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Outline
Spinning neutron stars as sources of gravitational waves
Why computational challenge?
Some history
All-sky search programs
Time domain F-statistic pipeline
Computing
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Gravitational waves from spinning neutron stars
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v
Characteristics:
1. Long-lived: T >  Tobs
2. Nearly periodic: fGW  ~  ν
Generation mechanisms (we need a time varying quadrupole moment):
   1.  Mountains
      (elastic stresses, magnetic fields)
  2.  Oscillations
      (r-modes)
  3.  Free precession
      (magnetic field)
  4.  Accretion
      (drives deformations  from r-modes, thermal
       gradients, magnetic fields )


Credit:   B. J.Owen

Credit:   McGill U.
Amplitude of the GW very uncertain


Quadrupoles on accreting neutron stars are of two kinds: 
(i) core deformations, e.g. from r-modes
(Brink et al. 2004; Nayyar & Owen 2006; Bondarescu et al.2007) and 
(ii) permanent crustal deformations, e.g. supported by thermal 
(Bildsten 1998; Ushomirsky et al. 2000)
or magnetic 
(Brown & Bildsten 1998; Melatos & Phinney 2001; Choudhuri & Konar 2002; Payne & Melatos 2004;Vigelius & Melatos 2008) 
gradients.

R-modes are oscillations in rotating fluids that are due
to the Coriolis effect. They are subject to the classical
Chandrashekar-Friedman-Schutz (CFS) instability [2, 3],
which is driven by the gravitational radiation backreaction
force. Andersson [4] and Friedman and Morsink [5]
showed that, in the absence of fluid dissipation, r-modes
are linearly unstable at all rotation rates.
3
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Izz   - moment of inertia, ε  = (Ixx – Iyy)/Izz – ellipticity.  d  - distance
Gravitational wave amplitude
Maximum deformations:
Ordinary matter                        ε  ≤   10-5  
Hybrid (hadron-quark core)     ε  ≤   10-3   
Extreme quark  stars                 ε  ≤   10-1 
Amplitude of the GW around 3 orders of amplitude smaller than for BBH (10-21 )
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Types of searches for continuous gravitational wave signals
Targeted searches - known pulsars (frequency, sky position, sometimes polarization known)
Directed searches - known position, unknown frequency 
All-sky (wide-parameter) searches - unknown sky position and frequency evolution
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Given uncertainty of the GW emission mechanisms and lack of guaranteed sources all-sky searches of very long data segments necessary. 
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All-sky search challenge
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Search of extremely weak signals over a huge parameter space.

Several groups took up this challenge:
AEI (Max Planck I.)  LSC  group   - B. F. Schutz,   B. Allen
           Einstein@Home project (Distributed computing   
             project using the  BOINC technology)    -  B. Allen
University of Michigan  LSC Group – K. Riles / V. Dergachev
University  Balearic Islands (UBI)  LSC group    - A. Sintes
Rome1-Virgo group - P. Astone


Polgraw-Virgo group  - A. Królak
This talk



Early work
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1.  J. Livas,  in  Gravitational Wave Data Analysis, ed. B.F. Schutz (1989).

Surprisingly complete account of data analysis methods including both coherent and incoherent searches. Application of both  approaches to the real data of the MIT 1.5m prototype.

B.F. Schutz, in The Detection of Gravitational Waves, ed. D.G. Blair (1991).

All-sky searches are a computational challenge, use of FFT, first ideas 
to improve search efficiency.



Coherent searches

P. R. Brady, T. Creighton, C.Cutler, and B.F.Schutz,  Phys.Rev. D 57,  2101 (1998).

All-sky searches even more challenging – frequency evolution, 
computational requirements, use of FFT.

2. P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev. D 58,  063001 (1998).

F-statistic realizing coherent search (matched –filtering) 
introduced.  Search parameter space reduced.
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Semi-coherent searches
P. Brady and T. Creighton, Phys. Rev. D 61, 082001 (2000).

Stack-slide method introduced.


B. Krishnan, A.M. Sintes, M.A. Papa, B.F. Schutz, S. Frasca, and C. Palomba, Phys. Rev. D 70, 082001 (2004).

Time-frequency method (Hough transform) to search frequency
modulation pattern introduced.
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Time domain F-statistic method
(GW signal detection scheme)
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1. Response  of the detector to a GW signal
2. Parametrization of the signal
3. Optimal filter
4. Threshold  (False alarm probability)
5. Grid of templates
6. Numerical algorithms
7. Verification 
Upper limits if you have not detected the signal


Response  of the gravitational detector  to a periodic gravitational wave
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Detector ephemeris
Source position
ho, polarization, phase 


Signal detection in noise
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Fundamental lemma of Neyman and Pearson: 
Test that maximizes probability of detection subject to fixed false alarm probability is likelihood ratio  test 
N-P test:   Compare  Λ = p1(x)/p0(x)  to a  threshold 

Likelihood ratio
J. Neyman & E. Pearson,
Phil. Trans. Roy. Soc. Ser. A, 231:289-337,1933


Gaussian case
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additive noise:             x(t) = n(t) + s(t)
Gaussianity:                ln = (x|s) – ½ (s|s)

statationarity:

Matched filter
Spectral density of noise

Signal-to-noise ratio ρ (determines probability of detection):


Maximum likelihood estimation
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likelihood function
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Gaussian case, linear signal
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F-statistic
Amplitude estimators
Detector response 
Log likelihood ratio
Maximum
likelihood
equations
=  0
n  amplitude parameters
Substitute back to log Λ to get:
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F-statistic
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Depends only on a subset of parameters
called the intrinsic parameters
Our goal: evaluate F efficiently on the parameter space
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Resampling
(interpolation)

Fu is a Fourier transform that can be computed using the FFT algorithm
Resampling
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Fisher matrix as a metric
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We can interpret the Fisher matrix as a metric on the parameter space (B. J. Owen, Phys. Rev. D 53, 6749 (1996) ).

Applications

Calculation of  false alarm probability to determine significance of the candidates.

Calculation of computing requirements

Construction of optimal grid of templates  to do searches.

Definition of  coincidences in parameter space.


Cells in the parameter space
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Volume of the parameter space
Elementary cell of the parameter space
Elementary grid cell in the parameter space


Volume of elementary cell
SNR2 loss


Volume of grid  cell


False alarm probability
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False alarm probability:
Number of cells in the parameter space:


Number of templates
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Number of templates



Approximate linear model of the signal
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Neglect the term in the phase that is multiplied by the component of the vector joining the detector and SSB that is perpendicular to the ecliptic.


Linear phase model
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The reduced Fisher matrix for s(t) i.e. the Fisher matrix projected on the space of intrinsic parameters and divided by square of SNR, has constant coeffcients. 
Phase is a linear function of the parameters
Constant amplitude



Good for calculating false alarm probabilities and construction grids of templates
23
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Optimal grid of templates
(Covering problem)
Covering radius 
Lattice coverings  (u+v, u-v)
Fundamental region
Thikness (Θ) 

In 2-dimensional Euclidean space the best covering is the hexagonal covering (Θ=1.21). For higher dimensions not known.
The best lattice covering are known  for K ≤23 :   A*K lattices.
BCC lattice in three dimensions (truncated octahedron).
24
R. Prix, Phys. Rev. D 75, 023004 (2007).
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Lattices with constraints
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1. We want to use the FFT. Hence  the nodes of the lattice must coincide with the Fourier frequencies.

Constraint  no. 1.   One vector of the lattice has to be parallel to the frequency axis and the frequency component must be equal to the Fourier frequency.

2. We want to minmize the number of times we have to perform resampling.

Constraint no. 2.  Another vector of the lattice has to be perpendicular to the sky  plane.


Grid generator matrix M
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Our code has three DO
 loops (over  α1, α2,        ). The innermost being over         .
Thus we  move in turn along vectors  d, c, b. As b3 = b4 = O, when we move along the b direction, the sky position does not change. So we need to resample only once for all the spin downs. 
As a2=a3=a4=O and a1=π we obtain by FFT the F-stat on lattice points for the whole bandwidth.   


sky


A*4    lattice generator matrix


Computational requirements
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In some regimes, searching over an additional spindown parameter would seem to reduce the number of patches; however, this actually only indicates regions where the parameter space extends less than one full patch width in the additional dimension. In such regimes one must properly discard the extra parameter from the search, forcing one to choose always the higher of the curves.
28

Computational requirements
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The search
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Coherent all-sky search of many month of data computationally prohibitive.



Hence we developed a  two-step procedure

Divide data into short segments  ( days long )
     and analyze them coherently.
                   Size of data segments reduced by  dividing them  
                   into narrow bands and downsampling.
                       
2. Search for coincidences among candidates 
     from short segments



Coincidences among candidates
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Method adapted from E@H searches.

1. Transform all frequencies of the candidates to a common
     fiducial reference time. 

2. Divide the parameter space into cells. 
    To construct the coincidence cell we use the reduced    
    Fisher matrix  for the linear signal model. We define 
    coincidence  cell in the parameter space by the condition:




where m is the number of  parameters. 



Coincidence algorithm
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1. Transform astrophysical parameters to coordinates of the reduced Fisher matrix 

2.  Coordinates are rounded to the nearest integer. In this way we sort candidates efficiently into adjacent m-dimensional hypercubes. If there is more than one candidate from a given data segment in a hypercube we select the candidate which has the highest SNR. We do sorting for each time frame in the band. If there is more than one candidate in a given hypercube we register a coincidence.

3. We shift cubes by 1/2 of their size in m directions, and for each shift we search for coincidences


Step 3 takes into account cases for which the candidate events are located
on opposite sides of cell borders, edges, and corners and consequently
coincidences that could not be found just by packing candidates into adjacent
cells.
32
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Credit:   M. Bejger


Under development
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Classification of the candidates 
- F. Morawski et al. 
(in preparation) 
Follow-up of promising candidates
 - M. Sieniawska et al. (in preparation)

Test whether SNR of the candidate increases when we increase observation time.


Code optimization
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The code is parallelized over most inner, spin down loop to maximize data sharing.
  OpenMP used to make effective use of multicore  CPU. 
 For performance, critical parts are ffts and sincos functions. We use fftw 3.7 recompiled with optimization for AVX2 instructions. For sincos we use optimized vector library Yeppp! (exploiting AVX2 instructions).
 IO is also optimized - triggers are written to memory buffer and saved to disk only when buffer is full.
 The code is restartable - upon SIGUSR1 or SIGTERM the checkpoint file is saved, which can be used to continue analysis in another run. 
Credit: P. Ciecieląg


Computing
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Search is run on big clusters and usually runs on around 10 000 cores in parallel.

Currently 20 M cpu hours  needed to do a typical all-sky search 


Results and conclusions
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No GW signal from a rotating neutron star detected so far by all-sky searches (also no such signal detected by other types of searches).

Upper limits obtained start to enter astrophysically intersting range (h~10-25) - strongest signals emitted by known physical mechanisms could be detected.

To succeed more computing power (~100 M cpu   hours) needed and better astrophysical understanding of GW emission mechanisms required.
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