Modeling Compact Mergers in the Era of Regular Gravitational-Wave Observations

Frank Ohme

Computational Challenges in Gravitational Wave Astronomy

日(ดด

January 28, 2019
LIGO-G1900140-v2

Binary Merger Observations \&

A Catalog of Compact Binary Mergers

Data confronted with $>10^{7}$ theoretically modeled signals
Binary Merger Observations \&

The Analysis Challenge

The Analysis Challenge

onservations \&
Numerical Relativity

Various techniques [FO 1111.3737]

Various effects

non-spinning

non-precessing

precessing

A (somewhat simplified) sketch of EOBNR

A (somewhat simplified) sketch of Phenomenological models

Complexity, Efficiency

Numerical Relativity

- Einstein's Equation
- Coupled PDEs
- Time integration

EOBNR

- Hamiltonian eq.
- ODEs
- Time integration

Phenomenological

- Fitting formulae
- Explicit closed form
- Frequency domain

PhenomA

The beginning: non-spinning signals

Analytical form

$$
\begin{aligned}
& h(f)=\sum_{\ell, m}{ }^{-2} Y_{\ell m} h_{\ell m} \approx{ }^{-2} Y_{22} h_{22}=A(f) e^{i \Psi(f)} \\
& \Psi(f)=2 \pi f t_{0}+\varphi_{0}+\sum_{k=0}^{7} \psi_{k} f^{(k-5) / 3} \\
& A(f)=\mathcal{C} \begin{cases}\left(f / f_{m}\right)^{-7 / 6} & \text { if } f<f_{m} \\
\left(f / f_{m}\right)^{-2 / 3} & \text { if } f_{m} \leq f \leq f_{\mathrm{RD}} \\
\omega \mathcal{L}(f) & \text { if } f_{\mathrm{RD}} \leq f<f_{\mathrm{cut}}\end{cases}
\end{aligned}
$$

Restrictions

- no spins
- dominant harmonic
- no eccentricity
- 7 parameter space points (mass ratio ≤ 4)

Spinning, non-precessing signals

non-spinning

aligned

anti-aligned

Additions

- Dominant spin effect: $\chi_{\text {eff }}=\frac{m_{1} \chi_{1}+m_{2} \chi_{2}}{m_{1}+m_{2}}$
- Extreme mass-ratio limit (PhenB)
[Ajith..FO+ 0909.2867]
- Fourier-domain hybridization (PhenC)
[Santamaría, FO+ 1005.3306]
- Smooth (tanh) transitions

Restrictions

- no precession
- dominant harmonic
- no eccentricity
- 24 NR signals (mass ratio ≤ 4, $\left|\chi_{\text {efff }}\right| \leq 0.85$)

Precessing signals

Separation of complex dynamics

- Precession dominated by χ_{p} (larger in-plane spin component)
[Schmidt, FO, Hannam 1408.1810]
- Full signal $=$ non-precessing \times rotation

$$
h_{\ell m}^{\mathrm{prec}}=e^{-i m \alpha} \sum_{\left|m^{\prime}\right| \leq \ell} e^{i m^{\prime} \epsilon} d_{m^{\prime} m}^{2}(-\iota) h_{\ell m^{\prime}}^{\mathrm{np}}
$$

[Schmidt, Hannam, Husa 1207.3088]

Restrictions

- dominant spin effects
- dominant harmonic
- no eccentricity
- single-spin precession, not NR-tuned

Signal geometry

$$
\begin{aligned}
\left\langle h_{1} \mid h_{2}\right\rangle & =4 \operatorname{Re} \int \frac{h_{1}(f) h_{2}^{*}(f)}{S_{n}(f)} d f \\
O & =\frac{\left\langle h_{1} \mid h_{2}\right\rangle}{\sqrt{\left\langle h_{1} \mid h_{1}\right\rangle\left\langle h_{2} \mid h_{2}\right\rangle}}
\end{aligned}
$$

- signals missed: $(\max O)^{3}$
- biased characterization at SNR 10:

$$
1-\mathcal{O}>0.5 \%
$$

Signal geometry

$$
\begin{aligned}
\left\langle h_{1} \mid h_{2}\right\rangle & =4 \operatorname{Re} \int \frac{h_{1}(f) h_{2}^{*}(f)}{S_{n}(f)} d f \\
O & =\frac{\left\langle h_{1} \mid h_{2}\right\rangle}{\sqrt{\left\langle h_{1} \mid h_{1}\right\rangle\left\langle h_{2} \mid h_{2}\right\rangle}}
\end{aligned}
$$

- signals missed: $(\max O)^{3}$
- biased characterization at SNR 10:

$$
1-\mathcal{O}>0.5 \%
$$

Results
[FO+ 1107.0996]

origin	$\mathbf{1 - O}$
Hybridization	$<0.02 \%$
NR	$<0.1 \%$
Interpolation	$\lesssim 3 \%$
PN inspiral	$\sim \mathcal{O}(10 \%)$

Overhaul of the fit

Novelties

- EOB hybrids, PN-inspired fit
- two spins in inspiral and ringdown
- C^{1} continuous, step transitions
- vastly improved fit with 17 independent phenomenological parameters

- precession as before
- dominant harmonic
- no eccentricity
- 19 NR signals (mass ratio ≤ 18, $\left.\left|\chi_{\text {eff }}\right| \leq 0.85 / 0.98\right)$

Main models used in most recent GW observations

Notes (some details later in this talk)

- More flavors, including optimized versions, of those models are in use
- Alternatives exist that avoid construction of analytical model altogether

Observation + model \rightarrow posterior distribution

GWTC-1

(Jensen-Shannon divergence)

Note: Sources have been in the easiest-to-model part of the parameter space.

Adding higher multipoles

A simple mapping

$$
h(f)=\sum_{\ell m}{ }^{-2} Y_{\ell m} h_{\ell m}=\sum_{\ell m}{ }^{-2} Y_{\ell m} A_{\ell m} e^{i \Psi_{\ell m}}
$$

$$
A_{\ell m}(f)=\beta_{\ell m}(f) A_{22}\left(f_{22}\right)
$$

$$
\Psi_{\ell m}(f)=\Psi_{22}\left(f_{22}\right)+\Delta_{\ell m}
$$

f_{22} : linear transition from $(2 f / m)$ to $f_{\ell m}^{\mathrm{RD}}$

Restrictions

- no eccentricity
- no additional NR tuning
- no mode mixing in ringdown

Improved precession

Analytical solution for precession

- Analytical solution of orbit-averaged spin dynamics [Kesden+ 1411.0674]
- Multiple scale analysis using $T_{\text {proc }} \ll T_{r r}$ \rightarrow closed-form evolution of precession angles [Chatziioannou+ 1606.03117, 1703.03967]

Restrictions

- no eccentricity
- inspiral precession, no NR tuning

Ongoing developments

Precessing higher modes

- Combine analytical precession with higher multipole mapping
[Khan+]
- Tune precession angles to NR
[Hamilton+]

Eccentric model

- 70 eccentric NR waveforms eccentricities ≤ 0.5, mass ratio ≤ 4, non-precessing
- PN+NR hybrids
[Ramos Buades, Husa, Haney]]

PhenomX

- Automated NR processing
- Test particle Kerr dynamics
- Higher-multipole hybridization and tuning

[Jiménez-Forteza+, 1611.00332]

Numerical Relativity

Effective-One-Body

Phenomenological

complexity

Phenomenological
complexity
efficiency

Numerical Relativity

Surrogate models

Interpolation

$$
A(\boldsymbol{\theta}) \approx \sum_{k=1}^{n} \tilde{c}_{k}(\boldsymbol{\theta}) \hat{A}_{k}
$$

Binary Merger Observations \& Numerical Relativity

Basis construction

Example: Singular Value Decomposition

$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$

- A : gravitational-wave amplitudes or phases
- V : singular (basis) vectors
- Σ : diagonal matrix of singular values
- $U \Sigma$: projection coefficients

Application

Successfully implemented in combination with tensor spline interpolation in SEOBNR_ROMv2 / 4
[Pürrer 1512.02248]

Enhancing models on the way

Interpolation

$$
A(\boldsymbol{\theta}) \approx \sum_{k=1}^{n} \tilde{c}_{k}(\boldsymbol{\theta}) \hat{A}_{k}
$$

Binary Merger Observations \& Numerical Relativity

Enhancing models on the way

Basis representation

Interpolation

$$
A(\boldsymbol{\theta}) \approx \sum_{k=1}^{n} \tilde{c}_{k}(\boldsymbol{\theta}) \hat{A}_{k}
$$

Binary Merger Observations \& Numerical Relativity

Approximate basis

Enriched model

- Enriching of approximate model through few(er) accurate models
- No manual re-tuning
- Idea first sketched by [Cannon+ 1211.7095]

Optimal placement: greedy basis

Greedy strategy

(1) Project test signals onto basis
(2) Add signal with highest deviation from its basis projection to the basis
(3) Repeat until projection error sufficient
[Field+ 1101.3765]

Variants for NR

- Use PN as proxy to find greedy points in parameter space
[Blackman+ 1701.00550, Varma+ 1812.07865]
- Use Gaussian Process Regression to estimate error
[Doctor+ 1706.05408]

Conclusion

- So far, waveform models for compact binaries lived up to the challenge of gravitational-wave astronomy thanks to a combinations of many techniques (NR, analytical information, reduced-order interpolation)
- More frequent observations \rightarrow efficient models (simplified, hierarchical, optimized)
- Observations with higher signal-to-noise \rightarrow accurate, complex models
- Need ways to efficiently incorporate new NR data
- How can we gain confidence in a surprising measurement?
(Keep independent, alternative modeling approaches.)
- Promising early developments regarding tidal effects, eccentricity, alternative theories

