

Es. from Bayes' Theorem: a visual introduction for beginners

Es. from Bayes' Theorem: a visual introduction for beginners

HUW IS PE COMPUTED? PEANUT BUTTER CHOLO LATE CHIP COOKIES CHOCOLATE CHIP COOKIES Sid В A osterior R(CC COOKIE BOX A)P (BOX A) P(BOX A CC COOKIE) = P(CC COOKIE) vidence

Es. from Bayes' Theorem: a visual introduction for beginners

HOW IS PE COMPUTED? PEANUT BUTTER CHOLO LATE CHIP COOKIES CHOCOLATE CHIP COOKIES sid В А osterior R(CC COOKIE) BOX A) P(BOX A) P(BOX A CC COOKIE) = P(CC COOKIE) P(BOX cc cookie) vidence Box Es. from Bayes' Theorem: ß a visual introduction for beginners

COMPUTATIONAL CHALLENGE Assuming <u>GAUSSIAN NOISE</u>: 0 mean; known variance $-\delta f \sum_{i=0}^{N} \frac{2 | \tilde{d}(f_i) - \tilde{h}(\bar{\theta}, f_i)}{S_n(f_i)}$ $p(\bar{d} | \bar{\theta}, H) \propto \exp \left[-\frac{1}{2} \right]$ Evaluated $\sim 10^7$ times \overline{d} : data Mhat defines $\bar{\theta}$: parameters $f_{max} - f_{min}$ $H_{\rm s}$: model assuming signal *h* : GW waveform S_n : Power spectral density : frequency : in f-domain

HOW CAN WE OVERCOME THIS

PROBLEM?

CONTEXT

DETECTION PIPELINE

K. Cannon et al. 2012

MBTA T. Adams et al. 2016

PE for LISA with 2 bands E. K. Porter et al. 2014 MAIN PE ACCELERATION TECHNIQUE

REDUCED ORDER QUADRATURE

$$L \propto \exp\left\{4\delta f \sum_{i=0}^{M} c_i(\bar{\theta}) \bar{w}_i\right\}$$
$$\frac{M}{2} \tilde{d}(f_i) B^*$$

$$\bar{w}_i = 4\delta f \sum_{k=0}^{M} \frac{d(f_k)B_i^*(f_k)}{S_n(f_k)}$$

Very large speed up factors (~300 from fo ~20 Hz)

ROQ

e.g.: Canizares et al. 2013; Canizares et al. 2015;

Smith et al. 2016

EFECTIVE SAMPING $\tilde{h}(f)$ Because Vere is a function t(f) more and more samples are needed at lower frequency

POSSIBLE IMPROVEMENTS ► $N_{fix} \propto (f_{max} - f_0) \mathcal{M}^{-5/3} f_0^{-8/3}$ $(\tau \sim t_{to merger}(f_0))$ $N_{fix} = 5 f_{max}$ $\sim \overline{3} f_0$ $\sim 5 \left(8\pi f\right)^{-8/3} \mathcal{M}^{-5/3}$ **f** J_{max} $= \underbrace{t_{to merger}(f)df} N_{min} \propto \mathcal{M}^{-5/3}(f_{max}^{5/3} - f_0^{-5/3})$

ACCURACY REQUIRED FOR PE

 $\log(L)$ $\delta \log \left(L_{MB} \right) \ll \sigma_{\log L}$ σ

WHAT TO DO TO REACH THE

REQUIRED ACCURACY?

ACCURACY REQUIRED FOR PE

 $\log(L)$ $\delta \log (L_{MB}) \ll \sigma$ like N_{param} $\frac{\left\langle h - h_0 \right| h - h_0 \right\rangle}{\left\langle h_0 \right| h_0 \right\rangle} \ll \frac{\sqrt{2N_{param}}}{\sqrt{NR^2}} \sim 10^{-3}$ product inner $\langle a | b \rangle \sim 2\delta f \sum \frac{\tilde{a}^*(f_k)\tilde{b}(f_k) + \tilde{b}^*(f_k)\tilde{a}(f_k)}{S(f_k)}$ Moderately loud signals $SNR \sim \text{few} \times 10$ $S_n(f_k)$ k > 0

$\mathbf{f}_{\min}[Hz]$	$\delta \mathbf{f}_0[Hz]$	$\mathbf{G}_{ ext{PE}}^{ ext{TF2}}$	$\mathbf{G}_{ ext{template}}^{ ext{TF2}}$	${ m N_{fix}/N_{MB}}$	${ m N_{fix}/N_{min}}$
60	1/16	1.09 ± 0.03	1.31 ± 0.01	3.76	55.4
40	1/64	1.56 ± 0.05	3.8 ± 0.1	12.82	83.8
30	1/128	1.91 ± 0.07	5.5 ± 0.1	23.40	112.2
20	1/300	2.72 ± 0.14	8.8 ± 0.2	61.01	169.1

CONCLUSION AND REMARKS

CONCLUSIONS AND REMARKS

MB-INT

No set up costs

Flexible: can be easily applied to waveforms with higher dimensionality parameter Compared to ROQ:

 Higher speed up factors
 Requires high computational and memory set up costs
 ROQ + MB-INT could accelerate

and save memory for initial set up

space

General validity of the method (also outside the GW field)

EXTRA SLIDES

Given Signals:
NEWTONIAN ORDER
NEWTONIAN ORDER
NEWTONIAN ORDER
NEWTONIAN ORDER
NEWTONIAN ORDER
NEWTONIAN ORDER
STATIONARY PHASE APPPROXIMATION
for
$$h(t) = A(t)\cos(\phi(t))$$

 $\tilde{h}(f) = A_f(f)\exp(i\psi(f))$
 $\tilde{h}(f) = A_f(f)\exp(i\psi(f))$
 $\tilde{h}(f) = \frac{1}{2}A_t(t)\sqrt{\frac{dt}{df}}\exp(i\psi(f))$
 $\Phi(t_c) - \Phi(t) \propto M^{-5/3}f^{-5/3}$
 $A_f(f) \propto M^{5/6}f^{-7/6}$
with $\psi(f) = 2\pi ft_c - \Phi(t) - \pi/4$

time domain

time domain

~ : Fourier Tranform (FT)

time domain

