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* Requirements for constructing a realistic core collapse supernova model.
—  Where current three-dimensional models stand.
* Gaps and how they must be addressed (how we intend to address ours).
e Results from our current production runs, including GW predictions.
e Preliminary results from the development of our next-generation CCSN simulation capability.

* Possible need to extend classical neutrino kinetics to quantum neutrino kinetics.

Takeaways

The efficacy of the neutrino shock reheating/delayed shock mechanism has now been demonstrated by all leading groups across progenitor
characteristics (mass, rotation, and metallicity). Nonetheless, significant challenges remain. For recent reviews, see:

*  Mueller, PASA 33 €048 (2016)
* Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
* Mezzacappa, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6 4 (2020)



Necessary Model Components

Three-Dimensional General Relativistic Gravity Three-Dimensional General Relativistic

Neutrino Kinetics
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* Neutrino heating depends on the neutrino
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*  Turbulent Convection
* Standing Accretion Shock Instability
* Slow to Rapid Progenitor Rotation
* Magnetic Isotropic Pressure
and other MHD Stresses

Requires a closure prescription.
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* Realizability
Fermi-Dirac statistics must be obeyed.

The distribution function must be bounded.
The moments of the distribution functions (e.g., the energy
and momentum densities) must be bounded.

* For moments-based approaches, we require a closure.

* The closure must be realizable —i.e., the Eddington factor is bounded.

* Achieving this in numerical simulations is a significant challenge. 1 J =01

Proving that the numerical method is realizable is difficult.
At 0(1), this has been accomplished [Chu et al. JCP, 389, 62 (2019)],
and in turn leads to restrictions on the time step, which can be used

to guarantee realizability.

In the relativistic case, such proofs have not yet been constructed,
implying that the conditions that must be maintained to guarantee 0zl

realizability in this case are not yet known.
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Neutrino Kinetics: A Deeper Look

* Simulations must endeavor to conserve both lepton number and energy.

 Significant technical challenge — specifically, to develop discretizations of the underlying integro-partial differential
equations of neutrino radiation hydrodynamics that conserve both gquantities.

* Begin with a reformulation of general relativistic kinetic theory that is manifestly conservative for lepton number.
» Cardall and Mezzacappa, PRD 68, 023006 (2003)
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* 3+1 Expressions of the Equations
* Cardall, Endeve, and Mezzacappa, PRD 88, 023011 (2013) (Boltzmann)
* Cardall, Endeve, and Mezzacappa, PRD 87, 103004 (2013) (Moments)
* See also Shibata et al. Prog. Theor. Phys. 125, 1255 (2011) and Shibata et al. PRD 89, 084073 (2014)

For a review, see Mezzacappa, Endeve, Messer, and Bruenn, Living Reviews in Computational Astrophysics 6, 4 (2020)
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UT—ORNL Supernova Code Lineage

Code

Chimera THORNADO

General Relativistic
Hydrodynamics
(MHD under
Development)

Partial Weak Physics

General Relativistic Three-Dimensional
Gravity (xCFC, CCZ4 Transport (SR, GR
Under Development) Under Development)

Extensive Weak
Physics

(Extensive Weak
Physics Under
Development)

Effective Potential Ray-by-Ray Transport No B Fields

* Based on DG discretizations in phase space (space and neutrino energy).
o Well suited to capturing physical diffusion.
o  Well suited to simultaneous conservation of lepton number and energy.
* IMEX time integration.
o Use implicit methods only where necessary (local neutrino—matter interactions).
o Avoid global implicit solves.
* Being developed to satisfy realizability, correct asymptotic behavior, and simultaneous
number and energy conservation.



Ch i mera IVI Odels First Chimera Model: Lentz et al. Ap.J Lett. 807 L31 (2015)
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Culling Information about the Proto-Neutron Star
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both contribute to (and dominate) high-frequency
gravitational wave emission.

Dominant emission mechanism is within the
proto-neutron star.

3D has broadened the picture!

Best "fit” is not at the density we would use
to define the proto-neutron star surface.
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What is the nature of the PNS instabilities?

Ledoux Convection

Doubly Diffusive Instabilities

e Neutron Fingers
e | epto-Entropy Fingers
e | epto-Entropy Semi-Convection

Bruenn, Mezzacappa, and Dineva (1995) Phys. Rep. 256, 69
Bruenn and Dineva (1996) Ap.J. Lett. 458, 71
Bruenn, Raley, and Mezzacappa (2004) astro-ph/0404099
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Assumption:
S Doubly diffusive instabilities can
Will occur in crossed entropy and lepton extend the region of instability
fraction gradients —i.e., in Ledoux stable beyond the Ledoux unstable
regions. )
Y regions.
Basis for the assumption:
Ledoux Neutron Finger
Three flavors mediate energy exchange. i \ /
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12 |
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If heat flow dominates lepton flow, gl
the now low S, low Y perturbation \ ? | <
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o
Neutron Fingers were invoked by the LLNL group |
in their explosion models: Heat Flow i ]
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+ Wilson, Mayle, Woosley, and Weaver, 1986, in Annals Bruenn, Raley, and Mezzacappa (2004) astro-ph/0404099

of the NY Academy of Science, Vol. 470, 12th Texas
Symposium on Relativistic Astrophysics, ed. M. Livio
and G. Shaviv (Boston: Jones and Bartlett), 267

“Doubly Diffusive Instability ”



THORNADO Models

Fully developed and tested
THORNADO through the SR regime.
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A Common Theme: It’s All About the Angular Distributions

* Neutrino shock reheating depends on the neutrino angular distributions.
* Required within the proto-neutron star to accurately capture doubly diffusive instabilities that

* Classical kinetics with full angular dependence is required to form the foundation for the devel

Neutrino flavor evolution is complicated by neutri
which affect all neutrinos at all energies —i.e., the
— collectively.

* Duan, H., Fuller, G. M., & Qian, Y.-Z. 2010, ARNPS 60,

If v, and v, angular distributions

are sufficiently different, “fast flavor
instabilities” in the vicinity —i.e., within
O(m) — of the neutrinospheres may be
triggered.

R~ O(10km)

* Sawyer, R. F. 2005, PRD 72, 045003 Impa




Takeaways

Recent progress has been great!

Multiple groups have demonstrated the efficacy of the neutrino heating mechanism over a range of progenitor
characteristics, in three dimensions.

Current three-dimensional models have allowed us to study associated phenomena such as gravitational wave emission.
There is a great deal of development to be done to arrive at (classical) definitive three-dimensional models.

Full three-dimensionality.

Full general relativity.

Full physics (weak interaction physics, magnetic fields, ...).

Quantum kinetics looms large as a potential requirement, the development of which will occupy our community for some time.



