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Introduction

• Dendro-GR: New framework for Computational relativity
• High-degree of spatial adaptivity

• High levels of parallelism

• Intermediate Mass Ratio Inspirals (IMRIs)

• Wavelet Adaptive Multi-Resolution (WAMR)

• First BBH Evolutions
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IMBHs and IMRIs

• Binaries with intermediate mass ratios 10 ≲ 𝑞 ≲ 100

• IMBHs
• Collapse of Pop III stars

• Mergers in stellar clusters

• Accretion onto stellar mass BHs

• Collapse of gas clouds in the early universe

• LIGO has detected remnants with masses ~20 − 60 𝑀⊙

• Computational Challenge: Resolution
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Numerical Relativity

• Conventional AMR uses nested 
boxes

• Boxes don’t naturally capture 
the geometry of binary black 
holes

• Numerical artefacts

• Computational Inefficiency

• Need unstructured grids

• Need supercomputers
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Why Block Adaptivity is not enough
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Octrees & Wavelets
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Wavelet Adaptive Multiresolution

Figures from Holmström (1996) and arXiv:1512.00386
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Octree-based AMR
• Axis-aligned subdivision of space

• In 2𝐷 each node has 4 children, 
8 in 3𝐷

• Provides high-levels of adaptivity 
while enabling simple and 
efficient data-structures, 
especially in parallel
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-GR
• Wavelet adaptive multiresolution

• Unstructured Octree Grid

• High levels of fine-grained 
parallelism

• Automatic code-generation via 
symbolic interface

• Extensible

• Portable and highly-scalable on 
modern supercomputers
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Parallelism 

11



Octree Construction & Representation

• Top-down algorithm for 
constructing octree

• Only leaf nodes are stored-
linear octree

• Leaves are ordered according to 
Space filling Curves (SFC)
• High spatial locality

• Hilbert ordering

• Morton Ordering
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SFCs for Partitioning Data
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2:1 Balance constraint 

• Simplifies mesh & neighborhood 

• Does not sacrifice adaptivity

• Minimizes the need to 
interpolate data

• Minimizes data-dependencies 
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Computational Methods

• Relativistic Fluids
• Finite difference HRSC Method

• HLLE flux

• MP5 reconstruction

• Einstein Equations
• BSSN formulation

• 4th order finite differences

• Kreiss-Oliger dissipation
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Finite differences & unstructured grids
• We need a regular grid to apply FD stencils

• This is not available everywhere for octree-refined grids
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Additional operations 
are required before 
applying FD stencils
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Automatic Code Generation

BSSN Equations

𝜕𝑡𝛼 = ℒ𝛽𝛼 − 2𝛼𝐾

𝜕𝑡𝛽
𝑖 = 𝜆2𝛽

𝑗𝜕𝑗𝛽
𝑖 +

3

4
𝑓 𝛼 𝐵𝑖

Dendro Code

from dendro import *

a_rhs = l1*dendro.lie(b, a) - 2*a*K

b_rhs = [ 3/4*f(a)*B[i] + l2*dendro.vec_j_ad_j(b, b[i])

for i in dendro.e_i ]
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Automatic Code Generation 

# declare variables

a = dendro.scalar("alpha", "[pp]")

Gt = dendro.vec3("Gt", "[pp]")

gt = dendro.sym_3x3("gt", "[pp]")

dendro.set_metric(gt)

igt = dendro.get_inverse_metric()

a_rhs = l1*dendro.lie(b, a) - 2*a*K

..

outs = [a_rhs, b_rhs, gt_rhs, chi_rhs, At_rhs, K_rhs, Gt_rhs, B_rhs]

vnames = ['a_rhs', 'b_rhs', 'gt_rhs', 'chi_rhs', 'At_rhs', 'K_rhs', 'Gt_rhs', 'B_rhs’] 

dendro.generate(outs, vnames, '[pp]')
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Automatic Code Generation

// Dendro: {{{ 

// Dendro: original ops: 678611double DENDRO_0 = 2*alpha;

double DENDRO_1 = 0.75*alpha*lambda_f[1] + 0.75*lambda_f[0];

double DENDRO_2 = grad(0, beta0);

double DENDRO_3 = grad(1, beta1);

.

.

.

B_rhs0 = -B0*eta - DENDRO_952*lambda[3] + DENDRO_993 + lambda[2]*(beta0*agrad(0, B0) + beta1*agrad(1, B0) + beta2*agrad(2, B0));

B_rhs1 = -B1*eta + DENDRO_1003 - DENDRO_994*lambda[3] + lambda[2]*(beta0*agrad(0, B1) + beta1*agrad(1, B1) + beta2*agrad(2, B1));

B_rhs2 = -B2*eta - DENDRO_1004*lambda[3] + DENDRO_1006 + lambda[2]*(beta0*agrad(0, B2) + beta1*agrad(1, B2) + beta2*agrad(2, B2));

// Dendro: reduced ops: 4602

// Dendro: }}} 
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Automatic Code Generation - vectorization

33

// Dendro vectorized code: {{{

double v0 = 2.0;

double v1 = alpha[pp];

double v2 = dmul(v1, v0);

.

.

v14 = B2[pp];

v15 = eta;

v16 = dmul(v15, v14);

v17 = dmul(v16, negone);

v18 = DENDRO_989;

v19 = lambda[3];

v20 = dmul(v19, v18);

v21 = dmul(v20, negone);

v22 = dadd(v21, v17);

v23 = dadd(v22, v13);

v24 = dadd(v23, v0);

B_rhs2[pp] = v24;

// Dendro vectorized code: }}} 



Automatic Code Generation - CUDA
//input vars begin

double * K = __sm_base + 0;

double * gt1 = __sm_base + 27;

double * beta1 = __sm_base + 54;

double * gt3 = __sm_base + 81;

double * At1 = __sm_base + 108;

double * gt5 = __sm_base + 135;

double * alpha = __sm_base + 162;

double * gt4 = __sm_base + 189;

double * gt2 = __sm_base + 216;

double * beta2 = __sm_base + 243;

double * At3 = __sm_base + 270;

double * At4 = __sm_base + 297;

double * At0 = __sm_base + 324;

double * At2 = __sm_base + 351;

double * beta0 = __sm_base + 378;

double * gt0 = __sm_base + 405;

double * chi = __sm_base + 432;

double * At5 = __sm_base + 459;
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// deriv vars begin

double * grad2_0_0_gt3 = __sm_base + 486;

double * grad2_2_2_alpha = __sm_base + 513;

double * grad2_1_2_gt1 = __sm_base + 540;

double * grad_2_gt3 = __sm_base + 567;

// load data from global to shared memory

cuda::__loadGlobalToShared3D<double>(&__unzipInVar[cuda::VAR::U_K][of
fset],(double *) K,(const unsigned int *) ijk_lm,(const unsigned int
*) alignedSz,(const unsigned int *) tile_sz);

if(!((threadIdx.x>(ijk_lm[1]-ijk_lm[0])) || (threadIdx.y>(ijk_lm[3]-
ijk_lm[2]))) ){ 

double x,y,z,r_coord,eta;

unsigned int pp =   
0*tile_sz[0]*tile_sz[1]+threadIdx.y*tile_sz[1]+threadIdx.x;

for(unsigned int k=0;k<=(ijk_lm[5]-
ijk_lm[4]);++k,pp+=tile_sz[0]*tile_sz[1]){



But modern clusters are 
heterogeneous!
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Heterogeneous Architectures

• GPUs are very fast, but require SIMD (Single Instruction Multiple Data)
• CPUs handle inter-processor communication and boundary zones 
• GPUs work on interior
• Computation and communication are interleaved



Experiments
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Nonlinear Sigma Model

Connection to BH critical 
phenomena,  Liebling (2004)

r = symbols('r')

# declare functions
chi = dendro.scalar("chi","[pp]")
phi = dendro.scalar("phi","[pp]")

phi_rhs = sum( d2(i,i,chi) for i in dendro.e_i )         
- sin(2*chi)/r**2

chi_rhs = phi



Binary Black Holes

1:1 10:1 100:1
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BBH (𝑞 = 1)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)
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BBH (𝑞 = 10)



Need for true Adaptivity
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Performance & Scalability

• Evaluated at Stampede2 & Comet (XSEDE)

• Large-scale scalability on Titan at ORNL
• Cray XK7 with 18,688 nodes with Nvidia K80s.
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ET Comparison
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Weak Scaling

Scaling test performed on Titan with 18 levels of refinement.



Strong Scaling
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GPU Performance

GPUs on Comet “Early Access” GPUs for Coral Sierra (LLNL)

Nvidia P100 GPUs Nvidia V100 GPUs



Hybrid Code Scalability
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Open Source

• Dendro-GR is available on Github.
• https://github.com/paralab/Dendro-GR
• git clone git@github.com:paralab/Dendro-GR.git

• Dendro-GR builds with CMake. Requires MPI and GSL. CUDA optional for 
GPU support.

• Public version
• Wave Equation
• Maxwell Equations* (Baumgarte’s BSSN-like formulation)
• BSSN Equations

• Support FEM in addition to FD
• DG support coming soon
• Extensively used for CFD

• For more details  Fernando+ 1807.06128

https://github.com/paralab/Dendro-GR
mailto:git@github.com:paralab/Dendro-GR.git
https://arxiv.org/abs/1807.06128


Summary

• Dendro: Octree + Wavelet Adaptive Multiresolution (WAMR)

• Scaling to 105 cores with refinement

• Conventional finite difference/finite volume numerical methods

• Applications: Relativistic fluids and the BSSN equations

• Currently testing binary black hole simulations

• Future work
• IMRIs

• Neutron stars


