Singularity formation in Black hole interiors.

Spyros Alexakis

IPAM, January 2019.

Strong Cosmic Censorship Conjecture—SCC

Conjecture (Strong Cosmic censorship-Penrose 1970's)

Consider an initial data (Σ^3, h, k) with reasonable matter fields. Consider the maximal hyperbolic development $(\mathcal{M}^{3+1}, \mathbf{g})$ of this initial data set. Assume that \mathcal{M}^{3+1} contains a black hole region $\mathcal{M}_{\mathrm{b.h.}} \subset \mathcal{M}^{3+1}$.

Then generically inside $\mathcal{M}_{\mathrm{b.h.}}$ g will end at a terminal singularity.

Strong Cosmic Censorship Conjecture–SCC

Conjecture (Strong Cosmic censorship-Penrose 1970's)

Consider an initial data (Σ^3,h,k) with reasonable matter fields. Consider the maximal hyperbolic development $(\mathcal{M}^{3+1},\mathbf{g})$ of this initial data set. Assume that \mathcal{M}^{3+1} contains a black hole region $\mathcal{M}_{\mathrm{b.h.}} \subset \mathcal{M}^{3+1}$.

Then generically inside $\mathcal{M}_{\mathrm{b.h.}}$ g will end at a terminal singularity.

Terminal means that \mathbf{g} cannot be extended past the singularity and still solve the Einstein equations (even in a weak sense).

The nature of the singularity; (strengthened SCC)

Conjecture (Penrose)

Generically the singularity will be space-like, and involve collapsing in spatial directions.

The nature of the singularity; (strengthened SCC)

Conjecture (Penrose)

Generically the singularity will be space-like, and involve collapsing in spatial directions.

The validity of the above was widely believed, eg.

BBC Black Holes Quiz

How much do you know about black holes?

Stephen Hawking and black holes

Inside the Mind of Prof Stephen Hawking
Take a cosmic journey with the world's most famous
physicist.

Prof Hawking on Desert Island Discs First broadcast on Christmas Day in 1992.

In Our Time: Black Holes
Melvyn Bragg discusses black holes, the dead
collapsed phosts of massive stars.

How much do you know about black holes?

Question 3 of 9

When a star collapses into a black hole all its mass gets squeezed into:

The event horizon

Another dimension

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the singularity.

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the singularity.

Remark: This is an extrapolation from an analogous conjecture concerning the **initial**, **Big Bang** singularity of space-time.

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the singularity.

Remark: This is an extrapolation from an analogous conjecture concerning the **initial**, **Big Bang** singularity of space-time.

Heuristic argument based on linearization;

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the singularity.

Remark: This is an extrapolation from an analogous conjecture concerning the **initial**, **Big Bang** singularity of space-time.

Heuristic argument based on linearization; **very little evidence** in favour of this.

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the singularity.

Remark: This is an extrapolation from an analogous conjecture concerning the **initial**, **Big Bang** singularity of space-time.

Heuristic argument based on linearization; **very little evidence** in favour of this. **Only** in the Big Bang setting. cf. Asthekar, Misner, Ringström.

Many examples of AVD behaviour constructed for cosmological singularities.

Many examples of AVD behaviour constructed for cosmological singularities.

Mostly $\mathbb{T}^3\text{-}\mathsf{Gowdy};$ also $\mathbb{T}^2\text{-}\mathsf{Gowdy}.$

Many examples of AVD behaviour constructed for cosmological singularities.

Mostly \mathbb{T}^3 -Gowdy; also \mathbb{T}^2 -Gowdy.

cf. Moncrief, Choquet-Bruhat, Rendall, Ringström, Berger, Isenberg, Kichenassamy, Eardley.

Many examples of AVD behaviour constructed for cosmological singularities.

Mostly \mathbb{T}^3 -Gowdy; also \mathbb{T}^2 -Gowdy.

cf. Moncrief, Choquet-Bruhat, Rendall, Ringström, Berger, Isenberg, Kichenassamy, Eardley.

Nature of Asymptotically Velocity Term Dominated behaviour: At each point on the singularity the solution approaches a different Kasner solution: $-dt^2 + t^{p_1}(dx_1)^2 + t^{p_2}(dx_2)^2 + t^{p_3}(dx_3)^2$.

Many examples of AVD behaviour constructed for cosmological singularities.

Mostly \mathbb{T}^3 -Gowdy; also \mathbb{T}^2 -Gowdy.

cf. Moncrief, Choquet-Bruhat, Rendall, Ringström, Berger, Isenberg, Kichenassamy, Eardley.

Nature of Asymptotically Velocity Term Dominated behaviour: At each point on the singularity the solution approaches a different Kasner solution: $-dt^2 + t^{p_1}(dx_1)^2 + t^{p_2}(dx_2)^2 + t^{p_3}(dx_3)^2$.

AVD also captured in energy behaviour of the fields:

$$\lim_{T\to 0^+} \frac{\int_{t=T} (\partial_t g_{ii})^2}{\int_{t=T} |\overline{\nabla}_{\mathsf{x}} g_{ii}|^2} \to +\infty. \tag{1}$$

Many examples of AVD behaviour constructed for cosmological singularities.

Mostly \mathbb{T}^3 -Gowdy; also \mathbb{T}^2 -Gowdy.

cf. Moncrief, Choquet-Bruhat, Rendall, Ringström, Berger, Isenberg, Kichenassamy, Eardley.

Nature of Asymptotically Velocity Term Dominated behaviour: At each point on the singularity the solution approaches a different Kasner solution: $-dt^2 + t^{p_1}(dx_1)^2 + t^{p_2}(dx_2)^2 + t^{p_3}(dx_3)^2$. AVD also captured in energy behaviour of the fields:

$$\lim_{T\to 0^+} \frac{\int_{t=T} (\partial_t g_{ii})^2}{\int_{t=T} |\overline{\nabla}_{\times} g_{ii}|^2} \to +\infty. \tag{1}$$

Fuchsian techniques (i.e. examples). 2 or 3 degrees of symmetry essential.

All known results prior to ours have *two* degrees of symmetry imposed. (Mathematical, physical and Numerical).

All known results prior to ours have *two* degrees of symmetry imposed. (Mathematical, physical and Numerical).

There exists a *very* extensive literature in this setting. Some pertinent results in **spherical symmetry**:

Theorem (Christodoulou. Mid 80's–late 90's)

For Einstein-massless scalar field strengthened strong cosmic censorship is **generically** true.

All known results prior to ours have *two* degrees of symmetry imposed. (Mathematical, physical and Numerical). There exists a *very* extensive literature in this setting. Some pertinent results in **spherical symmetry**:

Theorem (Christodoulou. Mid 80's–late 90's)

For Einstein-massless scalar field strengthened strong cosmic censorship is **generically** true. \exists counterexamples of six types, but they are **non** generic in Spherical symmetry.

All known results prior to ours have *two* degrees of symmetry imposed. (Mathematical, physical and Numerical). There exists a *very* extensive literature in this setting. Some pertinent results in **spherical symmetry**:

Theorem (Christodoulou. Mid 80's–late 90's)

For Einstein-massless scalar field strengthened strong cosmic censorship is **generically** true. \exists counterexamples of six types, but they are **non** generic in Spherical symmetry.

Theorem (Dafermos 2012)

For two-ended initial data and with charged scalar field, generically there exists no space-like singularity. There exists a weaker null singularity.

Singularities, beyond spherical symmetry.

Theorem (Dafermos-Luk, 2017+)

In vacuum: For generic perturbations of a Kerr solution exterior, \exists a **portion** of weak null singularity inside black hole.

Singularities, beyond spherical symmetry.

Theorem (Dafermos-Luk, 2017 $+\)$

In vacuum: For generic perturbations of a Kerr solution exterior, \exists a **portion** of weak null singularity inside black hole.

Theorem (Rodnianski-Speck, 2014, 2017)

For Big-Bang singularities in Einstein-scalar field, solving **backwards** towards the singularity: Perturbations of the data at $\{t=1\}$ lead to space-like singularity formation at $\{t=0\}$. AVD behaviour observed.

Singularities, beyond spherical symmetry.

Theorem (Dafermos-Luk, 2017+)

In vacuum: For generic perturbations of a Kerr solution exterior, \exists a **portion** of weak null singularity inside black hole.

Theorem (Rodnianski-Speck, 2014, 2017)

For Big-Bang singularities in Einstein-scalar field, solving **backwards** towards the singularity: Perturbations of the data at $\{t=1\}$ lead to space-like singularity formation at $\{t=0\}$. AVD behaviour observed.

Crucially relies on scalar field as a stabilizing force. Vacuum results in very high dimension ($d \ge 30$).

$$\mathbf{g}_{\text{Schw}} = (1 - \frac{2M}{r})^{-1} dr^2 - (1 - \frac{2M}{r}) dt^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

$$\mathbf{g}_{\text{Schw}} = (1 - \frac{2M}{r})^{-1} dr^2 - (1 - \frac{2M}{r}) dt^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

 ∂_{ϕ} is Killing.

$$\mathbf{g}_{\mathrm{Schw}} = (1 - \frac{2M}{r})^{-1} dr^2 - (1 - \frac{2M}{r}) dt^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

 ∂_{ϕ} is Killing. *Polarized* Killing because $\partial_{\phi} \perp \partial_{t}, \partial_{\theta}, \partial_{r}$.

$$\mathbf{g}_{\text{Schw}} = (1 - \frac{2M}{r})^{-1} dr^2 - (1 - \frac{2M}{r}) dt^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

 ∂_{ϕ} is Killing. Polarized Killing because $\partial_{\phi} \perp \partial_{t}, \partial_{\theta}, \partial_{r}$.

Theorem (A.–Fournodavlos)

Consider axi-symmetric, polarized perturbations of the Schwarzschild data on $r = M, t \in [0, M]$. Then the solution $\mathbf{g}_{\mathrm{perturb}}$ of the vacuum Einstein equations develops a space-like singularity, with (gauge-normalized) asymptotics of the form:

$$\mathbf{g}_{\mathrm{p}} \sim (1 - \frac{2M}{r})^{-1} dr^2 + r^{\beta(t,\theta)} dt^2 + r^{2\delta(t,\theta)} d\theta^2 + r^{\epsilon(t,\theta)} dt d\theta + r^{2\alpha(t,\theta)} \sin^2 \theta d\phi^2.$$
(2)

200

$$\mathbf{g}_{\text{Schw}} = (1 - \frac{2M}{r})^{-1} dr^2 - (1 - \frac{2M}{r}) dt^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

 ∂_{ϕ} is Killing. Polarized Killing because $\partial_{\phi} \perp \partial_{t}, \partial_{\theta}, \partial_{r}$.

Theorem (A.–Fournodavlos)

Consider axi-symmetric, polarized perturbations of the Schwarzschild data on $r = M, t \in [0, M]$. Then the solution $\mathbf{g}_{\mathrm{perturb}}$ of the vacuum Einstein equations develops a space-like singularity, with (gauge-normalized) asymptotics of the form:

$$\mathbf{g}_{\mathrm{p}} \sim (1 - \frac{2M}{r})^{-1} dr^2 + r^{\beta(t,\theta)} dt^2 + r^{2\delta(t,\theta)} d\theta^2 + r^{\epsilon(t,\theta)} dt d\theta + r^{2\alpha(t,\theta)} \sin^2 \theta d\phi^2.$$
 (2)

In fact
$$\alpha(t,\theta) \sim 1$$
, $\delta = \delta(\alpha) \sim 1$, $\beta = \beta(\alpha) \sim -1$, $\epsilon = \epsilon(\alpha) \sim \frac{5}{2}$.

Express
$$^{3+1}g=e^{2\gamma(r,t,\theta)}sin^2\theta d\phi^2+^{2+1}h(r,t,\theta)$$
 (polarized $^{3+1}g).$

Express

$$^{3+1}g=e^{2\gamma(r,t, heta)}sin^2 heta d\phi^2+^{2+1}h(r,t, heta)$$

(polarized ^{3+1}g). $Ric(^{3+1}g) = 0$ equivalent to:

$$\Box_{g}\gamma=0, Ric_{ij}(^{2+1}h)=\nabla_{ij}\gamma+\nabla_{i}\gamma\nabla_{j}\gamma.$$

Connection $K_{ij} = \langle \nabla_{e^i} e^0, e^j \rangle$, $A_{ij,k} = \langle \nabla_{e^i} e^j, e^k \rangle$ of ^{2+1}h given by Connection of ^{3+1}g and γ .

Express

$$^{3+1}$$
g = $e^{2\gamma(r,t,\theta)}$ sin $^2\theta d\phi^2 + ^{2+1}h(r,t,\theta)$

(polarized ^{3+1}g). $Ric(^{3+1}g) = 0$ equivalent to:

$$\Box_{\mathbf{g}}\gamma=0, Ric_{ij}(^{2+1}h)=\nabla_{ij}\gamma+\nabla_{i}\gamma\nabla_{j}\gamma.$$

Connection $K_{ij} = \langle \nabla_{e^i} e^0, e^j \rangle$, $A_{ij,k} = \langle \nabla_{e^i} e^j, e^k \rangle$ of ^{2+1}h given by Connection of ^{3+1}g and γ . 2nd equation expressible as ODEs in K, A!

Express

$$^{3+1}$$
g = $e^{2\gamma(r,t,\theta)}$ sin $^2\theta d\phi^2 + ^{2+1}h(r,t,\theta)$

(polarized ^{3+1}g). $Ric(^{3+1}g) = 0$ equivalent to:

$$\Box_{g}\gamma=0, Ric_{ij}(^{2+1}h)=\nabla_{ij}\gamma+\nabla_{i}\gamma\nabla_{j}\gamma.$$

Connection $K_{ij} = \langle \nabla_{e^i} e^0, e^j \rangle$, $A_{ij,k} = \langle \nabla_{e^i} e^j, e^k \rangle$ of ^{2+1}h given by Connection of ^{3+1}g and γ . 2nd equation expressible as ODEs in K, A! In geodesic frame $\nabla_{e^0} e^i = 0$,

$$e^{0}K_{ij} = K * K + R_{0ij0}^{h}, e^{0}A_{ijk} = K * A + R_{0ijk}^{h}.$$

Express

$$^{3+1}$$
g = $e^{2\gamma(r,t,\theta)}$ sin $^2\theta d\phi^2 + ^{2+1}h(r,t,\theta)$

(polarized ^{3+1}g). $Ric(^{3+1}g) = 0$ equivalent to:

$$\Box_{g}\gamma=0, Ric_{ij}(^{2+1}h)=\nabla_{ij}\gamma+\nabla_{i}\gamma\nabla_{j}\gamma.$$

Connection $K_{ij} = \langle \nabla_{e^i} e^0, e^j \rangle$, $A_{ij,k} = \langle \nabla_{e^i} e^j, e^k \rangle$ of ^{2+1}h given by Connection of ^{3+1}g and γ . 2nd equation expressible as ODEs in K, A! In geodesic frame $\nabla_{e^0} e^i = 0$,

$$e^{0}K_{ij} = K * K + R_{0ij0}^{h}, e^{0}A_{ijk} = K * A + R_{0ijk}^{h}.$$

In 2+1 dim's $R_{ijkl} = Ric \otimes g + W_{ijkl}$. But $W_{ijkl} = 0$.

Our system reduces to:

Our system reduces to:

$$\Box_{g} \gamma = 0,$$

$$e^{0} K = K * K + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma,$$

$$e^{0} A = K * A + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma.$$
(3)

Our system reduces to:

$$\Box_{g} \gamma = 0,$$

$$e^{0} K = K * K + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma,$$

$$e^{0} A = K * A + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma.$$
(3)

Formal asymptotics: $\gamma \sim \alpha(t, \theta) log r + B(t, \theta) + O(r)$.

Our system reduces to:

$$\Box_{g} \gamma = 0,$$

$$e^{0} K = K * K + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma,$$

$$e^{0} A = K * A + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma.$$
(3)

Formal asymptotics: $\gamma \sim \alpha(t, \theta) log r + B(t, \theta) + O(r)$. Assuming this for γ we have in principal frame for K:

$$K_{11} = \beta(t,\theta)r^{-3/2} + O(r^{-1/2}) + \overline{y}(t,\theta)r^{\epsilon(t,\theta)},$$

$$K_{22} = \delta(t,\theta)r^{-3/2} + O(r^{-1/2}), K_{12} = O(r^{1}).$$
(4)

Our system reduces to:

$$\Box_{g} \gamma = 0,$$

$$e^{0} K = K * K + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma,$$

$$e^{0} A = K * A + \nabla^{2} \gamma + \nabla \gamma \nabla \gamma.$$
(3)

Formal asymptotics: $\gamma \sim \alpha(t, \theta) log r + B(t, \theta) + O(r)$. Assuming this for γ we have in principal frame for K:

$$K_{11} = \beta(t,\theta)r^{-3/2} + O(r^{-1/2}) + \overline{y}(t,\theta)r^{\epsilon(t,\theta)},$$

$$K_{22} = \delta(t,\theta)r^{-3/2} + O(r^{-1/2}), K_{12} = O(r^{1}).$$
(4)

 $d_1(\alpha(t,\theta)), d_2(\alpha(t,\theta))$ are explicit and it turns out:

$$trK(r=
ho)=rac{3}{2}
ho^{-3/2}+{\it O}(
ho^{-1/2}).$$

Ricatti equation for K_{22} sees the *collapsing* direction ∂_{θ} . Can well blow up *before* r=0 for gauge reasons. Forced to solve the above by *iteration*.

Ricatti equation for K_{22} sees the *collapsing* direction ∂_{θ} . Can well blow up *before* r=0 for gauge reasons. Forced to solve the above by *iteration*.

Forced to use energy estimates to produce *real* solution.

Ricatti equation for K_{22} sees the *collapsing* direction ∂_{θ} . Can well blow up *before* r=0 for gauge reasons. Forced to solve the above by *iteration*.

Forced to use energy estimates to produce *real* solution.

Asymptotically CMC of r is *crucial*.

Ricatti equation for K_{22} sees the *collapsing* direction ∂_{θ} . Can well blow up *before* r=0 for gauge reasons. Forced to solve the above by *iteration*.

Forced to use energy estimates to produce *real* solution.

Asymptotically CMC of r is *crucial*. Danger in differentiated Ricatti: $\partial = \partial_t, \partial_\theta$.

$$e^{0}\partial K_{11} + 2K_{11}\partial K_{11} + 2K_{12}\partial K_{12} = \partial [\nabla^{2}\gamma + \nabla\gamma\nabla\gamma]$$

admits free branch like $r^{\epsilon(t,\theta)}$ (consistent with undifferentiated Ricatti).

Ricatti equation for K_{22} sees the *collapsing* direction ∂_{θ} . Can well blow up *before* r=0 for gauge reasons. Forced to solve the above by *iteration*.

Forced to use energy estimates to produce *real* solution. Asymptotically CMC of r is *crucial*. Danger in differentiated Ricatti: $\partial = \partial_t$, ∂_θ .

$$e^{0}\partial K_{11} + 2K_{11}\partial K_{11} + 2K_{12}\partial K_{12} = \partial [\nabla^{2}\gamma + \nabla\gamma\nabla\gamma]$$

admits free branch like $r^{\epsilon(t,\theta)}$ (consistent with undifferentiated Ricatti). But

$$e^0\partial K_{22} + 2K_{22}\partial K_{22} + 2K_{12}\partial K_{12} = \partial[\nabla^2\gamma + \nabla\gamma\nabla\gamma]$$
 admits free branch $r^{-3+\epsilon(t,\theta)}$.

Ricatti equation for K_{22} sees the *collapsing* direction ∂_{θ} . Can well blow up *before* r=0 for gauge reasons. Forced to solve the above by *iteration*.

Forced to use energy estimates to produce *real* solution. Asymptotically CMC of r is *crucial*. Danger in differentiated Ricatti: $\partial = \partial_t, \partial_\theta$.

$$e^{0}\partial K_{11} + 2K_{11}\partial K_{11} + 2K_{12}\partial K_{12} = \partial [\nabla^{2}\gamma + \nabla\gamma\nabla\gamma]$$

admits free branch like $r^{\epsilon(t,\theta)}$ (consistent with undifferentiated Ricatti). But

$$e^{0}\partial K_{22} + 2K_{22}\partial K_{22} + 2K_{12}\partial K_{12} = \partial[\nabla^{2}\gamma + \nabla\gamma\nabla\gamma]$$

admits free branch $r^{-3+\epsilon(t,\theta)}$. **If** this is present then *no* possibility of deriving any estimates for the system. (In the iteration estimates would be getting exponentially worse at each step).