

Simulating short gamma-ray burst jets from binary neutron star mergers

RICCARDO CIOLFI

INAF - Osservatorio Astronomico di Padova INFN - Sezione di Padova

Ciolfi et al. 2019, PRD **100**, 023005 <u>ArXiv:1904.10222</u> Ciolfi 2020a, MNRAS Lett. **495**, L66 <u>ArXiv:2001.10241</u> Ciolfi & Kalinani 2020, ApJ Lett. **900**, L35 <u>ArXiv:2004.11298</u> Kalinani et al. 2021, submitted <u>ArXiv:2107.10620</u> Pavan et al. 2021, MNRAS **506**, 3483 <u>ArXiv:2104.12410</u>

Computational Challenges in Multi-Messenger Astrophysics 6th October 2020

GWI708I7 detection timeline

GWI708I7 detection timeline

GRB 170817A

GRB 170817A: a peculiar GRB

from GRB and multiwavelength afterglow modelling

observed gamma-rays come from mildly relativistic outflow ($\Gamma\sim2-8$) moving along the line of sight

Canonical SGRB or choked jet?

Lazzati+2018

Gottlieb+2017

VLBI observations

global network of 32 radio telescopes

between 75 and 230 days

source is moving relativistically (and getting closer)

Ghirlanda+2018

source size < 2 m arcseconds @ 207 days source is still rather compact!

VLBI observations

global network of 32 radio telescopes

SGRB jets from BNS mergers

Product of BNS mergers

SGRB jets from BNS mergers

SGRB jets from BNS mergers

BNS mergers with long-lived remnant

Ciolfi+2017

Magnetic field amplification and geometry

Ciolfi+2019: 100 ms of post-merger evolution

Kiuchi+2015

Magnetically driven wind

Ciolfi+2019

@50-100 ms after merger

nearly **isotropic** and **constant** density distribution from ~50 km to ~400 km

cumulative mass flow across 150 km radius

magnetized remnant NS

- surrounded by dense isotropic environment
- slow steady outflow maintaining a fixed radial density profile

Magnetically driven wind

BNS mergers with much longer evolution

Ciolfi 2020a

- BNS system with chirp mass of GW170817 and q=0.9
- two different initial magnetization levels (factor 5 in field strength)
- evolution up to ~250 ms after merger

BNS mergers with much longer evolution

Ciolfi 2020a

- BNS system with chirp mass of GW170817 and q=0.9
- two different initial magnetization levels (factor 5 in field strength)
- evolution up to ~250 ms after merger

massive NS remnant can produce a collimated outflow

BNS mergers with much longer evolution

Ciolfi 2020a

- BNS system with chirp mass of GW170817 and q=0.9
- two different initial magnetization levels (factor 5 in field strength)
- evolution up to \sim 250 ms after merger

 $t = 211.9 \, \mathrm{ms}$

collimated outflow

..but not ubiquitous

Emerging helical magnetic field

Ciolfi 2020a

earlier disordered field creates obstacle for collimated outflow coming later helical structure takes time to emerge (and not always does)

Can this collimated outflow evolve into a SGRB jet?

compared to GRB 170817A jet parameters:

- outflow energy is insufficient (or at most marginally consistent)
- outflow collimation is insufficient
- low outflow velocity of ~0.2c and energy-to-mass flux ratio <0.01
 - → no way to accelerate up to ~0.995c (Lorentz factor of 10) or more

outflow is at least 3 orders of magnitude too heavy!

massive NS scenario for SGRBs is disfavoured

Results from Ciolfi 2020a

- GRMHD BNS merger simulations with up to >250 ms of massive NS remnant evolution
- massive NS remnant can launch an MHD-driven collimated outflow, but this outcome is not ubiquitous
- followed the full outflow development, studied the associated energetics and properties
- identified the energy reservoir (NS differential rotation)
- identified the launching mechanism (magnetorotational)
- found indications against the possible production of a SGRB

→ accreting BH scenario is favoured

Results from Ciolfi 2020a

Spritz: a new GRMHD code

Version 1.0: Cipolletta+2020

- Vector potential staggered evolution
- Designed to work within Einstein Toolkit framework
- Support for ideal gas and polytropic EOSs via EOS_Omni
- Undergone extensive ID, 2D and 3D testing

Version 2.0: Cipolletta+2021

- Support for composition-dependent finite temperature EOS
- ZelmaniLeak neutrino leakage scheme Ott+2012
- Evolution equation of electron fraction
- ID Palenzuela C2P scheme
- Higher order schemes: WENOZ with HLLE4 and HLLE6
- Publicly available on Zenodo: <u>10.5281/zenodo.4350072</u>

Balsara I shocktube test: staggered vs non-staggered vector potential evolution

adapted from slide by Jay Kalinani

Conservative-to-primitive recovery scheme RePrimAnd

Scheme features: Kastaun+2021

- Uses root-bracketing scheme
- Alway converges to a unique solution (mathematical proof)
- Strong error policy: guarantees to find invalid evolved variables and applies harmless corrections, if necessary
- EOS-agnostic
- Publicly available code along with an EOS-framework on Zenodo: wokast/RePrimAnd

Implementation in Spritz: Kalinani+2021

- Integrated RePrimAnd library into Einstein Toolkit
- Added option in Spritz to use C2P from RePrimAnd
- Defines and enforces validity range for EOS
- Option to use different error policy within BHs
- Support for fully tabulated EOS underway

List of 3D tests:

- TOV star with internal magnetic field
- NS with external dipolar magnetic field
- Rotating magnetised NS
- Rotating magnetised NS collapse to BH
- Fishbone-Moncrief BH-accretion disk

Conservative-to-primitive recovery scheme RePrimAnd

Using RePrimAnd in BNS merger simulations

Kalinani+ in prep.

Aguilera-Miret+2020

13.2

after collapse

log(B/G) 15.8

Connecting with SGRB observations

semi-analytical

3D GRMHD

Hamidani & loka

Lazzati+2018

/r

200

800-600-400-

Kathirgamaraju+2019

Nathanail+2020, 2021

<u>common limitation</u>: incipient jet propagates across hand-made and simplified environment

- power-law density profile & homologous expansion or stationary wind
- spherical/axial symmetry

adapted from Kasliwal+2018

Towards an end-to-end modelling

consistent description of

BNS merger + jet production + jet propagation across the environment

<u>final goal</u>: constraining properties of the specific merging system via SGRB-related observations

Jet propagation in BNS merger environment

Pavan+2021

first 3D RHD jet simulations with environment imported from BNS simulation

simulation setup

- PLUTO code Mignone+2007, 2012
- full 3D spherical grid (log r spacing)
- excised region up to 380km radius
- redefinition of atmospheric floor $\rho_{\text{atm}}{\sim}1/r^{5}$
- outer boundary 2.5e6 km
- TAUB EOS Mignone & McKinney 2005
- Gravitational pull from central object (2.596 Msun)

- top-hat, 10 deg half-opening angle, lorentz factor 3
- luminosity 3e50 erg/s, decaying on 0.3 s timescale

adapted from slides by Andrea Pavan

Impact of gravity

adapted from slides by Andrea Pavan

 $\log_{10}(\rho\,[{\rm g/cm^3}])$

-1 0 1 2 3 4 5 6 0

 $\log_{10}(\Gamma)$

1

BNS merger vs. hand-made initial conditions

Dependence on collapse/jet launching time

adapted from slides by Andrea Pavan

Summary of Pavan+2021

- first 3D RHD jet simulations with environment imported from a BNS merger simulation
- simpler hand-made environments lead to significantly different results
- gravitational pull from central object needs to be included
- outcome may strongly depend on jet launching time

Summary of Pavan+2021

- first 3D RHD jet simulations with environment imported from a BNS merger simulation
- simpler hand-made environments lead to significantly different results
- gravitational pull from central object needs to be included
- outcome may strongly depend on jet launching time

Work in progress.

short-term long-term

- inclusion of magnetic fields (RMHD)
 - adaptive mesh refinement
- jet launched consistently in BNS merger simulation
- radiation transport for thermal and non-thermal photons

Take-home message

after GRB 170817A we know that BNS mergers can produce powerful relativistic jets

- GRMHD simulations: necessary tool to investigate launching mechanism and engine nature
- BH engine scenario favoured by current results, but without neutrino emission/absorption/annihilation

MAIN LIMITATION: unresolved MHD instabilities/turbulence

- new GRMHD code Spritz + new c2p scheme RePrimAnd
 now performing the first BNS merger simulations
- jet propagation and connection to prompt/afterglow SGRB observations so far "detached" from merger dynamics
 - first 3D RHD jet simulations with imported BNS merger environment initial step towards end-to-end consistent description

References

- A. Pavan, **R. Ciolfi**, J.V. Kalinani, A. Mignone (2021), MNRAS **506**, 3483 Short gamma-ray burst jet propagation in binary neutron star merger environments

- R. Ciolfi, J.V. Kalinani (2020), ApJ Letters 900, L35 Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of August 2017

- **R. Ciolfi** (2020a), MNRAS Letters **495**, L66 Collimated outflows from long-lived binary neutron star merger remnants

- D. Lazzati, **R. Ciolfi**, R. Perna (2020), accepted on ApJ, ArXiv:2004.10210 Intrinsic properties of the engine and jet that powered the short gamma-ray burst associated with GW170817

- R. Ciolfi, W. Kastaun, J.V. Kalinani, B. Giacomazzo (2019), PRD 100, 023005 The first 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger

- D. Lazzati, et al. (2018), PRL **120**, 241103 Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817

- **R. Ciolfi**, W. Kastaun, B. Giacomazzo, A. Endrizzi, D. M. Siegel, R. Perna (2017), PRD **95**, 063016 General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

Spritz and RePrimAnd

- J.V. Kalinani, **R. Ciolfi**, W. Kastaun, et al. (2021), submitted *Implementing a new recovery scheme for primitive variables in...*

- W. Kastaun, J.V. Kalinani, **R. Ciolfi** (2021), PRD **103**, 023018 Robust Recovery of Primitive Variables in Relativistic Ideal MHD

- F. Cipolletta, et al. (2021), CQG **38**, 085021 Spritz: General Relativistic Magnetohydrodynamics with Neutrinos

- F. Cipolletta, et al. (2020), CQG **37**, 135010 Spritz: a new fully general-relativistic magnetohydrodynamic code

Recent review articles

- **R. Ciolfi** (2020c), Front. Astron. Sp. Sci. 7, 27 *Binary neutron star mergers after GW170817*

- **R. Ciolfi** (2020b), Gen. Rel. Grav. **52**, 59 *The key role of magnetic fields in BNS mergers*

- **R. Ciolfi** (2018), IJMPD 27, No. 13, 1842004 Short gamma-ray burst central engines

BACKUP SLIDES

GRB 170817A: Canonical SGRB?

Lazzati+2018

an ordinary SGRB event observed off-axis? → viable explanation!

AT2017gfo: blue and red

opacity ~10 cm²/g (lanthanide-rich)

which type of merger ejecta can explain the blue/red kilonova?

AT2017gfo: blue and red

I) "blue" kilonova

peaking ~1 day after merger between UV and blue ejecta expansion velocity ~0.2 - 0.3 c ejecta mass ~0.015 - 0.025 M_{sun} opacity ~0.5 cm²/g (lanthanide-poor)

magnetically driven wind from the massive NS ? (before its eventual collapse)

expected opacity fits the requirement e.g. Perego+2014

magnetic enhancement of mass outflow and acceleration to sufficiently high velocities

to be demonstrated!

Magnetically driven winds and blue KN

Ciolfi & Kalinani 2020

post-merger outflow at 300km

- magnetically driven mass outflow takes time to emerge for significant contribution —> NS remnant lifetime > 50ms
- mostly over at 200ms —> slower neutrino driven wind could then take over and persist for longer time (~lsec)

GRB 170817A: intrinsic jet properties

Lazzati, Ciolfi, Perna 2020

