Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O

Modeling Compact Mergers in the Era of Regular Gravitational-Wave Observations

Frank Ohme

Computational Challenges in Gravitational Wave Astronomy

January 28, 2019

LIGO-G1900140-v2

Frank Ohme Modeling compact mergers

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion
•0	0000	00000	00	000	000000	0

A Catalog of Compact Binary Mergers

Data confronted with $> 10^7$ theoretically modeled signals

Numerical Relativity

Frank Ohme

Modeling compact mergers

Motivation 00	Modeling techniques ○●○○	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion O
Effective One	-Body					

A (somewhat simplified) sketch of EOBNR

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion	
00	0000	00000	00	000	000000	0	
Phenomenological models							

A (somewhat simplified) sketch of Phenomenological models

Motivation 00	Modeling techniques ○○○●	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O			
Comparison									
Comple	Complexity, Efficiency								

Numerical Relativity

- Einstein's Equation
- Coupled PDEs
- Time integration

EOBNR

- Hamiltonian eq.
- ODEs
- Time integration

Phenomenological

- Fitting formulae
- Explicit closed form
- Frequency domain

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion
00	0000	0000	00	000	000000	0

PhenomA

The beginning: non-spinning signals

Analytical form

$$\begin{split} h(f) &= \sum_{\ell,m} \ ^{-2}Y_{\ell m} \, h_{\ell m} \approx \ ^{-2}Y_{22} \, h_{22} = A(f) \ e^{i\Psi(f)} \\ \Psi(f) &= 2\pi f t_0 + \varphi_0 + \sum_{k=0}^7 \psi_k f^{(k-5)/3} \\ A(f) &= \mathcal{C} \begin{cases} (f/f_m)^{-7/6} & \text{if } f < f_m \\ (f/f_m)^{-2/3} & \text{if } f_m \leq f \leq f_{\text{RD}} \\ \omega \mathcal{L}(f) & \text{if } f_{\text{RD}} \leq f < f_{\text{cut}} \end{cases} \end{split}$$

Restrictions

- no spins
- dominant harmonic
- no eccentricity
- 7 parameter space points (mass ratio ≤ 4)

Numerical Kelativity

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion
00	0000	0000	00	000	000000	0
Phenom B+0	<u> </u>					

Spinning, non-precessing signals

Additions

- Dominant spin effect: $\chi_{\text{eff}} = \frac{m_1 \chi_1 + m_2 \chi_2}{m_1 + m_2}$
- Extreme mass-ratio limit (PhenB)

[Ajith..FO+ 0909.2867]

- Fourier-domain hybridization (PhenC) [Santamaría, FO+ 1005.3306]
- Smooth (tanh) transitions

Restrictions

- no precession
- odominant harmonic
- no eccentricity
- 24 NR signals (mass ratio \leq 4, $|\chi_{\text{eff}}| \leq 0.85$)

Autorical Acciacioney

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O
PhenomP						

Precessing signals

[Hannam..FO+ 1308.3271]

Separation of complex dynamics

Precession dominated by χ_p (larger in-plane spin component)

[Schmidt, FO, Hannam 1408.1810]

• Full signal = non-precessing × rotation

$$h_{\ell m}^{
m prec} = e^{-imlpha} \sum_{|m'| \leq \ell} e^{im'\epsilon} d_{m'm}^2(-\iota) h_{\ell m'}^{
m np}$$

[Schmidt, Hannam, Husa 1207.3088]

Restrictions

- dominant spin effects
- odominant harmonic
- no eccentricity
- single-spin precession, not NR-tuned

Observations & <u></u> Numerical Relativity

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O	
Accuracy Concerns							

- signals missed: $(\max O)^3$
- biased characterization at SNR 10: 1 - O > 0.5%

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O
Accuracy Cor	ncerns					

- signals missed: $(\max O)^3$
- biased characterization at SNR 10: 1 O > 0.5%

Motivati	ion Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion		
00	0000	00000	00	000	000000	0		
Discourse Disp. 2								

Overhaul of the fit

Region I Region I Region II Region II Region II Region II Region II Inspiral Intermediate Mergor-Ringdown

Novelties

- EOB hybrids, PN-inspired fit
- two spins in inspiral and ringdown
- *C*¹ continuous, step transitions
- vastly improved fit with 17 independent phenomenological parameters

Restrictions

- precession as before
- dominant harmonic
- no eccentricity
- 19 NR signals (mass ratio \leq 18, $|\chi_{eff}| \leq 0.85/0.98$)

[Husa..FO+ 1508.07250, Khan..FO+ 1508.07253]

Motivation 00	Modeling techniques	Phenomenological models	Current Status ●○	Latest developments	Interpolation 000000	Conclusion O	
Current models							

Main models used in most recent GW observations

Notes (some details later in this talk)

- More flavors, including optimized versions, of those models are in use
- Alternatives exist that avoid construction of analytical model altogether

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion
00	0000	00000	00	000	000000	0

Impact of model differences

Observation + model \rightarrow posterior distribution

Note: Sources have been in the easiest-to-model part of the parameter space.

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O
PhenomHM						

Adding higher multipoles

 $A_{\ell m}(f) = \beta_{\ell m}(f) A_{22}(f_{22})$

 $\Psi_{\ell m}(f) = \Psi_{22}(f_{22}) + \Delta_{\ell m}$

 f_{22} : linear transition from (2f/m) to $f_{\ell m}^{\text{RD}}$

- no additional NR tuning
- no mode mixing in ringdown

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O
PhenomPv3						

Improved precession

[Khan..FO+ 1809.10113]

Analytical solution for precession

- Analytical solution of orbit-averaged spin dynamics [Kesden+ 1411.0674]
- Multiple scale analysis using $T_{\text{prec}} \ll T_{rr}$ \rightarrow closed-form evolution of precession angles [Chatziioannou+ 1606.03117, 1703.03967]

Restrictions

- no eccentricity
- inspiral precession, no NR tuning

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion O
What's next?						
Ongoin	ig developmen	its				

Precessing higher modes

- Combine analytical precession with higher multipole mapping [Khan+]
- Tune precession angles to NR [Hamilton+]

Eccentric model

- 70 eccentric NR waveforms eccentricities ≤ 0.5, mass ratio ≤ 4, non-precessing
- PN+NR hybrids

[Ramos Buades, Husa, Haney]]

PhenomX

[Pratten, Husa+]

- Automated NR processing
- Test particle Kerr dynamics
- Higher-multipole hybridization and tuning

[Jiménez-Forteza+, 1611.00332]

Frank Ohme

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion
00	0000	00000	00	000	00000	0
Complexity a	nd Efficiency again					

Numerical Relativity

Effective-One-Body

Phenomenological

complexity

Effective-One-Body

Phenomenological

complexity

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion O	
Basic approa	ch						
C	. 11						

Surrogate models

Motivation	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion
00	0000	00000	00	000	00000	0

Basis construction

Example: Singular Value Decomposition

$$A = U \Sigma V^T$$

- A : gravitational-wave amplitudes or phases
- V : singular (basis) vectors
- Σ : diagonal matrix of singular values
- $U\Sigma$: projection coefficients

Application

Successfully implemented in combination with tensor spline interpolation in SEOBNR ROMv2/4

[Pürrer 1512.02248]

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion O
Enhancing the	waveforms					

Enhancing models on the way

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion O
Enhancing the	waveforms					

Enhancing models on the way

Proof of principle: PhenomB \rightarrow PhenomD

[Setyawati, FO, Khan, 1810.07060]

- Enriching of approximate model through few(er) accurate models
- No manual re-tuning
- Idea first sketched by [Cannon+ 1211.7095]

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation	Conclusion O
Greedy basis						

Optimal placement: greedy basis

Greedy strategy

- Project test signals onto basis
- Add signal with highest deviation from its basis projection to the basis
- Repeat until projection error sufficient [Field+ 1101.3765]

Variants for NR

- Use PN as proxy to find greedy points in parameter space [Blackman+ 1701.00550, Varma+ 1812.07865]
- Use Gaussian Process Regression to estimate error [Doctor+ 1706.05408]

Motivation 00	Modeling techniques	Phenomenological models	Current Status	Latest developments	Interpolation 000000	Conclusion •
Conclu	sion					

- So far, waveform models for compact binaries lived up to the challenge of gravitational-wave astronomy thanks to a combinations of many techniques (NR, analytical information, reduced-order interpolation)
- More frequent observations → efficient models (simplified, hierarchical, optimized)
- Observations with higher signal-to-noise \rightarrow accurate, complex models
- Need ways to efficiently incorporate new NR data
- How can we gain confidence in a surprising measurement? (Keep independent, alternative modeling approaches.)
- Promising early developments regarding tidal effects, eccentricity, alternative theories

