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Outline

I Problems: Cosmic censorship conjectures

I Methods: Double null foliations
I Progress:

I Formation of trapped surfaces,
I Cauchy horizons,
I Naked singularities
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Null infinity

In order to study isolated systems in the universe we need to investigate the
radiation that is emitted from these systems and reaches far away observers
(such as ourselves). We therefore need a notion that models the region where
radiation scatters. This gives rise to a concept known as future null infinity, an
ideal incoming null hypersurface “at infinity”, traditionally denoted by I+. We
have the following heuristic definition:

I future null infinity I+ consists of all limit points of future-directed null
geodesics which reach arbitrarily large spatial distances.
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Similar construction can be considered for the past. We define future timelike
infinity i+ as the limit point of future-directed timelike geodesics and past time-
like infinity i− as the limit point of past-directed timelike geodesics. The above
naive definitions can be made precise in terms of conformal tranformations or
null foliations and optical functions.
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Asymptotical flatness and null infinity

We are mostly interested in studying isolated systems (such as solar systems,
black holes and galaxies) in the universe. Hence, we can assume that far away
from these systems the spacetime approaches the flat Minkowski spacetime.
Such a condition can a priori only be imposed on the initial Cauchy hypersurface
Σ. Hence, let us assume that the data on Σ are asymptotically flat, i.e. approach
Minkowskean data at infinity. Then, there exists a sphere S0 in Σ such that the
data on the exterior of S0 in Σ is a small perturbation of the flat Minkowski data.
Then it follows by the stability of Minkowski theorem, proved by Christodoulou–
Klainerman and Klainerman–Nicolo, that one can attach a piece of future null
infinity at the Cauchy development D+(Σ) of Σ:
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Completeness of null infinity

Roughly speaking, completeness of null infinity implies that observers on null
infinity can receive radiation (for example from isolated systems) for infinite
proper time. Thinking of I as an null hypersurface, its completeness simply
corresponds to future and past completeness of its null generators. Another way
to think of the completeness of I, in a limiting sense, without referring to I as
a concrete entity, is due to Christodoulou.
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Past completeness of null infinity

Let C0 be the outgoing null geodesic congruence normal to S0. Let L be a
geodesic null vector field along C0 with affine parameter τ . We assume that we
can take τ →∞ along C0. For each section Sτ , given by the level sets of τ on C0,
we consider the (conjugate) incoming null normal geodesic congruence C−(Sτ ).
Let L be the past-directed null geodesic vector field on C−(Sτ ) normalized at
Sτ such that

g(L,L) = +1 at Sτ .

The past-directed null generators of C−(Sτ ) are generated by the vector field
L. Future null infinity is said to be past complete if the affine time it takes the
null generators of C−(Sτ ) to intersect Σ, starting from Sτ , tends to infinity as
τ →∞.

The works on the stability of Minkowski showed, in particular, that

I Future null infinity of asymptotically flat spacetimes is past complete.
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Future completeness of null infinity

Future completeness of future null infinity is defined in a similar way: Consider
the null geodesic vector field L along Cτ as above. The future-directed null
generators of Cτ (spanning the red cone in the figure below) are generated by
−L. Future null infinity is said to be future complete if the affine time of the
future-directed null generators of Cτ starting from Sτ tends to infinity as τ →∞
while remaining in the Cauchy development of the interior of Sτ .
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Weak cosmic censorship

Unlike past completeness, it is not known if “generic” asymptotically flat space-
times admit a future complete null infinity. In fact, this is one of the most
outstanding open problems in general relativity and is known as the weak cosmic
censorship conjecture.

nu
ll 
ge

od
es

ics
null geodesics

I WCC is related to global existence for the Einstein equations.
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Black holes

Black holes are regions which cannot communicate with far-away observers (to
whom they appear “black”). Since far-away observers are heuristically modeled
by future null infinity, we say that black holes cannot “communicate” with future
null infinity I+. In other words

I The black hole region BH in a spacetime M is the complement of the
past J−(I+) of future null infinity. Symbolically,

BH =M−J−(I+).

We have the following important definitions

I The exterior of the black hole region is known as the domain of outer
communications.

I The boundary of the black hole region is known as the future event
horizon (an outgoing null hypersurface).
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Weak cosmic censorship and black holes

There is a close connection of black holes and the weak cosmic censorship. In-
deed, black hole spacetimes with a complete future null infinity have the property
that even though observers on I live forever (in view of the future completeness
of I) they never receive radiation from the black hole region.
We will make use of the following heuristic (informal) picture to represent the
black hole region, the domain of outer communications and future null infinity.

timelike infinity
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Weak cosmic censorship and black holes

Another representation of (black hole) spacetimes is given by the so-called Pen-
rose diagrams. They represent the domain on R2 of a pair of conjugate optical
functions forming a double null coordinate system (which we will discuss in detail
later). Informally, the Penrose diagram of the domain of outer communications
can be obtained by restricting to an angular slice of the above heuristic diagram
as follows
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Singularities vs weak cosmic censorship

Does the existence of singularities in a spacetime imply the failure of complete-
ness of its null infinity?
The answer is no, provided the singularity is inside the black hole region. Pen-
rose’s incompleteness theorem provides a general setting in which such a situation
is possible.
Penrose’s incompleteness theorem: Let (M, g) be a globally hyperbolic vac-
uum spacetime with a non-compact Cauchy hypersurface H such that M con-
tains a trapped surface S. Then M is future null geodesically incomplete.
The proof does not characterize the origin of the incompleteness, however.
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Schwarzschild singularities
The Schwarzschild spacetimes provide examples of spacetimes which contain
singularities and still admit a complete null infinity.

The Schwarzschild manifolds are inextendible as a Lorentzian manifold with C2

metric (the Kretschmann scalar blows up).
From the PDE perspective, the failure of the metric to be C2 is in itself insuffi-
cient to justify interpreting spacetime as having ended at an essential singularity.
Indeed, Klainerman, Rodnianski, and Szeftel showed that the Einstein equations
are well-posed for general initial data with curvature only in L2. Moreover,
Rodnianski–Luk proved a general well posedness theorem allowing data with
δ-function singularities in curvature on null hypersurfaces.
Sbierski, however, proved that Schwarzschild is indeed C0 inextendible. Phys-
ically speaking, observers crossing the event horizon not only measure infinite
curvature but are in fact torn apart by infinite tidal deformations as they ap-
proach the singularity r = 0.
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Cauchy horizon and breakdown of determinism

The Kerr family provides examples of spacetimes which are smoothly extendible
as is shown below.

The boundary of the above extension is a bifurcate null hypersurface known as a
Cauchy horizon. These extensions are non-unique! In other words, Kerr in fact
exhibits a manifestation of breakdown of determinism in that predictability fails
without any local observer directly measuring that the classical regime has been
exited.
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Instability of the Cauchy horizon

Penrose’s blueshift instability: The wordline of observer A avoids the black hole
and has infinite proper length. Observer B enters the black hole and arrives at the
Cauchy horizon in finite proper time. A signal sent by A at constant frequency
will be infinitely shifted to the blue when received by B as B approaches his finite
crossing time.

The above geometric optics effect is indeed manifested as an instability in the
behaviour of the scalar wave equation. Luk–Sbierski and Dafermos–Shlapentokh-
Rothman proved that the solution has infinite (non-degenerate) energy on any
spacelike hypersurfaces intersecting the Cauchy horizon transversally.
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Strong cosmic censorship; various versions

C2−version: For asymptotically flat vacuum initial data, the maximal Cauchy
development is inextendible as a Lorentzian manifold with C2 (continuous)
metric.

C0−version: For asymptotically flat vacuum initial data, the maximal Cauchy
development is inextendible as a Lorentzian manifold with C0 (continuous)
metric.

H1−version: For asymptotically flat vacuum initial data, the maximal Cauchy
development is inextendible as a Lorentzian manifold with Christoffel symbols
locally square integrable.

The latter version can be extrapolated from the linear wave equation under the
identification g ∼ ψ and Γ ∼ ∂ψ.
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The double null foliation

Before we proceed with presenting more results, we introduce one of the most
important methods, namely the double null foliation.
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The double null foliation

We define the double null foliation simply as the level sets of a pair of two optical
functions (u, v):

D2 =
〈
Cu0 = {u = u0}, Cv0 = {v = v0}

〉
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Initial hypersurfaces

S0 ↔ {u = 0} ∩ {v = 0}, C0 ↔ {u = 0}, C0 ↔ {v = 0}.
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Incoming hypersurfaces

We have the following correspondence for the affinely parametrized geodesic
vector fields along incoming null hypersurfaces C.

∇v|C ↔ −Lgeod|C
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Outgoing hypersurfaces

We have the following correspondence for the affinely parametrized geodesic
vector fields along outgoing null hypersurfaces C.

∇u|C ↔ −Lgeod|C
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Vector fields

g (∇u,∇v) = −Ω−2

If we define the C-tangential vector field

L = −Ω2 · ∇u

then
g (L,∇v) = 1

which implies that Lv = 1. Similarly we define L to obtain the equivariant pair
(L,L).
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Angular coordinates along C0

Propagation of angular coordinates along C0
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Angular coordinates

Propagation of angular coordinates everywhere
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Constant angular coordinates

Surface with constant angular coordinates
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Double null coordinates
We can now introduce the double null coordinates (u, v, θ1, θ2) and the corre-
sponding coordinate vector fields ∂v, ∂u. Note that

∂v = L+ bi∂θi

for some vector field b = bi∂θi which is related to the torsion of the double null
foliation.

The metric g with respect to the canonical coordinates is given by

g = −2Ω2dudv + (bi bj g/ ij)dvdv − 2(bi g/ ij)dθ
jdv + g/ ij dθ

idθj ,

where g/ denotes the induced metric on the 2-surfaces Su,v = Cu ∩ Cv.
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Gauge freedom

A double null foliation D can be completely determined by the following

D =
〈
S0, L|S0

, Ω|C0
, Ω|C0

〉
.
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Connection coefficients

We define the normalized pair e3 = −Ω·∇v, e4 = −Ω·∇u (such that g(e3, e4) =
−1). Let also e1, e2 be a frame of the sections S. The connections coefficients
χ, χ, η, η, ω, ω, ζ are defined as follows:

χAB = g(∇Ae4, eB), χ
AB

= g(∇Ae3, eB),

ηA = g(∇3e4, eA), η
A

= g(∇4e3, eA),

ω = −g(∇4e4, e3), ω = −g(∇3e3, e4),

ζA = g(∇Ae4, e3)

where A,B ∈ {1, 2} and ∇µ = ∇eµ . The connection coefficients Γ can be
recovered by the following relations:

∇AeB = ∇/AeB+χABe3 + χ
AB
e4,

∇3eA = ∇/ 3eA + ηAe3, ∇4eA = ∇/ 4eA + η
A
e4,

∇Ae3 = χ ]B

A
eB + ζAe3, ∇Ae4 = χ ]B

A eB − ζAe4,

∇3e4 = η]AeA − ωe4, ∇4e3 = η]AeA − ωe3,
∇3e3 = ωe3, ∇4e4 = ωe4,
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Curvature components
The curvature components are defined as follows

αAB = RA4B4, αAB = RA3B3,

βA = RA434, β
A

= RA334,

ρ = R3434, σ =
1

2
ε/ABRAB34.

The null structure (vacuum) equations are of the following general form

∇/ 4Γ = R+ Γ · Γ +D/Γ,

∇/ 3Γ = R+ Γ · Γ +D/Γ,

where D/ ∈ {d/ ,∇/ , div/ }. Examples:
The second variational formulas

∇/ 4χ =− χ× χ− α+ ωχ,

∇/ 3χ =− χ× χ− α+ ωχ.

The Codazzi equations

div/ χ− d/ trχ+ χ] · ζ − (trχ) · ζ = −β,

div/ χ− d/ trχ− χ] · ζ + (trχ) · ζ = β.
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The characteristic initial value problem
The Riemannian initial data set for the Cauchy problem of the vacuum equa-
tions consists of the triplet (H0, g, k), where H0 is a three-dimensional Rieman-
nian manifold, g is the metric on H0 and k is a symmetric (0,2) tensor field on
H0 and such that g, k satisfy the constraint equations:

divk − dk =0,

Rsc + (trk)2 − |k|2 =0.

In the characteristic setting, the initial Riemannian (spacelike) Cauchy hypersur-
face H0 is replaced by two degenerate (null) hypersurfaces C ∪ C intersecting
at a two-dimensional surface S.
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The characteristic initial value problem

Let us assume that g/ is a given degenerate metric on C∪C. the first variational
formula gives us

χ =
1

2
L/Lg/ ,

but then the Raychaudhuri equation for Ω = 1 (affine foliation)

L(trχ) = −|χ|2

This shows that one cannot arbitrarily prescribe a degenerate metric g/ on C∪C.
Instead of prescribing the full metric g/ on C ∪ C and introducing constraint
equations, we can freely prescribe the conformal class of the metric:

Conf(g/ ) = {Ag/ ,A ∈ C∞(C ∪ C), A > 0} .
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Conformal properties of the double null foliation
Consider two conformal metrics g/ , g̃/ such that g̃ = Ag/ . Then

χ =
1

2
L/Lg/ , χ̃ =

1

2
L/Lg̃.

We have

χ̃ =
1

2
(LA)g/ +Aχ.

Therefore, for the traceless parts ˆ̃χ, χ̂ we have

ˆ̃χ = Aχ̂

and hence

| ˆ̃χ|2g̃ = g̃AB g̃CD ˆ̃χAC ˆ̃χBD = A−2g/ABg/CDA2χ̂ABχ̂CD = |χ̂|2g/ .

Hence, the size | ˆ̃χ|2g̃ of the shear is conformally invariant! We denote e = | ˆ̃χ|2g̃.
By the Raychaudhuri equation we obtain

L(trχ) = −1

2
(trχ)2 − e.

Knowing trχ at S0, the above determines trχ on C. This then determines A
and hence g/ and hence the full χ. Similarly we can compute all the remaining
geometric quantities on C and C.
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The characteristic initial value problem

The characteristic initial data set for the Einstein equations consists of a pair of
three-dimensional hypersurfaces intersecting at a two-dimensional surface along
with the (free) specification of the conformal class Conf(g/ ) of the degenerate
metric g/ on C ∪C as well as the full metric g/ , the expansions trχ, trχ and the
torsion η on S.

Local well-posedness

Rendall has shown that for smooth characteristic initial data there exists a unique
solution to the Einstein equations in a neighborhood of the surface S. Luk ex-
tended the above result to appropriate neighborhoods of the initial hypersurfaces
C,C.
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Christodoulou’s threorem on trapped surface formation

Assumption 1: Consider characteristic initial data such that on C0∫ δ

0

r2 · e dv > 1

where δ is sufficiently small, along each null generator of C0.
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Christodoulou’s threorem on trapped surface formation
Assumption 2: The remaining geometric quantities we have: The connection
coefficients satisfy

|Ω| ≤ O(1),

|Ωtrχ− 2/|u|| ≤ O(|u|−2),

|Ωtrχ+ 2/|u|| ≤ O(δ|u|−2),

|χ̂| ≤ O(δ−1/2|u|−1),

|χ̂| ≤ O(δ1/2|u|−2),

|η| ≤ O(δ−1/2|u|−2),

|ω| ≤ O(δ|u|−3),

And curvature components are such that

|α| ≤ O(δ−3/2|u|−1),

|β| ≤ O(δ1/2|u|−2),

|ρ| ≤ O(|u|−3),

|σ| ≤ O(|u|−3),

|β| ≤ O(δ|u|−4),

|α| ≤ O(δ3/2|u|−9/2),
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Christodoulou’s threorem on trapped surface formation

Conclusion: The maximal vacuum development of the data contains a region
on which the double null foliation is constructed, bounded in the future by the
spacelike hypersurface H−1 and the incoming null hypersurface Cδ. Moreover,
it contains a trapped surface.
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Remarks

1. The whole setting can be pushed to u→ −∞ so C0 coincides with past
null infinity. In that case, the meaning of the e integral is the flux of
incoming radiation per unit solid angle.

2. Trapped surface follows by integrating the Raychaudhuri equation

L(trχ) = −1

2
(trχ)2 − |χ̂|2

along C∗ and using that, even though trχ ∼ 2/r on C0, we also have
|χ̂|2 ∼ r−2.

3. Klainerman–Luk–Rodnianski established a criterion for anisotropic
formation of trapped surfaces. In their case the trapped surface is not a
section of the double null foliation.
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Stong cosmic censorship near the Kerr family

(Dafermos–Luk) Consider general vacuum initial data corresponding to the ex-
pected induced geometry of a dynamical black hole settling down to Kerr (with
parameters 0 < |a| < M) on a suitable spacelike hypersurface Σ0 in the black
hole interior. Then the maximal future development spacetime is globally cov-
ered by a double null foliation and has a non-trivial Cauchy horizon CH+ across
which the metric is continuously extendible. The future boundary of the maximal
development consists of a null piece.

I The above suggests that the C0 formulation of SCC is wrong.
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Global version of the Dafermos–Luk theorem

Consider vacuum initial data on a bifurcate null hypersurface H+
1 ∪ H

+
2 , such

that both hypersurfaces are future complete, and globally close to, and asymptote
to Kerr metrics with nearby parameters 0 < |a1| < M1, and 0 < |a2| < M2,
respectively. Then the maximal future development can be covered by a double
null foliation and moreover can be extended as a C0 metric across a bifurcate
Cauchy horizon CH+.
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A spherically symmetric model

Christodoulou obtained a version of the C0-version of the SCC for the Einstein-
scalar field system

Ricµν −
1

2
gµνR = 8π(∂µψ∂νψ −

1

2
gµν∂

αψ∂αψ), 2gψ = 0.

It turns out that Kerr-like Cauchy horizons arising from i+ cannot occur under
any initial conditions. For the same system, Christodoulou proved weak cosmic
censorship. He also showed that the genericity assumption is indeed necessary
via explicit examples of “naked singularities”.

On the other hand, Dafermos and Dafermos–Rodnianski have proved that the
black hole interiors of perturbations of the Reissner–Nordström spacetimes for
the spherically symmetric Einstein–Maxwell-scalar field system is similar to that
for the Kerr case.

Recent work by Rodnianski–Shlapentokh-Rothman on the existence of vacuum
spacetimes with naked singularities.
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Stability problems in general relativity

I Stability of Minkowski
I Methods
I Memory effect

I Stability of Schwarzschild
I Analysis of propagation of linear wave on black holes

I Asymptotics on sub-extremal black holes
I Asymptotics on extremal black holes

I Signature of extremality
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Stability of Minkowski

Christodoulou–Klainerman 1993: The Minkowski spacetime is globally stable
under sufficiently small perturbations of its initial data.

Perturbations of Minkowski

I are geodesically complete with positive ADM mass

I admit a (future) complete null infinity

I contain no black hole regions
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Remarks
I The supercriticality of the Einstein-vacuum equations results in having to

show not just orbital stability but the full asymptotic stability of Minkowski
space. The quantitative decay rates back towards the Minkowski metric
should be sufficiently strong so as to ensure that non-linear terms can be
understood as error terms which can be integrated in time.

I The modern way to do this is via the vector field method by Klainerman,
where energy estimates are applied directly to the nonlinear equations
commuted with weighted commutation vector fields.

I Decay towards I+: Solutions to the wave equation (in 3+1 dimensions)
decay along the outgoing null cones only as r−1 . This slow decay means
that the quadratic nature of the non-linearitiesis insufficient by itself to
ensure non-linear stability: one must identify special structure in the
nonlinear terms. Such a special structure is called the null condition where
bad terms can only be coupled with good terms in the non-linearities.

I The geometric structure equations associated to a foliation by maximal
hypersurfaces and outgoing null cones capture an analogue of the null
condition. Moreover the null structure equations relative to the double null
foliation also capture this condition.

I The null condition ensures good behaviour towards I+. The global
stability result, however, requires global decay for example along I+. This
is possible via teleological normalisations.
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Gravitational wave measurements at I+

Propagation of gravitational waves and experiments at null infinity
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Gravitational wave measurements at I+

The three mass experiment at null infinity.
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Asymptotic planes

The planes 〈E1(t), E2(t)〉 are tangential to the sections of null infinity along
a fixed null generator. In this case, E3(t) points towards the direction of the
source:
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Gravitational wave measurements at I+

First asymptotic law of gravitational waves: The three masses remain on the
orthogonal plane 〈E1, E2〉.
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Gravitational wave measurements at I+

Second asymptotic law of gravitational waves: The accelerations of m1 and m2

relative to m0 are orthogonal.
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Memory effect

The masses m(i) suffer a permanent displacement ∆x(i) given by asymptotic
quantities of the gravitational field i.e. the asymptotics of the Riemann tensor.
This permanent displacement is known as Christodoulou’s memory effect.
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Co-dimension 3 stability of Schwarzschild
(Dafermos, Holzegel, Rodnianski, Taylor): For vacuum initial data sets—with no
symmetry assumed—sufficiently close to appropriate Schwarzschild initial data
that moreover lie in a codimension-3 submanifold of the moduli space of vacuum
initial data, the resulting maximal Cauchy development
I can be covered by appropriate (teleologically normalised) global double

null foliations,
I possesses a complete future null infinity I+ whose past is bounded to the

future by a regular, future complete event horizon H+,
I remains globally close to Schwarzschild in its exterior ,
I asymptotes back to a member of the Schwarzschild family as a suitable

notion of time goes to infinity.

Outside the codimension-3 submanifold, one expects solutions to necessarily
asymptote to a Kerr solution, since the dimension of linearised Kerr solutions
fixing the mass is equal to 3 in our parametrisation.
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Propagation of linear waves
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Scalar perturbations

I Scalar fields: Investigate the evolution of solutions to the wave equation

2gψ = 0

on Reissner–Nordström or Kerr backgrounds.
 event
horizon

null infinity

I Motivation: In harmonic gauge 2gx
µ = 0 the vacuum equations take the

form
2ggµν = Nµν(g, ∂g).
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Features of black holes spacetimes

The redshift effect at the horizon

A

B
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Features of black holes spacetimes

The trapping effect at the photon sphere.
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What about black holes?

I Contributors: Dafermos, Rodnianski, Andersson, Tataru, Moschidis, Blue,
Holzegel, Sbierski, Shlapentokh-Rothman, Dyatlov, Häfner, Bony, Smule-
vici, Klainerman, Ionescu, Tohaneanu, Sterbenz, Soffer, Schlue, Luk, Oh,
Finster, Kamran, Smoller, Yau, Donninger, Schlag, Vasy, Hintz, Metcalfe,
Wald, Franzen, Teixeira da Costa, ...

I Decay for all |a| < M (Dafermos–Rodnianski–Shlapentokh-Rothman)
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Kerr asymptotics

(Angelopoulos, A., Gajic): If ψ is a solution to the wave equation on a sub-
extremal Kerr space-time with smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2

I Spherical mean wrt BL spheres.

I Explicit expressions of all constants.
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R-N asymptotics

(Angelopoulos, A., Gajic): If ψ is a solution to the wave equation on a sub-
extremal R-N space-time with smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2

I The charge does not seem to affect the asymptotics. Then what about the
extremal case?
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I
(1)
0 [ψ] in terms of conservation laws

It turns out that the function

I0[ψ](u) = lim
r→∞

v2∂v(rψ0)

is constant, that is independent of u. This yields a conservation law along I+.
The associated constant

I0[ψ] := I0[ψ](u) (1)

is called the Newman–Penrose constant of ψ.

Now,

I
(1)
0 [ψ] = I0[T−1ψ]
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Extremal R-N asymptotics

(Angelopoulos, A., Gajic): If ψ is a solution to the wave equation on a extremal
R-N space-time with smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

2M−1H[ψ] · τ−1 4M
R−MH[ψ] · τ−2

(
4MH[ψ]− 2I

(1)
0 [ψ]

)
· τ−2

I Horizon asymptotics significantly slower.

I What about the constant H[ψ]?
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Degeneracy of the redshift effect at extremal horizons

A

B

...due to the vanishing of the surface gravity.
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Proposition (A.)

If ψ satisfies the wave equation on extremal Reissner–Nordström then the integral

H[ψ] = −
∫
Sτ

(
Y ψ +

1

2M
ψ
)

dvol

is independent of τ . Here Y is transversal to the horizon.

61 / 63



A signature of extremality at null infinity
Let ψ be a scalar perturbation of Reissner–Nordström (RN) (with mass M ,
charge e) supported initially near the event horizon.
Let’s define:

s[ψ] :=
1

4M
lim
τ→∞

τ2 · (rψ)|I+ +
1

8π

∫
I+∩{u≥0}

rψ|I+

For all scalar perturbations on sub-extremal RN we have

If |e| < M then s[ψ] = 0

Moreover,

If s[ψ] 6= 0 then |e| = M (ERN) and s[ψ] = H[ψ]

I Extremal black holes admit classical externally measurable hair.

I The horizon hair H[ψ] could potentially serve as an observational sig-
nature.

I For extremal black holes information “leaks” from the event horizon to
null infinity.
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Thank you!

63 / 63


