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Recent advances on mathematical modeling in GR
Benefits to numerical relativity from ideas and techniques

asymptotic effects on nonlinear waves
new structure of the Einstein equations

– structure-preserving numerical algorithms simple model problems
complex fluids, multi-scale, shocks, fixed background

– universal scattering maps gravitational singularities

– global dynamics of massive fields in f(R)-gravity hyperbolic PDEs

– asymptotic localization method initial data sets, constraint equations
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1. Structure-preserving algorithms for multi-scale waves
From first principles of continuum physics
Multi-scale wave phenomena

several parameters viscosity, surface tension, heat, Hall effect, friction

competitive effects several scales (fluid, geometry)

fine-scale structure oscillations, turbulence

Massive fields and interfaces

Klein-Gordon, complex fluids, modified gravity beyond Einstein gravity
global dynamics of shocks, moving material interfaces, phase boundaries
impulsive gravitational waves, cosmological singularities

Fluids, gases, plasmas, solid materials

liquid-vapor flows, thin liquid films, combustion waves, bores in shallow
water, astrophysical flows, neutron stars, phase transformations

Scale-sensitive nonlinear waves

regime where one can extract variables with well-defined limits
junction laws, scattering laws under-compressive shocks, determine the dynamics



Diffusive-dispersive nonlinear waves
∂
∂t ρ+ ∂

∂x ρ
3 = ε ∂

2ρ
∂x2 + κ ∂3ρ

∂x3

conservation law non-convex equation of state
phase transition phenomena, magnetohydrodynamics

fluid density ρ = ρ(t, x)
small viscosity coefficient ε and surface tension/capillarity coefficient κ

Intermolecular forces between a liquid and its surroundings

Riemann problem single initial discontinuity, dam breaking problem
complex wave patterns



Three possible asymptotic regimes ε→ 0

κ << ε2 (viscosity is dominant) no oscillations, single limit
κ = α ε2 (balanced regime) mild oscillations, α-dependent limit
κ >> ε2 (surface tension is dominant, α fixed) oscillations, no limit

Isothermal compressible fluids Van der Waals fluid
two coupled conservation laws

τt − ux = 0, ut + p(v)x = εuxx − κ τxxx

specific volume τ velocity u pressure p(τ) = 8T
3τ−1 − 3/τ 2

Typical Riemann wave structure
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Small-scale dependent nonlinear waves

varying the ratio surface tension/viscosity κ = α ε2

rules for connecting left- and right-hand state values from both sides
beyond the standard Rankine-Hugoniot relations!
notion of a kinetic function/scattering map for interfaces

Need structure-preserving algorithms

front tracking • shock capturing with well-controled dissipation



Preserving the asymptotic structure on an
inhomogeneous FLRW background

joint with Y. Cao (Paris) and M. Ghazizadeh (Ottawa)
ArXiv:1912.13439

Formulation of the problem

2 + 1 dim., isothermal, relativistic compressible flow p(ρ) = k2ρ

FLRW-type cosmological background, with small inhomogeneities
future-contracting geometry (t < 0 and t → 0) ρ→ +∞

Asymptotic behavior toward the cosmological singularity

nonlinear hyperbolic systems on a curved geometry
∂tU + ∂x F (t, x ,U) = H(t, x ,U)

• two competitive effects contracting geometry
shock propagation, nonlinear interactions

• small-scale structure, driven by the background geometry
analogy with phase transition dynamics



Structure-preserving methodology
divergence form: finite volume scheme, shock-capturing (speed)
high accuracy: 4th-order in time, 2nd-order in space, oscillation-free
well-balanced property
• introduce suitably rescaled unknowns (Fuchsian PDE method)
• enforce the asymptotic state equations at the discrete level
• enforce commutation property

limt→0 lim∆x→0 U = lim∆x→0 limt→0 U

Typical behavior: sharp transitions with spikes
plots of the rescaled velocity component u and rescaled density ρ̃
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Standard algorithm Times t = −10−1, −10−3, −10−5

Velocity magnitude V Rescaled density ρ̃



Well-balanced algorithm Times t = −10−1, −10−3, −10−5

Velocity magnitude V Rescaled density ρ̃



Preserving the asymptotic structure on a Kasner
background: evolution from the singularity

joint with F. Beyer (Dunedin) ArXiv:2005.13504
Kasner geometry spatially homogeneous, anisotropic vacuum solution

g = t(K2−)/2(− dt2 + dx 2 + t1−K dy 2 + t1+K dz2M = (0,+∞)× T3

with asymptotic velocity K ∈ R and Kasner exponents

p1 = K 2 − 1
K 2 + 3 , p2 = 2(1− K)

K 2 + 3 , p3 = 2(1 + K)
K 2 + 3

Compressible fluid flow with pressure law

p = (γ − 1)ρ with γ ∈ (1, 2)

Characteristic exponent

Γ = 1
4
(

3γ − 2− K 2(2− γ)
)
∈ (0, 1)

which compare the geometry and fluid behaviors
Γ > 0 : sub-critical regime dynamically stable
Γ 6 0 : super-critical / critical regimes dynamically unstable
Formally, plug an expansion in power of t and attempt to validate it (Fuchsian asymptotics)



Evolution from the cosmological singularity t = 0
formulate a singular initial value problem

B0(U, t, x)∂tU + B1(U, t, x)∂x U = f (U, t, x)
suitable “singular initial data” prescribed on t = 0
Fuchsian-type expansions near the cosmological singularity
sufficiently regular, shock-free regime

Algorithm preserving the Fuchsian structure
discretize U(t, x) ' V (t) = (Vj (t)) by the pseudo-spectral method of lines

∂tV − AV = h(V , t)
high-order Runge-Kutta discretization in time
introduce suitably rescaled variables
careful study of the numerical error

take into account the Fuchsian expansion
two sources of approximation error: continuum / discrete
our proposal : keep the two error sources asymptotically in
balance

With this numerical strategy, we demonstrated the nonlinear stability of the
flow near the cosmological singularity in the sub-critical regime.



Numerical simulations on a Kasner background
– fluid density (contour plot) and velocity field (flow lines)
– time (vertically)

density ρ unbounded as the time t → 0
carefully check the numerical error
reliable and accurate algorithm, despite the solutions being highly singular
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See ArXiv:2005.13504 fur further numerical results.
Extension to self-gravitating fluids in progress.



2. Universal scattering laws for gravitational
singularities ArXiv:2005.11324 & ArXiv:2005.11324

joint work with B. Le Floch (Paris) and G. Veneziano (Geneva)
– self-gravitating scalar field also: stiff fluid, compressible fluid
– bouncing cosmologies contracting/expanding
– vicinity of a singularity hypersurface
– strong fields, Penrose-Hawking singularity theorems (incompleteness), BKL
theory, etc.
Large literature Penrose, Tod, Lübbe, Turok, Barrow, etc.

symmetric spacetimes and special junctions
Formulation of the problem ?

classes of physically meaningful junction conditions
degrees of freedom, constraints at the singularity

Main results
systematic study of (past, future) singularity data (g±,K±, φ±0 , φ

±
1 )

singularity scattering map (g−,K−, φ−0 , φ
−
1 ) 7→ (g+,K +, φ+

0 , φ
+
1 )

fully classify the possible bouncing conditions
we distinguish between:
• universal scattering laws
• model-dependent scattering maps



Gravitational singularities: main message
Physics literature on bouncing.

pre-Big Bang scenario Gasperini, Veneziano, etc.
modified gravity-matter Brandenberger, Chamseddine, Cotsakis,

Mukhanov, Peter, Steinhardt, Turok, etc.
loop quantum cosmology Asthekar, de Cesare, Gupt, Pawlowski,

Singh, Wilson-Ewing, etc.Our standpoint.

Scattering maps associated with specific theories
Flexible framework and classification

uncovered all possible classes of junction
geometrically / physically meaningful

conformal/non-conformal spacelike/null/timelike
scalar field stiff fluid compressible fluid

a complete classification
discovered three universal laws

constrain macroscopic aspects of spacetime bounces
regardless of their origin from different microscopic corrections

a guide to uncover relevant structures



Proposed formulation of the problem
Local ADM formulation near a singularity hypersurface

Gaussian foliation (local patch)

g (4) =
(

g (4)
αβ

)
= −dτ 2 + g(τ) g(τ) = gij (τ)dx i dx j

Einstein’s evolution equations: unknowns g and K
∂τgij = −2 Kij ∂τK i

j = Tr(K)K i
j + R i

j − 8πM i
j

M i
j = 1

2ρg i
j + T i

j − 1
2 Tr(T )g i

j

Einstein’s constraint equations
R + |K |2 − Tr(K 2) = 16πρ ∇i K i

j −∇j (TrK) = 8πJj

coupled to the wave equation �g(4)φ = 0 for a scalar field

Fuchsian approach (Rendall, Isenberg, Moncrief, etc.)

– solve from τ = 0 toward the past (τ < 0) or the future (τ > 0)
– based on the so-called “velocity dominated” Ansatz
– derive an ODE system from the full Einstein equations



Singularity data and asymptotic profiles
a 3-manifold H

Definition

1. Asymptotic profile

τ ∈ (−∞, 0) 7→
(

g∗,K∗, φ∗
)

(τ) g∗(τ) = |τ |2K−g−

K∗(τ) = −1
τ

K− φ∗(τ) = φ−0 log |τ |+ φ−1

2. Singularity initial data set (g−,K−, φ−0 , φ
−
1 ), consisting of two tensor

fields (rescaled metric and extrinsic curvature) and two scalar fields defined
on H

3. Asymptotic version of the Einstein constraints

Riemannian metric g−

CMC symmetric (1, 1)-tensor K− with Tr(K−) = 1
Hamiltonian constraint 1− |K−|2 = 8π (φ−0 )2

momentum constraints Divg−(K−) = 8π φ−0 dφ−1

I(H): space of all singularity data



Bounce based on a singularity scattering map

Singularity hypersurface as a (fluid-like) interface between two “phases”,
across which the geometry and the matter field encounter a “jump”

Fluid dynamics and material science with phase transitions

when some (micro-scale) parameters (like viscosity, surface tension,
heat conduction, etc.,) are neglected in the modeling
macro-scale effects are captured by jump conditions

Rankine-Hugoniot, kinetic relations
kinetic relations in material science martensite-austenite

two-phase liquid-valor flows

Definition
A (past-to-future) singularity scattering map on H:

a diffeomorphism-covariant map on I(H)
S : I(H) 3

(
g−,K−, φ−0 , φ

−
1
)
7→
(

g+,K +, φ+
0 , φ

+
1
)
∈ I(H)

satisfying the ultra-locality property: for all x ∈ H
S(g−,K−, φ−0 , φ

−
1 )(x) depends only on (g−,K−, φ−0 , φ

−
1 )(x)



S is a tame-preserving map if it preserves positivity:
if K− > 0 then K + > 0, where K + is defined from the image of S.

S is a rigidly-conformal map if g+ and g− only differ by a conformal factor.

Observations

Quiescent singularities K > 0: motivated by the absence of BKL
oscillations in this case (named after Belinsky, Khalatnikov, and Lifshitz)

quiescent regime, monotone behavior : Rendall, Andersson

Lott, Fournodavlos, Luk, Rodnianksi, Speck

Asymptotic profiles with K−,K + > 0 describe a “bounce”:

– volume element decreases to zero as τ → 0−
– then increases back to finite values for τ > 0

Further notions and constructions: cyclic spacetimes with many
singularity hypersurfaces

In the present lecture, we focus on the junction at the bouncing.



Main classification
Theorem 5.2. Rigidly conformal maps
Only two classes of ultra-local spacelike rigidly conformal singularity scattering
maps for self-gravitating scalar fields:

Isotropic rigidly conformal bounce Siso, conf
λ,ϕ

g+ = λ2g− K + = δ/3 φ+
0 = 1/

√
12π φ+

1 = ϕ

parametrized by a conformal factor λ = λ(φ−0 , φ
−
1 , det K−) > 0 and a constant ϕ

Non-isotropic rigidly conformal bounce Sani, conf
f ,c

g+ = c2µ2g− K + = µ−3(K− − δ/3) + δ/3
φ+

0 = µ−3φ−0 /F ′(φ−1 ) φ+
1 = F (φ−1 )

parametrized by a constant c > 0 and a function f : R→ [0,+∞)

µ(φ0, φ1) =
(

1 + 12π(φ0)2f (φ1)
)1/6

F (φ1) =
∫ φ1

0
(1 + f (ϕ))−1/2dϕ

Theorem 5.3. General classification
Only two classes of ultra-local spacelike singularity scattering maps for self-gravitating scalar fields:

Isotropic bounce Siso
λ,ϕ Non-isotropic bounce Sani

Φ,c
where now λ is a two-tensor, Φ a “canonical transformation”, c a constant.



Theorem 5.4. Three universal laws of quiescent bouncing cosmology.

First law: scaling of Kasner exponents

There exists a (dissipation) constant γ ∈ R such that

|g+|1/2K̊ + = −γ |g−|1/2K̊−

spatial metric g in synchronous gauge, volume factor |g|1/2

traceless part K̊ of the extrinsic curvature (as a (1, 1) tensor)

Second law: canonical transformation of matter
conjugate matter momentum πφ ∼ φ0

– there exists a nonlinear map Φ: (πφ, φ)− 7→ (πφ, φ)+

– preserving the volume form in the phase space dπφ ∧ dφ

– depending solely on the scalar invariant det(K̊−)

Third law: directional metric scaling

g+ = exp
(
σ0 + σ1K + σ2K 2)g−

nonlinear scaling in each proper direction of K
γ = 0: isotropic scattering, no restriction σ0, σ1, σ2
γ 6= 0: non-isotropic scattering, explicit formulas in terms of Φ, γ



Follow-up work
Scattering maps associated with specific theories

small-scale physical modeling

Flexible framework and classification

uncovered all possible classes of junction
geometrically / physically meaningful

conformal/non-conformal spacelike/null/timelike
scalar field stiff fluid compressible fluid

a complete classification

Work with general spacetimes. Earlier approaches: symmetric spacetimes & special
junctions
discovered three universal laws

constrain macroscopic aspects of spacetime bounces
regardless of their origin from different microscopic corrections

a guide to uncover relevant structures

Numerical simulations of cyclic spacetimes with a bounce



3. Dynamics near Minkowski spacetime in f(R)-gravity
joint with Yue Ma (Xi’an)

Einstein gravity theory
minimally coupled, Klein-Gordon field φ U(φ) = (c2/2)φ2

Einstein-Klein-Gordon system �gφ = U ′(φ)
Rαβ = 8π

(
∇αφ∇βφ+ U(φ) gαβ

)
f(R)-gravity theory

generalized action
∫

M f (R) dVg

f (R) = R + κ
2 R2 a large (mass) parameter 1/κ

field equations of modified gravity Mαβ = 8πTαβ

Mαβ = f ′(R) Gαβ −
1
2
(

f (R)− Rf ′(R)
)

gαβ +
(

gαβ �g −∇α∇β
)(

f ′(R)
)

up to fourth-order terms in g , but second-order after suitable
transformations, self-gravitating massive fields

Global dynamics near the Minkowski regime
rich and complex dynamics
small perturbations
global stability in the dispersive regime



Spherically symmetric collapse of a massive field
asymptotically-flat massive matter spacetimes, stability/instability

dispersion of the matter toward the infinite future
or gravitational collapse and formation of a black hole, or rather
“oscillating soliton stars” ?

Goncalves et al. (1997)
Okawa, Cardoso, and Pani (2014)

highly accurate, multi-scale
simulation over a long time
‘total mass’ vs. ‘amplitude’

Other extensive numerical
investigations of Klein-Gordon fields:
J.A. Font and collaborators

3

III. TYPE-I AND TYPE-II COLLAPSE

0
log(wµ)

lo
g(

A
/µ
)

Prompt collapse

Delayed collapse

Soliton star

A*
delayed~µ-0.2

A*
II~µ0.2

~t-3/2  decay

A*
I~µ-0.2C

A*
soliton~µ-1

FIG. 2. Qualitative phase diagram for the spherically sym-
metric collapse of a massive scalar field in the (A0/µ, wµ)
plane (in log scale). The triple point separating black-hole
formation, soliton stars and power-law decay is marked by a
black circle. Threshold lines refer to Eqs. (7)–(10) with w set
to unity for clarity.

The collapse of a massive scalar field was found to
fall in two possible regimes, depending on the width-to-
Compton wavelength ratio wµ [18, 19]. For small wµ,
the collapse generically proceeds in a qualitatively similar
way to massless fields, displaying what was termed type-
II behavior: the subsequent evolution of large amplitude
initial data eventually gives rise to black-hole formation;
as the initial amplitude is decreased, the black-hole size
decreases and criticality [2] is approached at vanishingly
small black-hole mass and finite amplitude for the scalar
field. Close to criticality, the black-hole mass satisfies
MBH/M0 = C(A − A∗)γ . Type-I collapse occurs when
wµ ≫ 1, with the black-hole mass function near critical-
ity being discontinuous [19].

We have performed a convergence test, summarized in
Fig. 1, reproducing the expected 4th-order convergence
along with a width w− and r0−independent critical ex-
ponent γ ∼ 0.377 in the massless case, in agreement
to that reported in the original work [2]. However, for
µ ̸= 0, we have found novel features and a much richer
phenomenology. There exist several distinct phase tran-
sitions, which are governed by the initial conditions and
by the mass term µ. We have performed an extensive
search of over 500 simulations (whose typical resolution
is dr/M0 = 1/500) in the entire parameter space and
computed the threshold lines that separate each phase.
The corresponding (A0/µ, wµ) phase diagram is depicted
in Fig. 2, which to the best of our knowledge summarizes
for the first time the possible outcome of the evolution
of self-interacting scalar fields. This phase diagram also

is consistent with previous studies on the subject [19].

IV. PHASES OF MASSIVE SCALAR FIELD
COLLAPSE

The various phases can be understood by fixing the
coupling wµ and slowly decreasing the amplitude, i.e. by
moving on a vertical line starting from the uppermost
part of Fig. 2.

The type-II region shows a single phase transition,
namely from black-hole formation at large amplitude to
power-law decay at small amplitude. The interface be-
tween these two phases is defined by the separatrix

A > AII
∗ ∼ µ(wµ)−0.8 . (7)

The critical amplitude depends very mildly on µ and con-
nects smoothly to a constant value in the µ → 0 limit.
The behavior near the threshold is similar to Choptuik’s
critical collapse [2].

On the other hand the gravitational collapse of fields
which extend sufficiently far beyond their Compton wave-
length is drastically different. If the mass term is suffi-
ciently large, our results indicate that prompt collapse
occurs for initial data satisfying

A > AI
∗ ∼ µ(wµ)−1.2 wµ ≫ 1 . (8)

A WKB analysis of this regime shows that the scalar
collapse is similar to pressureless dust and agrees quali-
tatively with our findings [18].

Figure 2 shows that the parameter space where A < AI
∗

has much more structure. The possible outcomes of the
time evolution are summarized in Figs. 3 and 4, which
show the scalar field Φ(0, t) for different initial ampli-
tudes A. We find that for A < AI

∗, the collapse can still
occur, but is delayed by multiple reflections at the mas-
sive barrier. This situation is akin to the AdS case [3],
and we find it possible to tune the initial amplitude such
that the number of reflections before collapse, and the
collapse time, grow extremely large (possibly without
bound). Thus, in the type-I case, collapse to a black
hole can occur promptly or after several successive re-
flections. For example, the middle panel (blue curve) in
Fig. 3 corresponds to hundreds of reflections before the
field eventually collapses at t ∼ 75M0.

It is tempting to conjecture that a confining mecha-
nism similar to the AdS boundary is here in place: the
mass term can trap arbitrarily small perturbations within
a distance of the order of the Compton wavelength, and
nonlinear interactions eventually lead to collapse, albeit
possibly in ergodic time. Our results show otherwise,
namely that the gravitational collapse halts for suffi-
ciently small amplitudes. Indeed, we performed high-
resolution (dr/M0 = 1/4000) simulations lasting for up
to tens of thousands of dynamical times, tracking the col-
lapse time as a function of the amplitude. For a given
mass µ, we find another threshold value of the amplitude,

Adelayed
∗ ∼ µ(wµ)−1.2 , (9)



Massive scalar field
two independent proofs: Ionescu-Pausader

PLF–Yue Ma

Theorem 1.2. Stability of self-gravitating massive fields PLF-Yue Ma ArXiv:171210045

Einstein equations coupled to a Klein-Gordon field −�gφ + m2 φ = 0

initial data set (M0 ' R3, g0, k0, φ0, φ1) sufficiently close to Minkowski data
decay conditions at spacelike infinity possibly non-spherically symmetric

Einstein’s constraint equations discussed next
The initial value problem admits a globally hyperbolic Cauchy development.

asymptotically close to Minkowski spacetime
future causally geodesically complete

Euclidian-hyperboloidal foliation method.
(1) FOLIATION

asympt.
hyperb.

asympt. Euclidian

(2) (approximate) SYMMETRIES of Minkowski spacetime except the scaling field

(3) SHARP energy, pointwise decay timelike, null, spacelike infinity

(4) nonlinear geometry/matter INTERACTIONS coupled wave-Klein-Gordon equations



Formulation of the governing equations of f(R) gravity

rigorous proof for the regime of dispersion
wave gauge �g xα = 0, coupled wave-Klein-Gordon, second-order PDEs

f(R)-gravity for a self-gravitating massive field

�g†g
†
αβ = Fαβ(g†, ∂g†) + 8π

(
− 2e−κρ∂αφ∂βφ+ c2φ2e−2κρ g†αβ

)
− 3κ2∂αρ∂βρ+ κO(ρ2)g†αβ

�g†φ− c2φ = c2(e−κρ − 1
)
φ+ κg†αβ∂αφ∂βρ

3κ�g†ρ− ρ =κO(ρ2)− 8πe−κρ
(

g†αβ∂αφ∂βφ+ 2c2 e−κρφ2
)

wave gauge conditions g†αβΓ†λαβ = 0
curvature compatibility eκρ = f ′(Re−κρg†)
Hamiltonian and momentum constraints of modified gravity

propagate from any given Cauchy hypersurface

global stability theorem
gravitational radiation, time and space decay



Structure relevant to numerical relativity and new challenges

– Euclidian-hyperboloidal spacetime foliation

hyperboloidal slices in the light cone interior capture the decay in time
asymptotically Euclidian slices in the exterior capture the decay in space
merged together near the light cone

Numerical investigations: Rinne, Zenginoglu, Hilditch

– Weighted energy norms based on symmetries of Minkowski spacetime

“asymptotic” Killing fields (translations, spatial rotations, boost)
exclude the scaling field S = t∂t + r∂r lack of scale invariance
frames of vector fields semi-hyperboloidal, semi-null
hierarchy and geometry-matter coupling nonlinear interaction terms

provide weighted energy norms and quantitative error estimates
handle asymptotic behaviors that are not spherically symmetric

directional/angular effects into account

study the dependency in κ: passage from f(R) gravity to standard gravity
singular perturbation problem



4. Asymptotic localization method
joint work with T.C. Nguyen (Paris) ArXiv: 1903.00243

Einstein’s constraint equations (M, g , k)

from the extrinsic curvature k we define h := k − Tr(k)g
matter content scalar field H?, vector field J?
Hamiltonian and momentum constraints

G = (H,M)
H(g , h) = Rg + 1

2
(

Tr(h)
)2 − |h|2 = H?

M(g , h) = Divg h = J?

Many mathematical works

nonlinear elliptic system of partial differential equations
Lichnerowicz, Choquet-Bruhat, . . . , Corvino, Chrusciel, Delay, Dilts, Galloway,
Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, . . . Carlotto and Schoen.

A new analytical approach: the seed-to-solution method

• a seed data/approximate solution (M, g1, h1)
• prescribe the asymptotic behavior at infinity



Theorem. The seed-to-solution method (case of vacuum data) ——
(LeFloch & Nguyen, 2019)
Given a seed data set (M, g1, h1) on a manifold (with one asymptotic end) con-
sisting of a Riemannian metric g1 and a symmetric two-tensor h1:

1/2 < pG 6 min(1, pM) and 1/2 < pM < +∞

g1 = gEucl +O(r−pG ) h1 = O(r−pG−1)
H(g1, h1) = O(r−pM−2) M(g1, h1) = O(r−pM−2)

there exists a solution to Einstein’s constraint equations G(g , h) = 0.
sub-critical decay: pM < 1

g = g1 +O(r−pM ) h = h1 +O(r−pM−1)

critical decay: pM = 1 with H(g1, h1) and M(g1, h1) in L1(M)
g = g1 + m̃/r + o(r−1) h = h1 +O(r−2)

super-critical decay: pM > 1 p = min(pG + 1, pM , 2)
g = g1 + m̃/r +O(r−p) h = h1 +O(r−2).

in which the “mass corrector” is

m̃ = m̃(g1, h1) = − 1
8π

∫
M
H(g1, h1) dVg1 +O(G(g1, h1)2)



Iterative construction scheme

approximation based on the seed data
a fixed-point strategy for nonlinear elliptic equations
converging sequence of approximate solutions
stability property: continuous dependence w.r.t. the Einstein operator

‖g − g1‖L2C2,α
p (M) . ‖H(g1, h1)− H?‖L2Cαp+2(M) + εG ‖M(g1, h1)−M?‖L2C1,α

q+1 (M)

‖h − h1‖L2C2,α
q (M) . εG ‖H(g1, h1)− H?‖L2Cαp+2(M) + ‖M(g1, h1)−M?‖L2C1,α

q+1 (M)

Structure relevant for numerical relativity

construct solutions (M, g , h) with prescribed behavior at infinity
control the mass corrector

m̃ = m̃(g1, h1) = − 1
8π

∫
M
H(g1, h1) dVg1 +O(G(g1, h1)2)

“spurious wave” propagating to infinity
allow for free parameters to be fitted, produce realistic initial data sets
for instance asymptotically localized in angular directions
quantitative error bounds in specific weighted norms



Einstein constraints
Carlotto-Schoen : localization at spacelike infinity g − δ = 1/r1−ε

non-sphericallly symmetric with decay 1/r ?

LeFloch-Nguyen: relax the requirement at infinity also physically natural

Theorem 1.1. The asymptotic localization problem PLF-Nguyen ArXiv:1903.00243

– Einstein’s constraint equations on a 3-manifold with one asymptotic end
– two asymptotic, disjoint angular regions, say CEucl and CSch

Given (for instance) the Euclidean and Schwarzschild metrics, there exists a
solution to Einstein’s constraint equations such that for some q ∈ (1, 2)

g = gEucl +O(r−1) everywhere
g = gEucl +O(r−q) in CEucl g = gSch +O(r−q) in CSch

Technique of construction. (1) PRESCRIBE a “seed metric” at infinity

(2) DESIGN seed data with free parameters

(3) MASS CORRECTORS determined implicitly

1/r region

1/r region

asympt. Eucl.
asympt. Schw.
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