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The next big thing could be a core-collapse supernova

 The last supernova seen by human eyes in the Milky 
Way was in 1604 (Kepler’s supernova). 

NASA/ESA/JHU/R.Sankrit & W.Blair

 The last supernova known  to have occurred in the Milky 
Way was ~ 300 years ago (Cassiopeia A). 

NASA/JPL-Caltech

ALMA (ESO/NAOJ/NRAO)/A. Angelich

 Last notable supernova in the vicinity of the Milky Way 
was in 1987 (SN 1987A) 
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Supernova Rates

 Approx. 1 supernova per day discovered

 Approx. 4 supernovae per year up to 20Mpc

 Approx. 1 2 SN per century (?) in Milky Way 

  80% of all supernovae are core          
collapse supernovae (CCSN)

J. Gill et al, in preparation, courtesy of M. Szczepańczyk.
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Before collapse: Iron core of size 1000   2000 km.
 After collapse: Neutron core of size   50 km.

Energy available:  ~ 3 × 1046 J ( ~ 0.15 MSUNc2).
 Energy observed:  ~ 3  - 10 × 1044 J. Neutrinos, GWs! 
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Gravitational waves from CCSN

Aspherical mass-energy energy outflow can be 
produced by:

 Magnetic stresses, 3D MHD instabilities.
 Rotating core collapse and bounce, 

pulsation of proto -neutron star, convection in proto -
neutron star, black hole formation.

 Turbulent convection, anisotropic neutrino emission, 
Standing Accretion Shock Instability  (SASI).

Moesta, TAPIR, California Institute of Technology
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Detector range: Initial LIGO



10Computational Challenges in Gravitational Wave Astronomy, Jan. 28 – Feb. 1, 2019

Detector range: Current and future detectors

 Center of Milky Way: 8.5 kpc.

 Large Magellanic Cloud: 50 kpc.

 Andromeda: 780 kpc.

 Virgo Cluster:  15  - 25 Mpc.

 2G detectors:  10x detector sensitivity.

 3G detectors:  100x detector sensitivity. 

It is only a matter of time until we detect the 
first GW signal from a CCSE. We should be 
prepared to confidently claim detection and 
extract as much information as possible.
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Maximizing detection chances

 In the first Advanced LIGO run (O1), about 40% of the data were collected in single 
interferometer (single-IFO) mode.

Courtesy of LIGO Scientific Collaboration. Detector characterization summary pages.
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Maximizing detection chances

 In the first Advanced LIGO run (O1), about 40% of the data were collected in single 
interferometer (single-IFO) mode.

 In the next few years we expect  20% of the data to be single-IFO data.

 We would like to be able to search data and claim a galactic CCSN detection even with 
only one instrument.

 However: GW searches of CCSN are (essentially) unmodelled. Single-IFO data are 
espected to have a large population of loud glitches, which affect detection confidence.

 Optical CCSN counterpart and clever analysis techniques may allow us to do so.
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Improving single-IFO detection

 We want to develop a method that integrates with current LIGO-Virgo search pipelines. We 
focus on LIGO because of the higher detector sensitivity.

 Perform a two interferometer strategy search, where data from a LIGO interferometer is an 
exact copy of the data from the second.  This allows for an immediate deployment in existing 
pipelines [coherent WaveBurst – cWB, S. Klimenko, et. al, Class. Quantum Grav. 25 (2008) 114029].

 Even for the most realistic emission models in the currently adopted pool for LIGO-Virgo 
searches, a galactic center detection is out of reach at 3σ c.l. with the current 
implementation of cWB.

 Explore the possibility of reducing the population of background glitches with machine 
learning. Goals: (1) 3σ c.l. detection; (2) Remove background events without decreasing 
efficiency curves.
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CCSN waveforms: Basic properties

Waveforms generally exhibit:

 Broadband and long duration signal

 Strong high-frequency component

 Non deterministic shape

Very complex problem!
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CCSN waveforms: Basic properties

Dimmelmeier waveform

Courtesy of http://mercury.pr.erau.edu/~quinonep/yakunin.html

Yakunin waveform
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CCSN waveforms in real data
Obtained with CWB pipeline. Courtesy of LSC/Virgo.
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cWB pipeline
 Wavelet-based burst-detection method that combines all data streams into one coherent 

statistic [S. Klimenko et. al, Class. Quantum Grav. 25 (2008) 114029].

 Detection is based on the maximum likelihood ratio statistic which represents the total 
signal-to-noise ratio of the GW signal detected in the network.

 It allows waveform reconstruction and parameter extraction.

Courtesy of M. Szczepanczyk
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Implementation

We use cWB with two identical LIGO interferometers.

Background triggers and CCSN simulation triggers in real LIGO-Virgo data.

Two days of background data (second observing run).

 Inject different waveform models (Dimmelmeier, Yakunin,…)  at specific 
galactic distances (*)

Rather than using waveforms and/or scalograms (time consuming) we use 
only cWB extracted parameters.

(*) From the CCSN optical counterpart we should know distance and localization.
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 cWB ranking statistics (effectively SNR).
 Number of wavelet time-frequency pixels composing the events.
 Energy-weighted duration estimated in time-frequency domain.
 Difference between event stop and start.
 Central frequency of the event computed from the reconstructed waveform.
 Energy-weighted central frequency estimated in time-frequency domain.
 Minimum frequency associated to the time-frequency map pixels.
 Maximum frequency associated to the time-frequency map pixels.
 Energy-weighted bandwidth (frequency resolution) estimated in time-frequency domain.
 Difference between high and low bandwidth values.
 Norm Factor or ellipticity.

cWB parameters
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Injections

Waveforms:
 Mueller-2012: arXiv:1210.6984 [astro-ph.SR].
 Yakunin-2015: arXiv:1505.05824 [astro-ph.HE].
 Ott-2013: arXiv:1210.6674 [astro-ph.HE].
 Scheidegger-2010: arXiv:1001.1570 [astro-ph.HE].
 Dimmelmeier-2008: arXiv:0806.4953 [astro-ph].

Distances:
 1.0 kpc, 1.78 kpc, 3.16 kpc, 4.22 kpc, 5.62 kpc.

Number of injections:
 From  few hundreds to  one thousand each.
 Comparable number of background triggers.
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Example:

 All waveform models combined.
 Distance: 4.22 kpc

M. Cavaglia et al, in preparation.
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Background reduction

We use a machine learning (ML) approach for background reduction.

We want to apply it to the cWB output. No fancy new method. Easily 
deployable.

Dataset is numerical (not images). No need for deep learning, convolutional 
neural networks,… Maybe in the future, for more refined results.

Genetic Programming.

Method can be straightforwardly extended to include information from 
auxiliary channels or to the multi-interferometer case.
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Brief introduction to Machine Learning

Courtesy of K. Staats.

When the dimensionality and/or volume of data is too great for humans, we need
  computer algorithms to help us discover and understand the data trends.
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Training vs. testing vs. real world

Courtesy of K. Staats.
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Genetic Programming

 Idea dates back to Alan Turing. Developed by John Koza et al. in the 1980s.

 A supervised, evolutionary algorithm.

 Uses random mutation, selection, a fitness function, and multiple generations of 
evolution to resolve a user -defined task.

 Produces human-readable correlations between features (variables) in datasets.

 Can perform classification and regression.

 Applications: Predictive modeling, data mining, financial modeling, image 
processing,...
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 Generate an initial, stochastic population of individuals.

 Evolve the individuals:
 Evaluate each individual in the current population against the dataset and evaluate its fitness.
 Randomly select a number of individuals and compare their fitness scores.
 Apply  genetic operators to the leading individual (reproduction, mutation, crossover).

 Evaluate all individuals in each new generation.

 Repeat until the user-defined termination criteria are met.

In GP, each individual is a program. Generations are composed of a population 
of individual programs. Each program is a mathematical function that when 

executed against the given data, produces a value.

Basics of evolutionary algorithm
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Genetic operators

M. Cavaglia, K. Staats and T. Gill, Commun. Comput. Phys., 25 (2019), 963-987.
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Our problem

For our analysis we implement the “Karoo GP” code
 (K. Staats: https://github.com/kstaats/karoo_gp).

Courtesy of K. Staats. 

We run the code multiple times 
for better statistics.

https://github.com/kstaats/karoo_gp
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Machine learning lingo

Credit: wikipediaCondition Positive  (P): the number of real positive cases in the data (signals)
 Condition Negative (N): the number of real negative cases in the data (glitches)
 True Positive   (TP): hit, i.e., signal correctly identified
 True Negative  (TN): correct rejection, i.e., glitch correctly identified
 False Positive  (FP): false alarm or Type I error, i.e., glitch misidentified as a signal
 False negative (FN): miss or Type II error, i.e., signal misidentified as a glitch
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 For best background recognition we want to 
maximize Specificity (or TNR), i.e., recognize the 
maximum number of glitches and minimize FNR (or 
Miss Rate), i.e., the false negative alarm rate.

 For best signal recognition we want to maximize 
Recall (or TPR or Sensitivity), i.e., recognize the 
maximum number of signals and minimize Fall-out 
(or FPR), i.e., the false positive alarm rate.

Machine learning lingo

Credit: wikipedia
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Dimmelmeyer waveforms at 5.62 kpc

Dimmelmeier all models at 5.62 kpc Dimmelmeier all models at 5.62 kpc

On average, runs identify  92% of background triggers Run misidentify an average of  4% of the signals as 
background

M. Cavaglia et al, in preparation.M. Cavaglia et al, in preparation.
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Code statistic performance

≥ 95% of runs identify over  90% of background triggers ≤ 5% of runs misidentify more than  7% of signals

M. Cavaglia et al, in preparation. M. Cavaglia et al, in preparation.
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Comparison at different distances

M. Cavaglia et al, in preparation.
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Probability of a trigger to be background

M. Cavaglia et al, in preparation.
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Follow-up

 Pre-selection cuts may further 
improve efficiency.

 Contaminations in training set.

Mis-classified 188/200 times

False negatives ≥ 80/200 runs

M. Cavaglia et al, in preparation.
M. Cavaglia et al, in preparation.
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Blind analysis

Analysis with “all-model training” multivariate functions at different distances

M. Cavaglia et al, in preparation.
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Conclusions and future directions
 The method seems to be effective at reducing the background up to ~ 90%.

 Rapid, easy ML implementation to current cWB pipeline.

 If implemented, this method could help detection of galactic CCSN at 3σ c.l. even with current 
detectors.

 Not only single-IFO: The method can be used for different network configurations.

 Addition of non-astrophysical (instrumental/environmental) information can further improve 
results.

 To do:
 Explore method at larger distances.
 Signal recovery/distance estimation.
 Can we distinguish between CCSN models?
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Background Image Credit: NASA/ESA/Hubble Heritage Team

Thank you!

The authors thankfully acknowledge the use of LIGO Scientific Collaboration and Virgo 
Collaboration resources that have made possible some of the results presented in this talk.

This work has been partially supported by NSF grant PHY-1707668.
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