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1. Structure-preserving algorithms for multi-scale waves
From first principles of continuum physics

Multi-scale wave phenomena

@ several parameters viscosity, surface tension, heat, Hall effect, friction
@ competitive effects several scales (fluid, geometry)
@ fine-scale structure oscillations, turbulence

Massive fields and interfaces

@ Klein-Gordon, complex fluids, modified gravity beyond Einstein gravity
@ global dynamics of shocks, moving material interfaces, phase boundaries

@ impulsive gravitational waves, cosmological singularities

Fluids, gases, plasmas, solid materials

@ liquid-vapor flows, thin liquid films, combustion waves, bores in shallow
water, astrophysical flows, neutron stars, phase transformations

Scale-sensitive nonlinear waves

@ regime where one can extract variables with well-defined limits

@ junction laws, scattering laws  under-compressive shocks, determine the dynamics



Diffusive-dispersive nonlinear waves

Btp+

@ conservation law

o fluid density p = p(t, x)

8x2 tr 8x3

non-convex equation of state

phase transition phenomena, magnetohydrodynamics

@ small viscosity coefficient & and surface tension/capillarity coefficient x

Riemann problem

state variable

state variable

Intermolecular forces between a liquid and its surroundings

single initial discontinuity, dam breaking problem

complex wave patterns
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Three possible asymptotic regimes e—0

@ Kk << & (viscosity is dominant) no oscillations, single limit
@ k= ae? (balanced regime) mild oscillations, a-dependent limit
@ 1 >> £? (surface tension is dominant, « fixed) oscillations, no limit
Isothermal compressible fluids Van der Waals fluid

two coupled conservation laws

Tt — ux =0, ur + p(v)x = Elxx — K T
s : _ 8T 2
specific volume 7 velocity u pressure p(7) = 30— — 3/7

Typical Riemann wave structure
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Small-scale dependent nonlinear waves

@ varying the ratio surface tension/viscosity k= ae?

@ rules for connecting left- and right-hand state values from both sides
@ beyond the standard Rankine-Hugoniot relations!

@ notion of a kinetic function/scattering map for interfaces

Need structure-preserving algorithms

@ front tracking e shock capturing with well-controled dissipation



Preserving the asymptotic structure on an
inhomogeneous FLRW background
joint with Y. Cao (Paris) and M. Ghazizadeh (Ottawa)
ArXiv:1912.13439
Formulation of the problem

@ 2+ 1 dim., isothermal, relativistic compressible flow p(p) = k*p
@ FLRW-type cosmological background, with small inhomogeneities

@ future-contracting geometry (t < 0 and t — 0) p— +00

Asymptotic behavior toward the cosmological singularity

@ nonlinear hyperbolic systems on a curved geometry
0:U + 0xF(t,x, U) = H(t,x, U)

e two competitive effects contracting geometry
shock propagation, nonlinear interactions

e small-scale structure, driven by the background geometry

analogy with phase transition dynamics



Structure-preserving methodology
@ divergence form: finite volume scheme, shock-capturing (speed)
@ high accuracy: 4th-order in time, 2nd-order in space, oscillation-free
@ well-balanced property
e introduce suitably rescaled unknowns (Fuchsian PDE method)
e enforce the asymptotic state equations at the discrete level

e enforce commutation property
lime—o limax—o U = limax—o lime—o U

Typical behavior: sharp transitions with spikes
plots of the rescaled velocity component u and rescaled density p
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Standard algorithm Times t = —107%, —1073, —107°
Velocity magnitude V Rescaled density p




Well-balanced algorithm Times t = —1071, —1073, —107°
Velocity magnitude V Rescaled density p
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Preserving the asymptotic structure on a Kasner
background: evolution from the singularity
joint with F. Beyer (Dunedin) ArXiv:2005.13504

Kasner geometry spatially homogeneous, anisotropic vacuum solution
2
g= (K 7)/2( —d? +dx + tldey2 + K G2 = (0, +00) x T
with asymptotic velocity K € R and Kasner exponents

K -1 _2(1-K) _ 2(1+K)
K2+3 PP=key3 PPT Tke13

p1=

Compressible fluid flow with pressure law
p=(—1)p withye(L,2)
Characteristic exponent
1 2
r=, (3v—2-K*(2-19)) €(0,1)

which compare the geometry and fluid behaviors
@ [ >0: sub-critical regime dynamically stable
@ [ < 0: super-critical / critical regimes dynamically unstable

Formally, plug an expansion in power of t and attempt to validate it (Fuchsian asymptotics)



Evolution from the cosmological singularity t = 0
@ formulate a singular initial value problem
B°(U, t,x)0:U + B (U, t,x)0xU = f(U, t,x)
@ suitable “singular initial data” prescribed on t =0
@ Fuchsian-type expansions near the cosmological singularity

o sufficiently regular, shock-free regime

Algorithm preserving the Fuchsian structure
@ discretize U(t,x) ~ V(t) = (V;(t)) by the pseudo-spectral method of lines
oV — AV = h(V,t)
@ high-order Runge-Kutta discretization in time
@ introduce suitably rescaled variables
o careful study of the numerical error
@ take into account the Fuchsian expansion
@ two sources of approximation error: continuum / discrete

@ our proposal : keep the two error sources asymptotically in
balance

With this numerical strategy, we demonstrated the nonlinear stability of the
flow near the cosmological singularity in the sub-critical regime.



Numerical simulations on a Kasner background

— fluid density (contour plot) and velocity field (flow lines)
— time (vertically)

@ density p unbounded as the time t — 0
@ carefully check the numerical error
@ reliable and accurate algorithm, despite the solutions being highly singular
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See ArXiv:2005.13504 fur further numerical results.
Extension to self-gravitating fluids in progress.



2. Universal scattering laws for gravitational

singularities ArXiv:2005.11324 & ArXiv:2005.11324

joint work with B. Le Floch (Paris) and G. Veneziano (Geneva)
— self-gravitating scalar field also: stiff fluid, compressible fluid
— bouncing cosmologies contracting/expanding

— vicinity of a singularity hypersurface
— strong fields, Penrose-Hawking singularity theorems (incompleteness), BKL
theory, etc.

Large literature Penrose, Tod, Liibbe, Turok, Barrow, etc.
symmetric spacetimes and special junctions
Formulation of the problem ?

@ classes of physically meaningful junction conditions
@ degrees of freedom, constraints at the singularity
Main results
@ systematic study of (past, future) singularity data (g, K, qﬁoi, qﬁli)
@ singularity scattering map (g, K g 1)~ (g7, KT o, 07)
@ fully classify the possible bouncing conditions
@ we distinguish between:

e universal scattering laws
o model-dependent scattering maps



Gravitational singularities: main message
Physics literature on bouncing.

"] pre—Big Bang scenario Gasperini, Veneziano, etc.
@ modified gravity-matter Brandenberger, Chamseddine, Cotsakis,

Mukhanov, Peter, Steinhardt, Turok, etc.
@ loop quantum cosmology Asthekar, de Cesare, Gupt, Pawlowski,

" Singh, Wilson-Ewing, etc.
Our standpoint. inen, Wi wing

@ Scattering maps associated with specific theories

@ Flexible framework and classification

@ uncovered all possible classes of junction
geometrically / physically meaningful
conformal/non-conformal  spacelike/null/timelike
scalar field  stiff fluid  compressible fluid
a complete classification

@ discovered three universal laws

constrain macroscopic aspects of spacetime bounces
regardless of their origin from different microscopic corrections

a guide to uncover relevant structures



Proposed formulation of the problem

Local ADM formulation near a singularity hypersurface

@ Gaussian foliation (local patch)

g™ = (g9) = —dr? + g(7) g(r) = gi(r)dx'dx’
@ Einstein’s evolution equations: unknowns g and K
0-gj = -2 Kj 0-K/ = Ti(K)K] + Rl — 87 M]

Mj = 3pg + T} = 3T(T)gf
@ Einstein’s constraint equations
R+|K[> = Tr(K*) =16mp VK — V;(TrK) = 8nJ;
@ coupled to the wave equation [ 4@ = 0 for a scalar field
Fuchsian approach (Rendall, Isenberg, Moncrief, etc.)

— solve from 7 = 0 toward the past (7 < 0) or the future (7 > 0)
— based on the so-called “velocity dominated” Ansatz

— derive an ODE system from the full Einstein equations



Singularity data and asymptotic profiles
a 3-manifold H

Definition

1. Asymptotic profile
T € (—00,0) = (g", K™, ¢")(7) g(r) =17 g
* _1 — * = —
K'(r) = —K ¢ (7) = 95 log | + ¢

2. Singularity initial data set (g, K, ¢, ,¢; ), consisting of two tensor
fields (rescaled metric and extrinsic curvature) and two scalar fields defined
on H

3. Asymptotic version of the Einstein constraints

Riemannian metric g

CMC symmetric (1,1)-tensor K~ with Tr(K~ ) =1
Hamiltonian constraint 1— K™ |* =8 (e )
momentum constraints Div,— (K™) =81 ¢ do;

I(#): space of all singularity data

4




Bounce based on a singularity scattering map

@ Singularity hypersurface as a (fluid-like) interface between two “phases”,
across which the geometry and the matter field encounter a “jump”

@ Fluid dynamics and material science with phase transitions

@ when some (micro-scale) parameters (like viscosity, surface tension,
heat conduction, etc.,) are neglected in the modeling

@ macro-scale effects are captured by jump conditions

Rankine-Hugoniot, kinetic relations
@ kinetic relations in material science martensite-austenite

two-phase liquid-valor flows

Definition

A (past-to-future) singularity scattering map on #:
a diffeomorphism-covariant map on I(#)
S:I(H)3 (g7, K ,d5,01) = (&7 K", 88, 07) € I(H)
satisfying the ultra-locality property: for all x € H
S(g™, K™, ¢g,¢1 )(x) depends only on (g7, K™, ¢, , ¢1 )(x)




@ S is a tame-preserving map if it preserves positivity:
if K~ > 0 then K™ >0, where K% is defined from the image of S.

@ Sis a rigidly-conformal map if g and g~ only differ by a conformal factor.

Observations
@ Quiescent singularities K > 0: motivated by the absence of BKL
oscillations in this case (named after Belinsky, Khalatnikov, and Lifshitz)
quiescent regime, monotone behavior : Rendall, Andersson
Lott, Fournodavlos, Luk, Rodnianksi, Speck
@ Asymptotic profiles with K~, K* > 0 describe a “bounce’:

— volume element decreases to zero as 7 — 0™
— then increases back to finite values for 7 > 0

@ Further notions and constructions: cyclic spacetimes with many
singularity hypersurfaces

@ In the present lecture, we focus on the junction at the bouncing.




Main classification

Theorem 5.2. Rigidly conformal maps

Only two classes of ultra-local spacelike rigidly conformal singularity scattering
maps for self-gravitating scalar fields:

iso, conf
A

g =N\g Kt =46/3 g =1/V12m o=

@ Isotropic rigidly conformal bounce S

parametrized by a conformal factor A = /\(¢0_ , ¢y ,det K~) > 0 and a constant ¢

ani, conf

@ Non-isotropic rigidly conformal bounce S:";
gt =cutg Kt =p (K™ —6/3)+4/3
$c = u g0 /F'(¢1) ¢l = F(ér)

parametrized by a constant ¢ > 0 and a function f: R — [0, 4+00)

(g0, 1) = (1+ 127r(¢0)2f(¢1))1/6 Fén) = f0¢1(1+ Fo))~2dp

Theorem 5.3. General classification

Only two classes of ultra-local spacelike singularity scattering maps for self-gravitating scalar fields:

@ lIsotropic bounce SY° @ Non-isotropic bounce S3".
) )
where now X is a two-tensor, ® a “canonical transformation”, ¢ a constant.




Theorem 5.4. Three universal laws of quiescent bouncing cosmology.

@ First law: scaling of Kasner exponents

There exists a (dissipation) constant v € R such that
e /R P — (12 =
gt M2kt = —y1g7 V2K
spatial metric g in synchronous gauge, volume factor |g|1/2

traceless part K of the extrinsic curvature (as a (1,1) tensor)
v

@ Second law: canonical transformation of matter

conjugate matter momentum 7y ~ bo
— there exists a nonlinear map ®: (74, $)~ > (74, ¢)"
— preserving the volume form in the phase space dmy A d¢

— depending solely on the scalar invariant det(f(_)

@ Third law: directional metric scaling
gt = exp(ao + oK+ 0'2K2)g7
nonlinear scaling in each proper direction of K

~ = 0: isotropic scattering, no restriction o, 01, 02
~ # 0: non-isotropic scattering, explicit formulas in terms of ®, v
v




Follow-up work
@ Scattering maps associated with specific theories

@ small-scale physical modeling

@ Flexible framework and classification

@ uncovered all possible classes of junction
geometrically / physically meaningful
conformal/non-conformal  spacelike/null/timelike
scalar field  stiff fluid compressible fluid
a complete classification
Work with general spacetimes. Earlier approaches: symmetric spacetimes & special
junctions
@ discovered three universal laws
constrain macroscopic aspects of spacetime bounces
regardless of their origin from different microscopic corrections

a guide to uncover relevant structures

@ Numerical simulations of cyclic spacetimes with a bounce



3. Dynamics near Minkowski spacetime in f(R)-gravity
joint with Yue Ma (Xi'an)
Einstein gravity theory
@ minimally coupled, Klein-Gordon field ¢ U(g) = (c?/2)¢?
@ Einstein-Klein-Gordon system Oz = U'(¢)
Rag = 81(VadVso + U(9) gas)
f(R)-gravity theory
@ generalized action fM f(R)dV,
o f(R)=R+%R? a large (mass) parameter 1/
o field equations of modified gravity Mup =87 Tags

Mas = /(R) Gas — 5 (F(R) — RF'(R))gas + (gas U — Va¥5) (F'(R)

@ up to fourth-order terms in g, but second-order after suitable
transformations, self-gravitating massive fields

Global dynamics near the Minkowski regime
@ rich and complex dynamics

@ small perturbations
@ global stability in the dispersive regime



Spherically symmetric collapse of a massive field
@ asymptotically-flat massive matter spacetimes, stability/instability

@ dispersion of the matter toward the infinite future

@ or gravitational collapse and formation of a black hole, or rather
“oscillating soliton stars” ?

Goncalves et al. (1997) T
Okawa, Cardoso, and Pani (2014) r Prompt collapse 1

@ highly accurate, multi-scale

simulation over a long time

@ ‘total mass’' vs. ‘amplitude’

Other extensive numerical 5 hN \\“-Afe‘_ayjt N
investigations of Klein-Gordon fields: g [ AN 7
° .
J.A. Font and collaborators L A geo . Soliton star
y
N
[ \, psoton_ -1
B
L N 4
N
N
L < 4
KN
| ‘\'
0



Massive scalar field )
two independent proofs: lonescu-Pausader

PLF-Yue Ma

Theorem 1.2. Stability of self-gravitating massive fields PLF-Yue Ma ArXiv:171210045

@ Einstein equations coupled to a Klein-Gordon field —Ogp+m*¢p =0
@ initial data set (Mo ~ R®, go, ko, ¢, ¢1) sufficiently close to Minkowski data
@ decay conditions at spacelike infinity possibly non-spherically symmetric

@ Einstein's constraint equations discussed next
The initial value problem admits a globally hyperbolic Cauchy development.

asymptotically close to Minkowski spacetime

future causally geodesically complete
”

Euclidian-hyperboloidal foliation method. W
(1) FOLIATION asympt. EuC|M
(2) (approximate) SYMMETRIES of Minkowski spacetime except the scaling field

(3) SHARP energy, pointwise decay timelike, null, spacelike infinity
(4) nonlinear geometry/matter INTERACTIONS coupled wave-Klein-Gordon equations



Formulation of the governing equations of f(R) gravity

@ rigorous proof for the regime of dispersion

@ wave gauge [gx“ = 0, coupled wave-Klein-Gordon, second-order PDEs

f(R)-gravity for a self-gravitating massive field
Ogi8ls = Fas(g', 0g") + 8 (— 267" 0ag056 + e " g1 )
= 3K20ap0sp + 1 O(p°)gL 5
=G af
Ogt — o= cz(e P — l)d) + ngT 0apOsp
350,1p — p =k O(p%) — Bre ™ (gf‘*Baa(z)aﬁqs 422 e*“quZ)

@ wave gauge conditions g*aﬁr*iﬂ =0

@ curvature compatibility €™ = f'(R—x, 1)

@ Hamiltonian and momentum constraints of modified gravity
propagate from any given Cauchy hypersurfaceJ

@ global stability theorem

@ gravitational radiation, time and space decay



Structure relevant to numerical relativity and new challenges
— Euclidian-hyperboloidal spacetime foliation

@ hyperboloidal slices in the light cone interior capture the decay in time
@ asymptotically Euclidian slices in the exterior  capture the decay in space
@ merged together near the light cone

Numerical investigations: Rinne, Zenginoglu, Hilditch

— Weighted energy norms based on symmetries of Minkowski spacetime

@ “asymptotic” Killing fields (translations, spatial rotations, boost)

@ exclude the scaling field S = tO; + ro, lack of scale invariance
@ frames of vector fields semi-hyperboloidal, semi-null
@ hierarchy and geometry-matter coupling nonlinear interaction terms

provide weighted energy norms and quantitative error estimates

(]

handle asymptotic behaviors that are not spherically symmetric

directional /angular effects into account

study the dependency in k: passage from f(R) gravity to standard gravity

singular perturbation problem




4. Asymptotic localization method
joint work with T.C. Nguyen (Paris)  ArXiv: 1903.00243

Einstein’s constraint equations (M, g, k)
@ from the extrinsic curvature k we define h:=k—Tr(k)g
@ matter content scalar field H,, vector field J,

@ Hamiltonian and momentum constraints

1
Hg.h) = Re + 5 (Tr(h))" — WP = H.
M(g. h) = Divgh = J.

G=(H,M)

Many mathematical works

@ nonlinear elliptic system of partial differential equations
@ Lichnerowicz, Choquet—Bruhat, ..., Corvino, Chrusciel, Delay, Dilts, Galloway,
Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, ... Carlotto and Schoen.
A new analytical approach: the seed-to-solution method

e a seed data/approximate solution (M, g1, h1)

e prescribe the asymptotic behavior at infinity



Theorem. The seed-to-solution method (case of vacuum data) ——
(LeFloch & Nguyen, 2019)

Given a seed data set (M, g1, h1) on a manifold (with one asymptotic end) con-
sisting of a Riemannian metric g1 and a symmetric two-tensor h;:
1/2 < p¢ < min(1, pm) and 1/2 < py < 400

g1 = geua + O(r~"°) h=0O(r P
H(gr, ) = O(r=™7?) M(gr, ) = O(r=~?)
there exists a solution to Einstein's constraint equations G(g, h) = 0.

@ sub-critical decay: py <1

g=g +0O(r ") h=h +O(r—Pv1)
@ critical decay: py = 1 with H(gi, h) and M(gi, 1) in L*(M)
g=g +m/r+o(r™) h=h+0O(r3)
@ super-critical decay: py > 1 p = min(pc + 1, pm, 2)
g=g +m/r+0(r ) h=h1+0O(r?).

in which the “mass corrector” is

m= Fﬁ(gla hl) = _8iﬂ' / H(g:h hl) dvgl + O(g(gl’ h1)2)
M




Iterative construction scheme
@ approximation based on the seed data
@ a fixed-point strategy for nonlinear elliptic equations
@ converging sequence of approximate solutions

@ stability property: continuous dependence w.r.t. the Einstein operator
g = gll 22y < 17 (81, n) = Hullizeo ,oa) + €6 [ Mg1s n) = Mull 2ty
”h - h1HL2C§’°‘(M) See ”H(gl? hl) - H*HL2C‘Y ,(M) + HM(gl’ hl) - M*||L2C;ﬁ(M)

Pt

Structure relevant for numerical relativity

@ construct solutions (M, g, h) with prescribed behavior at infinity
@ control the mass corrector

-~ - 1

= e, ) = g [ M) Ve + O(G(an, )

M
“spurious wave” propagating to infinity

@ allow for free parameters to be fitted, produce realistic initial data sets
@ for instance asymptotically localized in angular directions

@ quantitative error bounds in specific weighted norms




Einstein constraints

@ Carlotto-Schoen : localization at spacelike infinity g—6=1/r"¢

non-sphericallly symmetric with decay 1/r ?

@ LeFloch-Nguyen: relax the requirement at infinity also physically natural

Theorem 1.1. The asymptotic localization problem PLF-Nguyen ArXiv:

— Einstein’s constraint equations on a 3-manifold with one asymptotic end
— two asymptotic, disjoint angular regions, say %t and %sch

Given (for instance) the Euclidean and Schwarzschild metrics, there exists a
solution to Einstein’s constraint equations such that for some g € (1,2)
g = geua + O(r ') everywhere

g = 8euwa + O(r™ %) in Ceua g=gsch +O(r %) in Gsen

Technique of construction. (1) PRESCRIBE a “seed metric” at infinity
1/r region (2) DESIGN seed data with free parameters

/ ¥ asympt. Schw. (3) MASS CORRECTORS determined implicitly

I
asympt. Eucl. /l
\\\ /

- 1/r region
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