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Strong Cosmic Censorship Conjecture–SCC

Conjecture (Strong Cosmic censorship–Penrose 1970’s)

Consider an initial data (Σ3, h, k) with reasonable matter fields.
Consider the maximal hyperbolic development (M3+1, g) of this
initial data set. Assume that M3+1 contains a black hole region
Mb.h. ⊂M3+1.
Then generically inside Mb.h. g will end at a terminal singularity.

Terminal means that g cannot be extended past the singularity
and still solve the Einstein equations (even in a weak sense).
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The nature of the singularity; (strengthened SCC)

Conjecture (Penrose)

Generically the singularity will be space-like, and involve
collapsing in spatial directions.

The validity of the above was widely believed, eg.



The nature of the singularity; (strengthened SCC)

Conjecture (Penrose)

Generically the singularity will be space-like, and involve
collapsing in spatial directions.

The validity of the above was widely believed, eg.



BBC Black Holes Quiz

How  much  do  you  know  about  black  holes? Share�

Stephen  Hawking  and  black  holes

Take  a  cosmic  journey  with  the  world's  most  famous
physicist.

First  broadcast  on  Christmas  Day  in  1992.

Melvyn  Bragg  discusses  black  holes,  the  dead
collapsed  ghosts  of  massive  stars.

Inside  the  Mind  of  Prof  Stephen  Hawking Prof  Hawking  on  Desert  Island  Discs

In  Our  Time:  Black  Holes



Stations    Categories    Schedules    Favourites

How  much  do  you  know  about  black  holes?

•  •  •  •  •  •  •  •  •

Question  3  of  9

When  a  star  collapses  into  a  black  hole  all  its  mass  gets  squeezed  into:

The  singularity

The  event  horizon

Another  dimension

iPlayer  Radio Search
Search

Submit Search

Share�



Nature of the singularity–very strong SCC conjecture.

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the
singularity.

Remark: This is an extrapolation from an analogous conjecture
concerning the initial, Big Bang singularity of space-time.

Heuristic argument based on linearization; very little evidence in
favour of this. Only in the Big Bang setting. cf. Asthekar, Misner,
Ringström.
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AVD in Big Bang space-times.

Many examples of AVD behaviour constructed for cosmological
singularities.

Mostly T3-Gowdy; also T2-Gowdy.

cf. Moncrief, Choquet-Bruhat, Rendall, Ringström, Berger,
Isenberg, Kichenassamy, Eardley.
Nature of Asymptotically Velocity Term Dominated behaviour:
At each point on the singularity the solution approaches a different
Kasner solution: −dt2 + tp1(dx1)2 + tp2(dx2)2 + tp3(dx3)2.
AVD also captured in energy behaviour of the fields:

limT→0+

∫
t=T (∂tgii )

2∫
t=T |∇xgii |2

→ +∞. (1)

Fuchsian techniques (i.e. examples). 2 or 3 degrees of symmetry
essential.
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Singularities in black holes–Results: Spherical symmetry.

All known results prior to ours have two degrees of symmetry
imposed. (Mathematical, physical and Numerical).

There exists a very extensive literature in this setting. Some
pertinent results in spherical symmetry:

Theorem (Christodoulou. Mid 80’s–late 90’s)

For Einstein-massless scalar field strengthened strong cosmic
censorship is generically true. ∃ counterexamples of six types, but
they are non generic in Spherical symmetry.

Theorem (Dafermos 2012)

For two-ended initial data and with charged scalar field,
generically there exists no space-like singularity. There exists a
weaker null singularity.
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Singularities, beyond spherical symmetry.

Theorem (Dafermos-Luk, 2017+ )

In vacuum: For generic perturbations of a Kerr solution exterior, ∃
a portion of weak null singularity inside black hole.

Theorem (Rodnianski-Speck, 2014, 2017)

For Big-Bang singularities in Einstein-scalar field, solving
backwards towards the singularity: Perturbations of the data at
{t = 1} lead to space-like singularity formation at {t = 0}. AVD
behaviour observed.

Crucially relies on scalar field as a stabilizing force. Vacuum results
in very high dimension (d ≥ 30).
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Our result: Stability under polarized axial symmetry.

gSchw = (1− 2M

r
)−1dr2 − (1− 2M

r
)dt2 + r2(dθ2 + sin2θdφ2).

∂φ is Killing.Polarized Killing because ∂φ ⊥ ∂t , ∂θ, ∂r .

Theorem (A.–Fournodavlos)

Consider axi-symmetric, polarized perturbations of the
Schwarzschild data on r = M, t ∈ [0,M]. Then the solution
gperturb of the vacuum Einstein equations develops a space-like
singularity, with (gauge-normalized) asymptotics of the form:

gp ∼ (1− 2M

r
)−1dr2 + rβ(t,θ)dt2 + r2δ(t,θ)dθ2 + r ε(t,θ)dtdθ

+ r2α(t,θ)sin2θdφ2.
(2)

In fact α(t, θ) ∼ 1, δ = δ(α) ∼ 1, β = β(α) ∼ −1, ε = ε(α) ∼ 5
2 .
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The reduction of the Einstein equations

Express
3+1g = e2γ(r ,t,θ)sin2θdφ2 +2+1 h(r , t, θ)

(polarized 3+1g).

Ric(3+1g) = 0 equivalent to:

�gγ = 0,Ricij(
2+1h) = ∇ijγ +∇iγ∇jγ.

Connection Kij =< ∇e i e
0, e j >,Aij ,k =< ∇e i e

j , ek > of 2+1h
given by Connection of 3+1g and γ. 2nd equation expressible as
ODEs in K ,A! In geodesic frame ∇e0e i = 0,

e0Kij = K ∗ K + Rh
0ij0, e

0Aijk = K ∗ A + Rh
0ijk .

In 2+1 dim’s Rijkl = Ric ⊗ g + Wijkl . But Wijkl = 0.
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Wave-ODE system. Formal Asymptotics at singularity.

Our system reduces to:

�gγ = 0,

e0K = K ∗ K +∇2γ +∇γ∇γ,
e0A = K ∗ A +∇2γ +∇γ∇γ.

(3)

Formal asymptotics: γ ∼ α(t, θ)logr + B(t, θ) + O(r). Assuming
this for γ we have in principal frame for K :

K11 = β(t, θ)r−3/2 + O(r−1/2) + y(t, θ)r ε(t,θ),

K22 = δ(t, θ)r−3/2 + O(r−1/2),K12 = O(r1).
(4)

d1(α(t, θ)), d2(α(t, θ)) are explicit and it turns out:

trK (r = ρ) =
3

2
ρ−3/2 + O(ρ−1/2).
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Math: Energy estimates, Gauge choice, singular branch.

Ricatti equation for K22 sees the collapsing direction ∂θ. Can well
blow up before r = 0 for gauge reasons. Forced to solve the above
by iteration.

Forced to use energy estimates to produce real solution.
Asymptotically CMC of r is crucial. Danger in differentiated
Ricatti: ∂ = ∂t , ∂θ.

e0∂K11 + 2K11∂K11 + 2K12∂K12 = ∂[∇2γ +∇γ∇γ]

admits free branch like r ε(t,θ) (consistent with undifferentiated
Ricatti). But

e0∂K22 + 2K22∂K22 + 2K12∂K12 = ∂[∇2γ +∇γ∇γ]

admits free branch r−3+ε(t,θ). If this is present then no possibility
of deriving any estimates for the system. (In the iteration
estimates would be getting exponentially worse at each step).
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