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‘ Outline ‘

1. Can particle physics help with core issues for gravitational
wave astronomy?

2. Nontriviality of gravity calculations. Particle theorists
understand perturbative gravity!

3. Modern idea from particle theory:

— Effective field theory (EFT).
— Generalized unitarity.
— Double copy and duality between color and kinematics.

4. Can we calculate something new and nontrivial of direct interest

for LIGO/Virgo? Yes! 3" post-Minkowskian 2 body
Hamiltonian.

S. Prospects for future.



Goal: Improve on post-Newtonian Theor)d

Inspiral Merger Ringdown
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Post — Newtonian Numerical Perturbation
PN + EOB or Pheno Theory Relativity Theory

UV

analytic part we want to help with

Small errors accumulate. Need for high precision.

From Antelis and Moreno, arXiv:1610.03567 5



Post Newtonian Approximation ‘

2 GM<<1 ‘/ -

. 2 V- ~
Expand in G and v / r o

For orbital mechanics:

virial theorem

In center of mass frame: m=ma+mp, v=u/M,

pw=mampg/m, Pr=P- R

2
H _ P Gm  Newton

7 2 R
N 1{ P4+31/P4+Gm( Pr?v 3 P2 1/P2>+G2m2}
c2 8 8 R 9 2 D 2R2

+. .. ~ 1PN: Einstein, Infeld, Hoffmann

Hamiltonian known to 4PN order.

2PN: Ohta, Okamura, Kimura and Hiida.
3PN: Damour, Jaranowski and Schaefer; L. Blanchet and G. Faye.

4PN: Damour, Jaranowski and Schaefer (2014)
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Importance of higher orders for LIGO

LIGO/Virgo Collaboration arXiv:1602.03841

Binary pulsar confirms
quadrupole radiation
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Newton Einstein Ohta (1974) Blanchet (2000)  Blanchet (2015)
(1686) (1938) Damour (1981) Damour (2000)  Damour (2014)

LIGO/Virgo sensitive to high PN orders.



PN versus PM expansion for conservative two-body dynamics

12 From Buonanno
I L GM 1 1
L=—Mc + 5 + . +§[]—I—C—4[]+ Amplitudes 2018
E(v) = K w2 4. I non-spinning compact objects
2
OPN | 1PN | 2PN | 3PN 4PN 5PN
1 v? vt v° v® pt? pl2 a
N - : 9]
1PM: r | o?/r | otfr | %/ | 03/r §
. 20| 02702 | 4702 | )6 /0.2 8 /2.2 G
1/1 ve/re | ot fre | ot v° /1 S
3PM 1/r3 | v?/e | ot | 8 g
4PM: 1/r v? vt /rd
2
v 1 M
1— Mc?, v? — l—‘,, 1,¢ —.
c* r rce
current known current known overlap between unknown
PN results PM results PN & PM results

e PM results (Westfahl 79, Westfahl & Goller 80, Portilla 79-80, Bel et al. 81, Ledvinka et al. 10,
Damour 16-17, Guevara 17, Vines |7, Bini & Damour |7-18,Vines in prep)




Which problem to solve?

Some problems for (analytic) theorists:

Spin.

Finite size effects.

Radiation.

High orders in perturbation theory. €<—

-

—

Which one to solve?

* Needs to be extremely difficult using standard methods.
* Needs to be of importance to LIGO.
* Needs to be in a form that LIGO can use.

3rd post-Minkowskian order 2-body Hamiltonian



u)uantum Field Theory and Scattering Amplitudes ‘

Scattering amplitudes give us quantum mechanical description of
events at particle colliders.

> €

particle scattering

Large Hadron Collider ATLAS Detector
@quark /
gluon
Higgs boson event QCD Feynman diagram

Does not seem to have much to do with gravitational waves



Our Approach

7B, Cheung, Roiban, Shen, Solon, Zeng

Gravitational Effective
Scattering Field Theory
Amplitudes Methods

Kawai, Lewellen, Tye
ZB, Dixon, Dunbar, Perelstein, Rozowsky
/B, Carrasco, Johansson

Goldberger, Rothstein
Neill,Rothstein
Cheung, Rothstein, Solon

Post
Minkowskian
Potentials

Inefficient: Start with quantum theory and take i — 0
Efficient: Almost magical simplifications for gravity amplitudes.
EFT methods efficiently target pieces we want.

Will show efficiency wins



‘ Scattering Amplitudes Revolution

) Z. Bern, L. Dixon, D. Kosower,
Over the years we have developed tools for calculating  way 2012 Scientific American

scattering amplitudes that are “impossibly complicated”

Don’t use Lagrangians or Feynman diagrams.

1. Generalized unitarity. Complicated amplitudes
assembled from simpler ones. Loops from trees.

2. Double-copy relations. Gravity amplitudes built from
much simpler gauge-theory ones.

Many more advances, involving also beautiful mathematics.

Parke and Taylor; ZB, Dixon, Dunbar, Kosower; ZB, Dixon, Dunbar, Kosower;
ZB, Dixon, Dunbar, Perelstein, Rozowsky; Witten; Britto, Cachazo, Feng, Witten;
7B, Carrasco, Johansson; Bourjaily, Cachazo, Goncharov, Postnikov, Trnka + 1000s more.

Harness advances to extract GR corrections to Newtonian potential.

10



| Gravity vs Gauge Theorﬂ

Consider the Einstein gravity Lagrangian

curvature Flat-space metric
2 /\ . /\ By graviton
Lgra\”ty — ? ‘\/ _g R /-‘g/“/ - nlu'l/ _l_ K IU'V ﬁeld

> metric Infinite number of
k= = 327 GNewton complicated interactions

}M ::37:1 “%Gi :béq: 4 +e«  terrible mess

Compare to gauge-theory Lagrangian on which QCD is based

L — i 2 Only three and four
Y M > . .
g point interactions

Gravity seems so much more complicated than gauge theory.

Theories do not look related! ”



‘ Three Vertices ‘

° 2 b
Standard Feynman diagram approach. 1/:; 0
Three-gluon vertex: 1a ¢

1}
V3a23/0 — _gfabc(mu/(kl—k2)p‘|‘771/p(k1—k2)u+77pu(kl—kQ)V)

Three-graviton vertex: ki = BEf — ,;’22 7 0
Gauavp.oy(ki, ka, ka) =
sym[ = 5Ps(ky - kauanivanoy) — 5Ps(kivkigmuanon) + 5Pa(ky - kanuwnastor)
+ Fs(k1 - Eanpuanuensy) + 2Ps(k1ukiynuanse) — Pa(k1sk2umavn o)
+ P3(kiskaonuwnag) + Ps(kiokivnuwnas) + 2FPs(kiv ko800 ) % B
+ 2P3(k1vkoumnganye) — 2P3(k1 - koo gonyu) ]

About 100 terms in three vertex

Naive conclusion: Gravity is a nasty mess. .



Feynman Diagrams for Gravity

Spectacularly poor scaling in GR

~1020 No surprise it has

3 loops never been
TERMS calculated via — Such calculations
Feynman diagrams. seemed utterly
hopeless!
— Seemed destined for
~1026
4 loops TlglgMS dustbin of undecidable
questions.

~103" More terms than

S loops : _
TERMS atoms in your brain!

Modern methods make such calculations routine, but challenging. 13



Generalized Unitarity Method

No Feynman rules; no need for virtual particles. Keep Ein

E2 _ ﬁ2 4 m2 on-shell \ /B, Dixon, Dunbar and Kosower (1994)

Two-particle cut: * Systematic assembly of

complete amplitudes from
other amplitudes.

* Works for any number of
particles or loops.

Three-particle cut:

PN ! /B, Dixon and Kosower;
I ZB, Morgan;
- = Britto, Cachazo, Feng;
| , Ossala,Pittau,Papadopoulos;

Generalized
unitarity as a

practical tool. / Ellis, Kunszt, Melnikov;
Forde; Badger
on-shell and many others

Reproduces Feynman diagrams except intermediate steps of
calculation based on gauge invariant quantities. 14



Simplicity of Gravity Amplitudes

People were looking at gravity amplitudes the wrong way.
On-shell viewpoint much more powerful.

On-shell three vertices contains all information: L2 — 0
i

ob

Yang-Mills v} o —gf " (nu (k1 — k), + cyclic)

gauge theory: 1“M

“square” of

Einstein I%-._f,ww7 ik (mur (k1 — k2)p +Cyclic)  y b il
itve X k1 — ko)~ + cyclic
gravity: 1%_,-' p (105 (k1 2)7 yclic)  vertex.
J7;

Very simple!

15



Gravity Amplitudes

KLT (1985)
Kawai-Lewellen-Tye string relations in low energy limit:
P gravity P gauge theory color ordered

Me(1,2,3,4) = —is19AT(1,2,3,4) AT*°(1,2,4,3),
ME™©¢(1,2,3,4,5) = is10534A5(1,2,3,4,5) AF®(2,1,4,3,5)
+ i813824Agree(1, 3.2,4, 5) Agree (3, 1.4.2, 5)

Pattern gives explicit all-leg form.

Gravity Gauge G;tuge
Theory Theory
1. Gravity is derivable from gauge theory. Standard Lagrangian

methods offers no hint why this is possible.
2. Itis very generally applicable.

16



\ Duality Between Color and Kinematics ‘

ZB, Carrasco, Johansson (2007)

: momentum dependent 2}/ b
ﬁgﬁ&lgﬁ% ~, »¢olor factor " Kkinematic factor }nﬁ 5
_gfabc(n,u,u(kl — kQ)p + cyclic) 1a,u c

Color factors based on a Lie algebra: [T%, T°] = ifob°T¢
JaCObi Identity f‘al agbfba4a3 _|_ fa4a2bfba3a1 —I_ fa4a1 bfba2a3 — O

Use 1=s/s=tt=u/u
} [ ] [ ] [ ]
t U :&’Z to assign 4-point diagram
S )
to others.
s = (k1 4+ k2)? t= (k1 +ka)?

NgC neC Ny C
Affee=92( e ““) u= (ky +ks)2
S t U
Color factors satisfy Jacobi identity: Cy = Cs — Ct
Numerator factors satistfy similar identity: |72u =— s — Ty

Proven at tree level

ZB, Carrasco, Johansson; Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove; Cachazo, etc 17



Duality Between Color and Kinematics

Consider five-point tree amplitude: ZB, Carrasco, Johansson (BCJ)
/\ color factor
»~— Kkinematic numerator factor

Atree E : CiTy

H paz ~——— Feynman propagators

an

4 1 4 1 2

N LS \ N LS
o N e NN
_ fa3a4bfba50fca1a2 Coy = fa3a4bfba26fca1a5 c3 = fa3a4bfbalcfca2a5

n;~ ka-ksko-e1e2-e3e4 -5+ ---

ci+cot+c3=0 «ni+ng+nzg=90

Claim: We can always find a rearrangement so color and
kinematics satisfy the same algebraic constraint equations.

Progress on unraveling relations.

BCJ, Bjerrum-Bohr, Feng, Damgaard, Vanhove, ; Mafra, Stieberger, Schlotterer;
Tye and Zhang; Feng, Huang, Jia; Chen, Du, Feng; Du, Feng, Fu; Naculich, Nastase, Schnitzer

O’Connell and Montiero; Bjerrum-Bohr, Damgaard, O’Connell and Montiero; O’Connell, Montiero, White;
Du, Feng and Teng, Song and Schlotterer, etc. 18



‘ Gravity Loop Integrands from Gauge Theory ‘

BCJ
Ideas conjectured to generalize to loops: color factor~
/ N : ' | Ck, = C; — Cj
kinematic
") () () Nraerator
If you have a set of duality satisfying numerators.
To get:

gauge theory —> gravity theory
simply take

color factor — kinematic numerator

Gravity loop integrands follow from gauge theory!
19



N = 8 Supergravity at Five loops

/B, Carrasco, Chen, Edison, Johansson, Roiban, Parra-Martinez, Zeng (2018)

N = 8 supergravity is a theory, studied as a model of unification.

To make a long story short: Even 5 loop calculations are possible

2
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Evaluated leading divergence behavior to help answer fundamental questions
on nonrenormalizability of gravity theories:

Key point: “Impossible” calculations are pretty standard by now.

Want to harness these advances for LIGO

20



Double Copy for Classical Solutions

Goal is to formulate gravity solutions directly in terms of gauge theory

Variety of special cases:

Schwarzschild and Kerr black holes.
Taub-NUT space.

Solutions with cosmological constant.

Radiation from accelerating black hole.
Maximally symmetric space times.
Plane wave background.

Grayvitational radiation.

Luna, Monteiro, O’Connell and White;
Luna, Monteiro, Nicholsen, O’Connell and White;
Ridgway and Wise; Carrillo Gonzalez, Penco, Trodden;

Adamo, Casali, Mason, Nekovar; . .
Goldberger and Ridgway; Chen; Still no general understanding.

Luna, Monteiro, Nicholson, Ochirov; But plenty of examples.
Bjerrum-Bohr, Donoghue, Vanhove;
O'Connell, Westerberg, White; Kosower, Maybee, O’Connell, etc 21




Double Copy and Gravitational Radiation
Can we simplify the types of calculations needed for LIGO?

A small industry has developed to study this.

* Connection to scattering amplitudes.

Bjerrum-Bohr, Donoghue, Holstein, Plante, Pierre Vanhove; Luna, Nicholson, O'Connell, White
Bjerrum-Bohr, Damgaard, Festuccia, Planté¢, Vanhove; Cheung, Rothstein, Solon; Damour;

Plefka, Steinhoff, Wormsbecher

* Worldline approach for radiation.
Goldberger and Ridgway; Goldberger, Li, Prabhu, Thompson; Chester; Shen . .
* Removing the dilaton contamination.

Luna, Nicholson, O'Connell, White; Johansson, Ochirov; Johansson, Kalin;
Henrik Johansson, Gregor Kilin, Mogull.

Key Question: Can double copy help us calculate something
of direct interest to LIGO/Virgo beyond state of the art?

22



PN versus PM expansion for conservative two-body dynamics

12 From Buonanno
I L GMp 1 1
==+ 5 T, +§[] "'74[] T Amplitudes 2018
E(v) = _H 2 + ... I non-spinning compact objects
2
OPN | 1PN | 2PN | 3PN 4PN 5PN
1 v? vt v° v® pt? pl2 a
N - , 9]
1PM: 1/r 02 /r v /r 0P /r VS /r E
e : > 7 ¢ . . VI — S
(2@ 1/r? | o2/ Lot | o8 |[08/02) | L. g,
3PM: 1/r3 | v?/e | ot | 8 )g
4PM- 1/ 02 /1 v /it
2
1 M
1— Mc?, v? — l—‘,, 1,¢ —.
a r rc=
current known current known overlap between unknown
PN results PM results PN & PM results

e PM results (Westfahl 79, Westfahl & Goller 80, Portilla 79-80, Bel et al. 81, Ledvinka et al. 10,
Damour 16-17, Guevara 17, Vines |7, Bini & Damour |7-18,Vines in prep)




Potentials and Amplitudes

Tree-level: Fourier transform gives classical potential.

V)= [ e A

At higher orders things quickly become § § %Sg
less obvious:

*  What we learned in grad school on /i counting is wrong.
Loops with masses can have classical pieces.

« Double counting and iteration. ptOclassical /R

« 1/h scaling of loop amplitudes.

: - 1/k% at L loops
* Non-uniqueness of potential. / p
e Cross terms between 1/5 and A.

Piece of loops are classical: Our task is to extract these pieces.

We harness EFT to clean up confusion
24



EFT is a Clean Approach

No need to re-invent the wheel. Goldberger and Rothstein
Build EFT from which we can read off potential. Neill Rothstein

Cheung, Rothstein, Solon (2018)
Lyin = / AT (—k) (z’@t + 1/ k% + mi) A(k)
k A, B scalars

+ / Bt (—k) (ia 4+ /K2 + m2 ) B(k) represents spinless
k t B black holes

Lint = — / V(k, k') At (K")A(k)Bt (—=k') B(—k)
%

Match amplitudes of this theory to the full theory in classical limit to
extract a potential.

25



EFT Matching

full Einstein’s theory
(complicated)

Amplitude methods
double copy

tree amplitude
h—0

generalized
unitarity
loop integrand

loop
integration

GR loop amplitude

identjcal

effective theory

(simpler)
build
ansatz
potential

Feynman
diagrams

loop integrand

loop
integration

EFT loop amplitude

Roundabout but efficiently determines potential

26



Feynman diagrams for EFT

EFT scattering amplitudes easy to compute using Feynman diagrams.

No need for advanced methods.

/ Newton’s constant

Appr = G Ay

1=1

— X vertices contain all powers of G

Match to Full Theory

27



Full Theory: Unitarity + Double Copy

* Long range force: Two matter lines must be separated by cut propagators.

* C(lassical potential: 1 matter line per loop is cut (on-shell).
Neill and Rothstein ; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon

Only independent unitarity cut for 2 PM.
OO

2 3

exposed lines on-shell (long range).

Classical pieces simple!
1 4

Independent generalized unitarity cuts for 3 PM.

9 3 9— )— D)3 2 3

28



What about the dilaton?

Double copy constructions naturally have unwanted states

(gluon) X (gluon) = graviton + dilaton + axion

! ! !

2 states 2 states 2 states

For physical gravitational waves must eliminate dilaton and
axion.

Will explain that this is not a problem, merely a minor annoyance.

29



Generalized Unitarity Cuts

Primary means of construction uses BCJ, but KLT should have better
scaling at high loops and easier to explain:

2 (b) c
Cor =Y M™(3,052, —1*,2) x M™(1, 07", —0; "2 4)
hi,ha==+
= — > syg[AT(3, 052, 0, 2) x AT(L, 0 0y e 4)]
hi,hao==+
X [AYC(2, 057, =001, 3) x AeC(4, 07" —0y "2 1)]

By correlating gluon helicities, removing dilaton is trivial.
h;:u — A;A; h,j;y — A:A: Forbid: A:A;

Problem of computing the generalized cuts in gravity is reduced

multiplying and summing gauge-theory tree amplitudes. 0



Gauge-Theory Building Blocks for 2 PM Gravity

212
Atree(18,2+’3—|—743) _ ’Lml[ 3] @

(23)t12
Atree(13 9t 3= 4%) = (3[1]2]7 color-ordered gauge-theory
o (23)[23]t12 tree amplitudes

e This is all you need for 2 PM.
* Scaling with number of external legs is brilliant.

2 Por—C O>—" —C_ O>—' —C >
1 o O— 1 —C D— 1 —C D

E2 + O? 1
Cyn = 2(# + m%m%)
S93

gauge theory

t10, T20,

2
£? = 1 [—t12823 + So3t1¢, — S23tor, + 2t10, L2y,

O? = £% — (sa3mi + sastie, + 134, )(s23m3 — sastae, + t5y,)

31



One loop gravity warmup

Apply unitarity and KLT relations.
Import gauge-theory results.

1 1 1 1 1
Cer =2| (E* + O +6E20%) + milm%] [ + ] [ + ]
t t10,  tae, | [t20, T30,

* Same building blocks as gauge theory!
* Double copy is visible even though we have removed
dilaton and axion.

We can extract classical scattering angles or potentials following

literature Damour; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove;
Cheung, Rothstein, Solon

This is 2" PM order
32



s23 = (P2 + p3)’ Two Loops for 3 PM

tij = 2p; - pj

ZB, Cheung, Shen, Roiban, Solon, Zeng
2 3

e Use KLT and sum over helicities

1 A * Very similar to one loop

1 1
CH—Cut — 22[ + ]
(ps —ps)?  (p5 +p7)?

1
X [s%m%mé + —= Z (Sf‘ - (921 - 6(97;282-2)]

23 ;10
1 2.
1
522 = ngg(tntzs — t1ats7 — so3(t17 + t57))2,

2 2
02 52 - 7711”712923%7

* Double copy is visible.

 Remarkably simple, given it is two-loop gravity. 23



Two loops and 3 PM

2 —( ) 3 2 3
Also need contributions from
other cuts.

These unitarity cuts more complicated than previous cut.

Evaluated using BCJ double copy, with KLLT double copy as check.

To interface easily with EFT approach merged unitarity cuts into diagrams
to get integrand.

Integrand organized into 8 independent diagrams that can contribute

in classical limit:
Y X 1X
Y Y

34



Two-Loop Diagram Numerators

(tip — 2mim3)°”

3,2 (42 2,2
Y 2mity, (ty — 2mims)

2my(s5; + Sag(2t1o + 215 — tar — 2ter) — 2miama(sas — ter)> + (tistse + (t1o — tar)ter)?
\</ + 835 (t1 + t15 + 15, — tartse + t12(4t1s — 2tar + tse — dter) + tis(—2tar + tse — 2te7)
+ 2tarter + tgr) + s23(t15(t36 + 2(—2t12 + tar)ter — tseter)

+ te7(—2t55 + tar(—2tar + tse — ter) + t12(dtar — tse + 2te7))))

etc. Remaining S diagrams somewhat more complicated but not a big deal.

* Very simple compared to the usual Feynman diagram explosion.
* Higher-loop integrand constructions definitely possible!

35



Integration + Extraction of Potential

ZB, Cheung, Shen, Roiban, Solon, Zeng

To integrate follow methods of Cheung, Rothstein and Solon.

Integrals reduce via residues to simple 3 dimensional integrals.
Efficiently targets the classical pieces we want.

Incorporates matching to effective field theory.

Good scaling with perturbative order.

Checks on integrals using standard tools of QCD:

Mellin-Barnes integration. V. Smirnov; Czakon
SeCtOl‘ deCOmpOStiOIl. Binoth and Heinrich, A. Smirnov
Integraﬁon by parts. K. G. Chetyrkin and F. V. Tkachov, Laporta; A. Smirnov;

Maierhofer, Usovitsch, Uwer
Differential equatlons. 7B, Dixon, Kosower; Remiddi and Gehrmann

Method of regions. Beneke, V. Smirnov; A. Smirnov.
36



Amplitude in Classical Limit

7B, Cheung, Roiban, Shen, Solon, Zeng (2019)

rapidity \

Classical limit. The O(G®) or 3PM terms are:

3,24 oo a2 48v (3 + 1202 — 40*) arcsinhy/ 51

M v m2 %84 [3 — 6v + 206v0 — 5402 + 108v6? + 4vo> — ) ’

6~v=¢ o2 —1

18~y (1 — 202) (1 — 502)] 8m3G314tmb [ 5 9 9 9 o1\ 3 }

o 3v(1—2 1 —50%)F1 — 32 1—2 F:

T (Lto) vy v ( o?) (1 —50%)Fy mv? ( 0?) Fy

m = ma + mg, L=mampg/m, v=pu/m, v=FE/m,
{ = E\E,/E”, E=FE| + By, o = p1 - p2/mima,

F, and F), IR divergent iteration terms that don’t affect potential.

Two loop gravity.

Simplicity of result is remarkable!

37



Conservative 3PM Potential

ZB, Cheung, Roiban, Shen, Solon, Zeng
Follow EFT strategy:

The 3PM Hamiltonian: H(p,7) =1/p*+mi+/p>+m3+V(pr)

V(p,r)=> ci(p?) (%)

1=1
2.2 2.3 4 1 — 952 2(1 _ 1_222
61:1/;77, (1_202)’ 62:1/;71 §(1_502)_ vo ( 0)_1/( §)§2 o?) 7
SS 7€ |4 8l 273¢
2a [ 1 4v (3 + 1202 — 40*) arcsinh, / &=+
c3 = — (3 — 6v + 206v0 — 5402 4+ 108vo? + 4vo3) —
3 ~v2€ 12( ) o2 —1
B vy (1 — 202) (1 — 502) B 3vo (7 — 2002) B V2 (3 + 8y — 36 — 1502 — 8002 + 15{02) (1 — 202)
21+7)(1+0) 27§ 4932
L 23490 (1 202) L 29 (1 252)”
4¢3 9664 ‘
m=ma + mp, 1L=mampg/m, v=pu/m, v=FE/m,
= E\ B>/ E? E=FE +FE = p1 - p2/mam 38
§= k1B /E7, =y + By, O = p1 - Pp2/Mi1ma,



Checks

ZB, Cheung, Roiban, Shen, Solon, Zeng

Primary check:

Compare to 4PN Hamiltonian of Damour, Jaranowski, Schifer

Need canonical transformation:

(r,p) > (R,P)=(Ar+Bp,Cp+Dr)

Azl—GmV—l—---, B:G(l_g/y)p-r—l—---
2|r| dm|r|
Gmu Gmu
C — 1 e, D = — . cee
TR T S ER.

For overlap terms of our Hamiltonian equivalent to 4PN Hamitonian.
Explicit canonical transformation found.

39



4 PN Hamiltonian

Damour, Jaranowski, Schaefer

2 n-—r
. P 1
HN(rap)ZT_;t
~ 1 1 1 1
2 L 2v2 L 2 RV
¢ Hipx (r,p) = 5B8v = )(P)? = F{B+1)p? +v(n - )}~ + 5 5.
~ 1 1 1
* Hypy (r,p) = 6 (1—5v+502) (p?)® + §{ (5 —20v — 31%) (p?)? — 2*(n - p)?p® — 3v%(n - p)4};

1 ) a1 1 1
+§{(5—|—81/)p +3v(n-p) }ﬁ_Z(H?’”)r_S’

8 Hapn (r,p) = % (=5 + 350 — 7002 + 351/3) (p%)* + %{ (—7+42v — 5302 — 51/3) (p?)?

1

(2= 30020 PP+ 30— ) p)'p? — 50 p

+ {1_16 (—27 + 136v + 109y2) (p?)? + %(17 +300)v(n - p)2p? + %(5 +430)(n - p)4}ri2

+ _§+ ﬁ_@ 1/—23V2 2 4 _%_ﬁ_lf v(n-p)? i+ 14_(@_%”2),/ L
8 64 48 g )P 16 64 4 PrraT™1s (12 ™ 32 A

40



4 PN Hamiltonian

763 189 , 105 5 63
. Hlocal ) Y - 2 3 4 2\5
¢ Higx (x.p) (256 256" T 256" " 128" T 256" )P

Damour, Jaranowski, Schaefer
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Mess is partly due to

128 their gauge choice.
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Additional Tests

Additional (somewhat redundant) tests:

1. Calculated classical scattering angle (ignoring radiation reaction).

Match overlap terms in known 4PN result.
Bini and Damour
2. Calculated amplitude using potentials.
Match on overlap terms in known 4PN Hamitonian.

Damour, Jaranowski, Schaefer

3. In test mass limit, m, << m,, matches Schwarzschild Hamiltonian.
Wex and Schaefer

Gives us confidence that our Hamiltonian is correct and lines up
with LIGO’s template construction.
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Tests of Our 3PM Hamiltonian for LIGO

Antonelli, Buonanno, Steinhoff, van de Meent, and Vines, arXiv:1901.07102 (last week)

orbits to merger (8 days after our paper)
251510 54 3 2 1
~0.02f ql=11 - —— Hyo®S === gEQBPS
_ _ _____ yEOBPS _ _ _ 7yEOBPS [l N o o o
M Hopwiaen === Hapn | Test against numerical relativity.
L — Hapyiapy — — Hypx "
-0.04F
~00sf Note: Not conclusive, e. g.
oosf 1 radiation not taken into accounted
- Binding energy = TSsTC ]
-0.07}f S~
0.151
= ™ | _— Winning curve is based on 3PM.
<
0.05f _ -]
00T e 1 €— numerical relativity taken as truth

0.02 003 004 0.05 0.06 0.07 0.08
GMSQ

“This rather encouraging result motivates a more comprehensive study...”

3PM + 4PN fed into EOB = Most advanced 2 body Hamiltonian
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Outlook for Gravitational Wave Physics

* Methods are far from exhausted.
* Even more efficient methods seem likely.

* Methods should scale well to higher orders.

Natural future questions to investigate:

Higher orders. Resummation in G.
Radiation.

Spin.

Finite size effects.

Hope to learn from the assembled experts about priorities.
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Summary

Remarkable connection between gauge and gravity theories:
— color «— kinematics.
— gravity ~ (gauge theory)?

Double-copy idea gives us a powerful new way to think about
gravity. Unified framework for gravity and gauge theory.
Obtained the 3PM conservative 2-body potential.

Methods nowhere close to exhausted.

Spin, finite size effects, radiation, and higher orders in G
obvious possibilities to investigate.

Expect many more advances in coming years, not only for

gravitational waves but also for understanding gravity and
its relation to the other forces via double copy.
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Extra Slides
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