Black Hole Formation in Randall-Sundrum II Braneworlds

Matt Choptuik
Dept. of Physics & Astronomy, UBC

Computational Challenges in Gravitational Wave Astronomy

IPAM, UCLA
January 28, 2019

Based on Daoyan Wang’s PhD Thesis
arxiv:1505.00093
and
arxiv:1604.04832 (DW & MWC, PRL 2016)
Outline

• Motivation & overview of Randall-Sundrum II braneworld
• Overview of current work
• Challenges & solutions
• Implementation
• Results
• Summary & speculation
Randall-Sundrum II braneworld (RS II)
(Randall & Sundrum 1999)

- Observable universe could be 3+1 dimensional “brane” (membrane) embedded in a higher dimensional “bulk” spacetime
- RS II is a 4+1 dimensional model containing single brane on which all matter is confined; only gravity propagates into bulk
- Bulk has negative cosmological constant; brane has tension, so gravitates; universe has Z_2 symmetry (“mirror symmetry”) about brane
Citations
Oct 20 2016: 5778
Jan 23 2019: 6342
Why the continuing interest in RS II?

- Extra spatial dimensions are a fact of life in string theories (e.g.) and perhaps in our universe.

- Brane models such as RS II provide alternative to compactification (Kaluza-Klein) for hiding extra dimensions from our normal view.

- RS II particularly notable in that it recovers GR on the brane at low energies even though the extra dimension is infinite.

- Also provides a framework for the celebrated AdS/CFT correspondence.

- Much more, including ...
Hollywood buy-in
Randall-Sundrum braneworld II (RS II)

- Governing equations in bulk: Vacuum 5D Einstein’s equations

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} = k_d T_{\mu\nu} = 0 \]

- Governing equations on brane: field equations for matter, same as usual 4D case

- Matter & tension on brane couple to bulk through Israel junction conditions
Randall-Sundrum braneworld II (RS II)

- At low energies can show that we recover Einstein equations on the brane
- At high energies (strong field), situation is not clear
Key questions

• What is the nature of black objects in the scenario?
 - If model is to be consistent with reality as we currently understand it, there must be solutions that describe stationary black holes on the brane

• What is the end point of gravitational collapse of matter on the brane?
One vacuum solution:

\[ds^2 = \frac{\ell^2}{z^2} \left(h_{ab} dx^a dx^b + dz^2 \right) \quad \text{where} \quad z \geq \ell \]

\(h_{ab} \) is the metric of a Ricci-flat soln of Einstein’s eqns in 4D, \(x^a, a=0,1,2,3 \) are the brane coordinates, \(z \) is the coordinate of the extra dimension and \(\ell \) is the AdS length scale.
Vacuum solutions

- When h_{ab} is the Minkowski metric, the above spacetime is a part of a Poincare patch of an anti-de Sitter (AdS) spacetime with AdS length, l

- When h_{ab} is a 4-d black hole metric, the spacetime describes a black string
Black string
Vacuum solutions

- When h_{ab} is the Minkowski metric, the above spacetime is a part of a Poincaré patch of an anti-de Sitter (AdS) spacetime with AdS length, l

- When h_{ab} is a 4-d black hole metric, the spacetime describes a black string
 - However, these solutions are unstable via the Gregory-Laflamme instability (Gregory 2000)
 - Don’t expect to form from collapse processes
Black string instability (4D)
(Lehner & Pretorius 2010)
• End point of gravitational collapse is “black cigar” (i.e. type of black hole in 5D)
 - conjectured that such solutions exist, are stable and are unique
• There followed a long period of conflicting studies, both numerical (N) and closed form/analytical (A)

- N: Time symmetric initial data with apparent horizons (AH) (Shiromizu-Shibata, 2000)
- A: Large holes don’t exist (Tanaka 2002; Emparan et al 2002)
 • Argued via AdS/CFT that any large black hole formed on the brane would quickly radiate into the extra dimension
- N: Small black holes exist (Kudoh et al 2003)
- N: In 6D black holes can be large (Kudoh 2004)
- A: Arguments for existence based on fact that problem is strongly coupled (Fitzpatrick et al 2006, Gregory et al 2008)
- N: Time symmetric initial data with large AH (Tanahashi & Tanaka, 2008)
- N: No solutions, large or small (Yoshino 2008, Kleihaus et al 2011)
Breakthrough

- A few years ago, two different groups (Figueras and Wiseman (FW) 2011, Abdolrahimi et al 2012) numerically constructed black hole solutions with a range of sizes; all extend into the bulk; essentially realizes proposal of Chamblin et al

- Construction involved solution of elliptic PDEs resulting from static ansatz, and perturbation of an AdS$_5$-CFT$_4$ black hole solution that itself was found numerically

- (Non-linear) stability of solutions not immediately apparent

- Relation of solutions to gravitational collapse also not clear
Current work

- Direct assault on the problem using numerical relativity

- Study collapse of simple matter content on the brane (massless scalar field) to see what happens in strong field regime

- To keep problem computationally tractable, impose spherical symmetry on the brane; problem then becomes axisymmetric about z axis (extra dimension)

- Adopt cylindrical coordinates: computational problem is solution of PDEs in (t,r,z)

- First study of fully coupled, nonlinear dynamics in a braneworld scenario
Challenges & solutions (partial list)

- **Stable evolution**
 - Generalized harmonic approach to Einstein’s equations
 - Need modification for use with cylindrical coordinates

- **Regularity**
 - Possible regularity problems in vicinity of axis
 - Treated using general approach that focuses on regularity of functions, rather than equations

- **Brane provides delta-function (distributional) source**
 - Both brane tension and matter content (scalar field) contribute
 - Use Israel junction conditions: provide certain boundary conditions on metric components
 - Use coordinate freedom to supply some others
Bulk: $(d)G_{\mu\nu} + \Lambda g_{\mu\nu} = 0$

Brane ($z = \ell$): Israel's junction condition

$\nabla^a \nabla_a \Phi = 0$
Challenges & solutions (cont.)

• AdS boundary conditions with generalized harmonic
 - Perform conformal transformation to flat background; can then use experience gleaned from asymptotically flat 3+1 studies (black hole collisions, Pretorius 2005 e.g.)

• Constraint damping
 - Need to control constraints associated with gauge functions
 - Regular damping works in interior
 - Problems arise near brane; treat by imposing constraints exactly on brane
Challenges & solutions (cont.)

• Black hole formation
 – Want to evolve as long as possible after horizon formation in attempt to identify static end states (assuming they exist)
 – Use apparent horizon (AH) as surrogate for event horizon and implement black hole excision once AH has been detected
 – Note: AH on brane does not necessarily coincide with intersection of AH in bulk with brane
Black hole excision
Implementation

- Spherical symmetry on brane, problem axisymmetric about \(z \) axis
- Use cylindrical coordinates: \((t,r,z)\)
- Use generalized harmonic approach, modified for use with curvilinear coordinates, constraint damping
- Apply conformal transformation, yielding flat background metric
- Choose regularized variables for both metric and gauge source functions
Implementation

- Discretize using second order finite differences (equations kept in second order form), use Kreiss-Oliger dissipation, Newton-Gauss-Seidel iteration for update

- Use compactified spatial coordinates so that spatial infinities are mapped to finite coordinate locations and exact (Dirichlet) conditions can be imposed

- Gauge choice
 - Depending on type of evolution (size of black hole that forms), use
 - damped wave gauge
 - lapse driver (Pretorius 2006)
 - harmonic \((h_t = h_r = h_z = 0)\)
 - Always blend to lapse driver for long time evolution once apparent horizon is detected
Implementation

- Apparent horizon detection and excision
 - Choose coordinates so that AH is smooth across brane
 - Axisymmetry: locate AH by solving certain ODE with shooting technique
 - Numerical irregularity serious issue at and near excision surface; best treatment uses one-sided dissipation operators developed by Calabrese et al 2004
 - Approach to AH location effectively precludes parallelization and adaptive mesh refinement: unigrid, uniprocessor operation

- Apparent horizon analysis
 - Study time development of AH in attempt to identify stationary states
 - Minimize coordinate effects by embedding geometry in flat background
Initial data

- Specify scalar field as time-symmetric Gaussian pulse
 \[\Phi_0 \equiv \Phi(0, r) = A \exp((r - 1)^2 / .01) \]

 use \(A \) as control parameter

- Then solve Hamiltonian constraint using special two-function approach to fix metric variables
Diagnostic quantities (animations)

- Kretschmann scalar

\[K(t, r, z) \equiv R^\alpha_{\beta\gamma\delta} R_{\alpha\beta\gamma\delta} \]

- Lapse function

\[\alpha(t, r, z) \]

- Scalar field

\[\Phi(t, r) \]
Weak field evolution \(A = 0.03 \)

\[
\Phi(t, r) = K(t, r, z)
\]
Strong field evolution $A = 0.16$

$\Phi(t, r)$

$K(t, r, z)$
Strong field evolution: $\alpha(t, r, z)$
Evolution of apparent horizon
(non-compactified computational coordinates)
Evolution of AH

- Some evidence that configurations are settling into a stationary state, at least for some amount of coordinate time.

- Attempt to minimize coordinate effects (time dependence of spatial coordinates) by isometrically embedding AH curves into flat background:

\[ds^2 = \frac{\ell^2}{Z^2} \left(-dt^2 + d\bar{r}^2 + \bar{r}^2 d\bar{\Omega}^2 + d\bar{z}^2 \right) \]
AH evolution in computational and flat background coordinates
Indications of uniqueness of final states

- Call near-stationary late time configurations “apparently stationary states”

- Shown are such states from selected calculations using 5 distinct families of initial data

- Overlap among families suggests uniqueness of sequence of solutions (no hair)
AH geometry as function of size

- Define size of black hole

 \[r_a = \sqrt{\frac{A_{\text{brane}}}{4\pi}} \]

 and compute 5D proper circumference \(C_5 \)

- Comparison with Figueras-Wiseman data (computed from static ansatz) is very good

Here: \(\zeta \approx 2.71 \)
Figueras & Wiseman: \(\zeta \approx 2.8 \)
Summary

• Constructed code to solve the coupled Einstein massless-scalar equations in the context of the Randall-Sundrum II braneworld

• Successful implementation required solution of several novel problems arising from the peculiarities of the model

• Find evidence for a single-parameter family of stable, static black hole solutions (finite extension into the bulk) conveniently characterized by size on the brane

• Good agreement between solutions found here, and those computed previously from a static ansatz
Speculation

- Is Randall-Sundrum II still viable?

- Pardo et al, (2018) claim that model is *not* ruled out by GW170817

 - Leakage of graviton energy from brane to bulk is very inefficient (Randall & Sundrum (1999))

- Would be very interesting to, for example, simulate binary black hole (or neutron star) inspiral and coalescence and compare to 4D asymptotically flat case

- Would also be extremely challenging; 5D and several of the strategies adopted here won’t generalize easily (or at all) to the symmetry-free case

- Are there shortcuts for such testing?