
-GR
Enabling Adaptivity & Parallelism for Computational Relativity

Hari Sundar, Milinda Fernando
School of Computing, University of Utah

David Neilsen, Eric Hirschmann, Hyun Lim
Brigham Young University

Computational Challenges in Gravitational Wave Astronomy, IPAM 2019

Introduction

• Dendro-GR: New framework for Computational relativity
• High-degree of spatial adaptivity

• High levels of parallelism

• Intermediate Mass Ratio Inspirals (IMRIs)

• Wavelet Adaptive Multi-Resolution (WAMR)

• First BBH Evolutions

2

IMBHs and IMRIs

• Binaries with intermediate mass ratios 10 ≲ 𝑞 ≲ 100

• IMBHs
• Collapse of Pop III stars

• Mergers in stellar clusters

• Accretion onto stellar mass BHs

• Collapse of gas clouds in the early universe

• LIGO has detected remnants with masses ~20 − 60 𝑀⊙

• Computational Challenge: Resolution

3

4

Numerical Relativity

• Conventional AMR uses nested
boxes

• Boxes don’t naturally capture
the geometry of binary black
holes

• Numerical artefacts

• Computational Inefficiency

• Need unstructured grids

• Need supercomputers

5

Why Block Adaptivity is not enough

6

Octrees & Wavelets

7

Wavelet Adaptive Multiresolution

Figures from Holmström (1996) and arXiv:1512.00386

S
ca

li
n

g
 fu

n
ct

io
n

W
a

ve
le

t
b

a
si

s
S

p
a

rs
e

R
ep

re
se

n
ta

ti
o

n

8

Octree-based AMR
• Axis-aligned subdivision of space

• In 2𝐷 each node has 4 children,
8 in 3𝐷

• Provides high-levels of adaptivity
while enabling simple and
efficient data-structures,
especially in parallel

9

-GR
• Wavelet adaptive multiresolution

• Unstructured Octree Grid

• High levels of fine-grained
parallelism

• Automatic code-generation via
symbolic interface

• Extensible

• Portable and highly-scalable on
modern supercomputers

10

Parallelism

11

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

12

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

13

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

14

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

15

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

16

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

17

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

18

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

19

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

20

Octree Construction & Representation

• Top-down algorithm for
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering

21

SFCs for Partitioning Data

22

2:1 Balance constraint

• Simplifies mesh & neighborhood

• Does not sacrifice adaptivity

• Minimizes the need to
interpolate data

• Minimizes data-dependencies

23

Computational Methods

• Relativistic Fluids
• Finite difference HRSC Method

• HLLE flux

• MP5 reconstruction

• Einstein Equations
• BSSN formulation

• 4th order finite differences

• Kreiss-Oliger dissipation

Computational Methods

• Relativistic Fluids
• Finite difference HRSC Method

• HLLE flux

• MP5 reconstruction

• Einstein Equations
• BSSN formulation

• 4th order finite differences

• Kreiss-Oliger dissipation

Computational Methods

• Relativistic Fluids
• Finite difference HRSC Method

• HLLE flux

• MP5 reconstruction

• Einstein Equations
• BSSN formulation

• 4th order finite differences

• Kreiss-Oliger dissipation

Finite differences & unstructured grids
• We need a regular grid to apply FD stencils

• This is not available everywhere for octree-refined grids

27

Additional operations
are required before
applying FD stencils

28

initial u0

t

un
zi
p

RK stages

zip
unzip

zip

un un +1

blocks

29

initial u0

t

un
zi
p

RK stages

zip
unzip

zip

un un +1

blocks

BSSN equations applied at a block level.

Automatic Code Generation

BSSN Equations

𝜕𝑡𝛼 = ℒ𝛽𝛼 − 2𝛼𝐾

𝜕𝑡𝛽
𝑖 = 𝜆2𝛽

𝑗𝜕𝑗𝛽
𝑖 +

3

4
𝑓 𝛼 𝐵𝑖

Dendro Code

from dendro import *

a_rhs = l1*dendro.lie(b, a) - 2*a*K

b_rhs = [3/4*f(a)*B[i] + l2*dendro.vec_j_ad_j(b, b[i])

for i in dendro.e_i]

30

Automatic Code Generation

declare variables

a = dendro.scalar("alpha", "[pp]")

Gt = dendro.vec3("Gt", "[pp]")

gt = dendro.sym_3x3("gt", "[pp]")

dendro.set_metric(gt)

igt = dendro.get_inverse_metric()

a_rhs = l1*dendro.lie(b, a) - 2*a*K

..

outs = [a_rhs, b_rhs, gt_rhs, chi_rhs, At_rhs, K_rhs, Gt_rhs, B_rhs]

vnames = ['a_rhs', 'b_rhs', 'gt_rhs', 'chi_rhs', 'At_rhs', 'K_rhs', 'Gt_rhs', 'B_rhs’]

dendro.generate(outs, vnames, '[pp]')

31

Automatic Code Generation

// Dendro: {{{

// Dendro: original ops: 678611double DENDRO_0 = 2*alpha;

double DENDRO_1 = 0.75*alpha*lambda_f[1] + 0.75*lambda_f[0];

double DENDRO_2 = grad(0, beta0);

double DENDRO_3 = grad(1, beta1);

.

.

.

B_rhs0 = -B0*eta - DENDRO_952*lambda[3] + DENDRO_993 + lambda[2]*(beta0*agrad(0, B0) + beta1*agrad(1, B0) + beta2*agrad(2, B0));

B_rhs1 = -B1*eta + DENDRO_1003 - DENDRO_994*lambda[3] + lambda[2]*(beta0*agrad(0, B1) + beta1*agrad(1, B1) + beta2*agrad(2, B1));

B_rhs2 = -B2*eta - DENDRO_1004*lambda[3] + DENDRO_1006 + lambda[2]*(beta0*agrad(0, B2) + beta1*agrad(1, B2) + beta2*agrad(2, B2));

// Dendro: reduced ops: 4602

// Dendro: }}}

32

Automatic Code Generation - vectorization

33

// Dendro vectorized code: {{{

double v0 = 2.0;

double v1 = alpha[pp];

double v2 = dmul(v1, v0);

.

.

v14 = B2[pp];

v15 = eta;

v16 = dmul(v15, v14);

v17 = dmul(v16, negone);

v18 = DENDRO_989;

v19 = lambda[3];

v20 = dmul(v19, v18);

v21 = dmul(v20, negone);

v22 = dadd(v21, v17);

v23 = dadd(v22, v13);

v24 = dadd(v23, v0);

B_rhs2[pp] = v24;

// Dendro vectorized code: }}}

Automatic Code Generation - CUDA
//input vars begin

double * K = __sm_base + 0;

double * gt1 = __sm_base + 27;

double * beta1 = __sm_base + 54;

double * gt3 = __sm_base + 81;

double * At1 = __sm_base + 108;

double * gt5 = __sm_base + 135;

double * alpha = __sm_base + 162;

double * gt4 = __sm_base + 189;

double * gt2 = __sm_base + 216;

double * beta2 = __sm_base + 243;

double * At3 = __sm_base + 270;

double * At4 = __sm_base + 297;

double * At0 = __sm_base + 324;

double * At2 = __sm_base + 351;

double * beta0 = __sm_base + 378;

double * gt0 = __sm_base + 405;

double * chi = __sm_base + 432;

double * At5 = __sm_base + 459;
34

// deriv vars begin

double * grad2_0_0_gt3 = __sm_base + 486;

double * grad2_2_2_alpha = __sm_base + 513;

double * grad2_1_2_gt1 = __sm_base + 540;

double * grad_2_gt3 = __sm_base + 567;

// load data from global to shared memory

cuda::__loadGlobalToShared3D<double>(&__unzipInVar[cuda::VAR::U_K][of
fset],(double *) K,(const unsigned int *) ijk_lm,(const unsigned int
*) alignedSz,(const unsigned int *) tile_sz);

if(!((threadIdx.x>(ijk_lm[1]-ijk_lm[0])) || (threadIdx.y>(ijk_lm[3]-
ijk_lm[2])))){

double x,y,z,r_coord,eta;

unsigned int pp =
0*tile_sz[0]*tile_sz[1]+threadIdx.y*tile_sz[1]+threadIdx.x;

for(unsigned int k=0;k<=(ijk_lm[5]-
ijk_lm[4]);++k,pp+=tile_sz[0]*tile_sz[1]){

But modern clusters are
heterogeneous!

35

Heterogeneous Architectures

• GPUs are very fast, but require SIMD (Single Instruction Multiple Data)
• CPUs handle inter-processor communication and boundary zones
• GPUs work on interior
• Computation and communication are interleaved

Experiments

37

Nonlinear Sigma Model

Connection to BH critical
phenomena, Liebling (2004)

r = symbols('r')

declare functions
chi = dendro.scalar("chi","[pp]")
phi = dendro.scalar("phi","[pp]")

phi_rhs = sum(d2(i,i,chi) for i in dendro.e_i)
- sin(2*chi)/r**2

chi_rhs = phi

Binary Black Holes

1:1 10:1 100:1

40

BBH (𝑞 = 1)

42

BBH (𝑞 = 10)

43

BBH (𝑞 = 10)

44

BBH (𝑞 = 10)

45

BBH (𝑞 = 10)

46

BBH (𝑞 = 10)

47

BBH (𝑞 = 10)

48

BBH (𝑞 = 10)

49

BBH (𝑞 = 10)

Need for true Adaptivity

50

Performance & Scalability

• Evaluated at Stampede2 & Comet (XSEDE)

• Large-scale scalability on Titan at ORNL
• Cray XK7 with 18,688 nodes with Nvidia K80s.

51

ET Comparison

52

Weak Scaling

Scaling test performed on Titan with 18 levels of refinement.

Strong Scaling

54

GPU Performance

GPUs on Comet “Early Access” GPUs for Coral Sierra (LLNL)

Nvidia P100 GPUs Nvidia V100 GPUs

Hybrid Code Scalability

56
Weak Strong

Open Source

• Dendro-GR is available on Github.
• https://github.com/paralab/Dendro-GR
• git clone git@github.com:paralab/Dendro-GR.git

• Dendro-GR builds with CMake. Requires MPI and GSL. CUDA optional for
GPU support.

• Public version
• Wave Equation
• Maxwell Equations* (Baumgarte’s BSSN-like formulation)
• BSSN Equations

• Support FEM in addition to FD
• DG support coming soon
• Extensively used for CFD

• For more details Fernando+ 1807.06128

https://github.com/paralab/Dendro-GR
mailto:git@github.com:paralab/Dendro-GR.git
https://arxiv.org/abs/1807.06128

Summary

• Dendro: Octree + Wavelet Adaptive Multiresolution (WAMR)

• Scaling to 105 cores with refinement

• Conventional finite difference/finite volume numerical methods

• Applications: Relativistic fluids and the BSSN equations

• Currently testing binary black hole simulations

• Future work
• IMRIs

• Neutron stars

