erent angles so complete I+

cannot be simulated

AFFINE-NULL

A�ne parameter � only breaks down at caustics where r = 0
so A�ne-Null can penetrate horizon

BUT Einstein equations do not reduce to sequence of radial
ODE’s for metric variables,

HOWEVER sequential ODE structure is restored using a
non-obvious choice of variables

JW Phys. Rev. D 87, 124027 (2014)

OUTSTANDING PROBLEM

Numerical implementation of A�ne-Null evolution


