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Motivation

* How do we go from this...
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Motivation

» Measure the properties of individual detections...
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e ... and of the underlying population
 See Salvo Vitale’s talk later today!
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Bayes’ Theorem




Bayes’ Theorem Components

 Posterior — probability of the parameters 6 given the data d and model H
p(0|d, H)
* Likelihood — probability of the data d for parameters 8 and model H
p(d|6,H) = L(d|6,H)
 Prior - initial probability of the parameters 8 under model H

p(0|H) = n(0|H)



Normalization

« Probability distributions need to be normalized:

Marginalization — certain parameters are integrated out of the distribution

L(dl) = / £(d]6, 11)m(6)d0

+ Evidence — normalization constant for the posterior, likelihood marginalized over all
parameters

p(d|H) = 25 — / £(d|0. H)x(0|H) do
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Joint Distributions

» Sometimes, the distribution of one parameter can depend on
another parameter:

p(0, 1) = p(0])p(p)

« Example: The secondary mass in the binary must be less than the
primary mass

* In this case, marginalization can look like:

L(dl) = / £(d]ps, 0)(6])d0



LIGO Noise Properties

» The data consists of both a noise contribution and an astrophysical
component

~

d(f) = n(f) + h(0; f)
- \

noise astrophysical contribution

* The noise is typically assumed to be stationary and Gaussian and is
characterized by the power spectral density (PSD)

(5 (£ £)) = 5Sa(1)3

« T is the segment duration, PSD has units of [1/Hz]
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LIGO Noise Properties

strain [1/VHz]

» For well-behaved noise in the absence of a signal, the real and
imaginary parts of the strain each follow a unit Gaussian distribution
about the square root of the PSD (the amplitude spectral density, ASD)

 Data is whitened by dividing by the ASD

‘= data

= VPSD

f [Hz]
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Calculating the PSD

 Off-source method 0 |

* Also called the periodogram method | j‘.a j’ ‘
or Welch method T\ | l

» Use a long stretch of data either o .\ | ;%
before or after but always excluding = ... Wl | ! |
the analysis segment ? ! Wﬁ" " ' I r }

» Split the data into short segments . il W i || |l

~ 3 LY | ‘i ¥

and calculate |d(f:)|” for each o i k’f.:;.u.‘.)..ula.—a’-in%w
segment after windowing the data | 5125 Ll

« Take the median of the T e o R T
periodograms from each short data Freauency IHZ

segment
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Calculating the PSD
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2
* Model the PSD as a sum of a —_— Splli:g),]n e 5 N
broadband spline and
narrowband Lorentzians using
the BayesLine algorithm

 Using only the data from the
analysis segment, infer the
spline and Lorentzian
parameters that best
characterize the PSD

) ReqUireS Significantly leSS data 1048 l 4 ; 11 l::'l l:.:'l l 1:‘41 1 l.. lllll ] _— .l'-;l L1 1 1 l L1 1 l Ll 1
= more hkehétgat it will be 50 100 150 200 250 300 350 400 450
statlonary dn dussSian over a f

’ . requency (Hz)
shorter period of time . .
Littenberg and Cornish (2014)
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The Gravitational-Wave Likelihood

» The residual is the difference between the data and the signal
template: N ~ -
r(0; fi) = d(fi) — h(6; fi)

* In the presence of a signal, the real and imaginary parts of the
residual should also be Gaussian-distributed:

p(RA(f:)]6) = ——— exp (_(W(H;ém))

2mo; 207

p(3d(1)[0) = — - (_ (37(6; Zfi>>2)

2TO 207




The Gravitational-Wave Likelihood

* The PSD (and some normalization factors) is the variance of the

likelihood:
02 L TSn(f z)

s =
4
» The total likelihood of the data is the product of the real and
imaginary likelihoods:

ﬁ(J(fi)|9) = p(%j(fi)‘g)p(gj(fi)‘g)



The Whittle Likelihood

* The final form of the likelihood used in gravitational-wave data
analysis is the Whittle Likelihood:

i ! ) 21d(f;) — h(8; f;)|?
L(d(f:)|0) = TrSu(f) ( T 5ulfi) )

£(d|6) = H£ (f:)]6)

» The likelihood for multlple frequencies is the product of the
individual-frequency likelihoods, same for multiple detectors:

L({d};|0) = Hc d;|)




Noise-weighted inner product

» Define the noise-weighted inner product:

(a|b) = —Zm< ()f’b))

» This will be useful for simplifying the likelihood and defining
various signal-to-noise ratios

Biscoveanu GWATUT
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Rearranging the log-likelihood

log £(d|0) = Zlogc (f:)10)

B % 21d(f;) — h(O; f)|?
log £(d|6) = ;log (Tan(fz')> N Z TS, (f)

1

log £(d|0) —%(d _ h(@)|d — h(6))

 Log-likelihood is proportional to the noise-weighted inner product
of the residual with itself



Signal-to-noise ratios

» We can break the likelihood down into some special terms:

l0g L(d]6) o — [{dld) — 2(dh(6)) + (h(6)|1(6)]

» Optimal signal-to-noise ratio:

Popt = (h(0)[(0))

» Matched filter signal-to-noise ratio:

(d|(6))

popt

PMF —

Biscoveanu GWATUT
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Noise likelihood

* There is a hypothesis implicit in the likelihood presented so
far—that there is a signal in the data

* In the absence of a signal, the likelihood simplifies

~ 3 9 2|d(f:)|?
L0 = g iy ( £ Sn(f@'))

log £(d|0) —%(d\d)

» This is called the noise likelihood



The astrophysical contribution

» For compact binary coalescences, the astrophysical contribution,
h(0: f,), is a waveform that depends on 17 parameters

Intrinsic: Extrinsic:
Component masses ]S)ky location
Component spins ISiE.anCG.B
(Tidal deformabilities) Inclination
Polarization

Reference phase
Time at coalescence

m,

» Other models for other types of signals — sine gaussian wavelets,
supernova waveforms, etc.



Measuring source properties from the waveform

0 c [m17m27>217>227 (A17A2)7 Ls dL7 &, 5»% ¢7tc]

» The intrinsic parameters and distance affect the amplitude and phase of the
waveform
~ 1 5
hi(f) = §AGW<f)(1 + cos” 1) cos paw (f)

hy (f) = Agw/(f) cos tsin paw (f)

« Two polarizations — plus and cross

https://www.ligo-india.in/wp-content/uploads/2021/01/3-Stretch-and-Squeeze2.gif



Detector response

* The detector’s sensitivity to the plus and cross modes of the
gravitational wave depends on its orientation and geometry via

the antenna pattern functions

~

h(f) = Fi(a,6,%)hy(f) + Fx(a,8,9)hy(f)

1.0 1.0
” 0.5 * 0.5

.0 0.0
+0.5 +0.5
b J
S 1.0 -’ 1.0
0.5 0.5
-0.5 0.0 -0.5 0.0
0.0 0.5 00 =~%05

0.5 :
Plus Cross
Biscoveanu GWATUT
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Mass parameters

- “Primary” refers to more massive black hole, “secondary” to
least massive

» Best-measured mass parameter with gravitational waves is the
chirp mass:
p (myims)? /5

(m1 + mg)1/5

M:

* Symmetric mass ratio: 7] = (

« Asymmetric mass ratio: g = m,/my

Biscoveanu GWATUT
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Mass parameters

» Masses indicative of supernova
physics: GW190814

« Some theoretical models (and
observations of galactic neutron stars

and black holes) predict a lower mass gap Neutron -
between the most massive neutron stars Star
and least massive black holes formed in O

supernovae

» Upper mass gap predicted since black
holes formed by gravitational collapse
are not expected to be more massive than
~50 solar masses due to (pulsational)
pair-instability supernovae

Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC).
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Effect of Mass

 Bigger mass - bigger amplitude
 Final mass measured from ringdown

—— high mass
low mass

|

~0.05 0.00 0.05
Time (s) Biscoveanu GWATUT
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Spin Parameters

« Misalignment between the spins and the orbital angular momentum causes
precession

» Total angular momentum-J
* Orbital angular momentum - L
* Observer line of sight - N

Biscoveanu GWATUT 27



Spin Parameters

* Yeofr - best measured spin parameter
with gravitational waves, mass-

weighted spin aligned with the orbital
angular momentum

X1 cos 01 + qx2 cos 65
14+gq

A

Xeff =

L

* X, - effective precessing spin, mass-
weighted spin projection onto the

orbital plane

Xp = Mmax (Xl sin 61,

A

49+3 iy
4+ 3q qgx2 2

L




Spin parameters

» Tilts are an indicator of binary formation channel:

 Binary stars evolving to compact objects in isolation expected to have
aligned spins

« Compact binaries assembled dynamically in dense environments
expected to have isotropic spin distribution

« Azimuthal angle ¢,, can be indicative of efficiency of tidal
interactions during stellar evolution via spin-orbit resonances

 Both azimuthal angles critical for determining the kick of the
remnant object—> retention fraction

Biscoveanu GWATUT
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Effect of Spin

« More positive aligned spin - * Precessing spins - amplitude
orbital hangup modulations

 Takes longer for the system to  Spins misaligned to orbital
merge angular momentum
: no spin T aligned spin

751 —— high spin {\ ﬂ l 751 —— precessing spin

-7.5 1 U H T =15

005 i ;
Time (s) Biscoveanu GWATUT Time (s)



Priors

» Uniform in some parameterization of the 7 Sows fmevolume = Lty ol o )
mass

 Easier to sample in chirp mass and mass ratio

» Enforce m; > m, |
» Uniform in spin magnitudes : //
 Spin angles isotropic on the sphere b
. ésothopi(; on the sky for right ascension and :

eclination i
» Uniform in luminosity volume (o< d?) ; P

« Or cosmological distance prior T | | | | |
0 1000 2000 3000 4000 5000 6000 7000
dL [Mpc]



Wavetorms

 See Patricia Schmidt’s talk tomorrow!
» Different methods for providing approximate solutions for

ho;f):
» Post-Newtonian, inspiral-only

 Inspiral-merger-ringdown phenomenological waveforms tuned to
numerical relativity

 Effective one-body or self-force methods
« Numerical relativity surrogate models

 Different models include different physics:
 Tides, precession, higher-order modes



Bayesian Model Selection

» Simple example - signal versus noise

* Noise evidence: integrate the noise likelihood (no astrophysical
contribution) over the binary parameters:

zN:/cmmﬂmw

zﬁ(d\@)/ﬂ(ﬂ)dﬂ
= L(d|0)



Bayesian Model Selection

» Bayes factor: evidence ratio

» Odds ratio: bayes factor weighted by prior odds

S _ s 7(S5)
ON_BFNW(N)

Biscoveanu GWATUT
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Bayesian Model Selection

« Another example - aligned vs precessing spins

A JL(d0)T(6|A) db
Blp = [ L(d|0)7(8]P) db

» For aligned spins, prior is a delta function at zero on tilt angles
» Typically BF > 3000 is significant



Sampling methods

* How do you actually obtain p(6|d)?

 Could evaluate the likelihood on a grid, but this isn’t feasible
with 17 parameters

 Instead use a stochastic sampler:
« Markov Chain Monte Carlo (MCMC)
* Nested sampling

» Obtain samples from the posterior probability distribution



MCMC

 Particles undergo a random walk through the
parameter space, where the probability of jumping to
a new location is dictated by the proposal density
function

* Proposed sample is accepted with probability
depending on ratio of the product of likelihood, prior,
and proposal distribution at the old vs new points

« Determining a suitable proposal density function is
the hard part of sampling — a simple example is a

Gaussian centered on the current location \

» Proposal should maintain detailed balance—
probability of jumping between two points in
parameter space is the same in both directions https://github.com/chi-feng/meme-demo




MCMC

» Burn-in period before the walkers

“forget” their starting positions 0.8 -
» Adjacent samples in a chain are -
correlated - chains need to be thinned = ™ | Burmin
by the integrated autocorrelation time g 0.4 -
(ACT) £
o | |
 Number of steps the walker must take = o
before it “forgets” where it came from S
« Smaller ACT means sampler converges 0 200 400 600 800
faster, depends on efficiency of Position in chain

proposal distribution

Biscoveanu GWATUT 38




Nested Sampling

(a)

F. Feroz et. al. (2008)

Sprinkle a set of live points over the prior
space

Replace the live point with the lowest
likelihood with a point with a higher
likelihood

Evidence is the product of the likelihood at the
discarded point and the difference in the prior
volume between iterations

Obtain samples from the prior in the process
of calculating the evidence

Proceed until a termination criterion is
reached



Nested Sampling

» Evidence is the expectation value of the likelihood, which can
be obtained by integrating over (1 - the CDF of the likelihood):

Zz — / L(6)7(0)d0
= (L(0))

= [ (- Fewyir
0 CTDF \ Some value of the likelihood



Nested Sampling

» CDF of the likelihood, F(L), is the area enclosed in regions of
parameter space where likelihood < L:

Fo(L) = / (0)d6
LIL
* Define the prior volume:

X(L)El—Fﬁ(L):/ﬁ n(0)as

« X(L) is a monotonically increasing function between X(0) = 1
(integral over full normalized prior) to X(L,,.,)=0



Nested Sampling

* We can now turn the evidence into a one-dimensional integral:

o0 2
Z = / X(L)dL
0
1
= / L(X)dX
0
 For the ith iteration:
N—-1\°
N 0 X4 X3 X9 X4 1
(b)

F. Feroz et. al. (2008)



The Bayesian Inference Library is a software
package designed to enable parameter
estimation for compact binary coalescences
and more general problems

Emphasis on modularity, transparency, and
ease of use

Wrapper for many different external samplers
including dynesty, pymultinest, cpnest, emcee,
ptemcee, and others

Can analyze real data from LIGO and Virgo or
simulated signals
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Additional Resources

* https://Iscsoft.docs.ligo.org/bilby/ - Bilby documentation

* https://chi-feng.github.io/mcmc-demo/ - cool animations of
MCMC

 Further reading:
* Veitch et. al. (2015) https://arxiv.org/pdf/1409.7215.pdf

« Ashton et. al. (2018) https://arxiv.org/abs/1811.02042
« Thrane and Talbot (2019) https://arxiv.org/pdf/1809.02293.pdf
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Oft-Source Method

* Two corrections need to be
applied:
« Window factor to correct for power
lost to window, w;:

N¢—1
Z wj

« Median correction, Where ? is the
segment number

window

Biscoveanu GWATUT
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