Impossibility of guantum bit
commitment



Bit Commitment

A "physical’ representation:

b € {0,1} :
—> J Bob receives the safe. It is now guaranteed that:
. o « Alice cannot modify b (binding)
Alice inserts a bit £into a « Bob cannot read learn b (concealing)

safe, closes it and sends

it to Bob. (commit stage) Bob receives the combination and opens the

safe (reveal stage)

g Alice reveals the
© A combination to the safe



Bit Commitment

Importance of bit commitment (BC)

Early work (Bennett, Brassard, Crépeau, Skubiszewska, 2001) showed that quantumly,

BC

oT

The importance of Oblivious Transfer (OT) is that it is
universal for multi-party computation.

Can we achieve bit commitment in a

digital world?



Quantum Bit Commitment

Historical Context
1984 Quantum Key Distribution (BB84)
1992 Superdense coding
1993 “Provably Unbreakable Bit Commitment” \
1995 Quantum Teleportation
1997 Impossibility of Quantum Bit Commitment /
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Abstract

Assume that a party, Alice, has a bit z in mind, to
which she would like to be committed toward another
party, Bob. That is, Alice wishes, through a proce-
dure cormmit(z), to provide Bob with a piece of evi-
dence that she has a bit z in mind and that she cannot
change it. Meanwhile, Bob should not be able to tell
from that evidence what = is. At a later time, Alice
can reveal, through a procedure unveil(z), the value

§

Mistake: assume that, if Alice can cheat the bindin

Richard Jozsa
Université de Montréal !

Denis Langlois *
Université Parig-Sud 1

1 Introduction

Assume that a party, Alice, has a bit z in mind, to
which she would like to be committed toward another
party, Bob, That is, Alice wishes, through a proce-
dure commit(z), to provide Bob with a piece of evi-
dence that she has a bit z in mind and that she cannot
change it. Meanwhile, Bob should not be able to tell
from that evidence what z is. At a later time, Alice
can reveal, through a procedure unveil(z), the vald

property, then she knows how to open both a
commitment to 0 and a commitment to 1.

Theorem 3.7 There exsis a posilive consfan! o < |
with the following property: the probability that Alice
is able to announce either pair (e°, b%) or pair (¢!, b')
al her choosing in protocel unveil leading Bob 1o ac-
cepl a 0 and a 1, 15 less than o,

Proof. Let (¢",b") and (c', b') be any pairs of n-bit
strings such that ¢ @ r = Dand ¢! @ r = 1. Since
e"@r # e'@r, it must be that ¢ # ¢'. By construction
of the code 7, any two codewords must be at distance
at least 10en from each other. Let [ be the set of

indices on which <" and ¢! disagree: I = {i|d} #
e} }. We show that whatever Alice does, with high
probability, Ip — {i € I'|c] # Al = b} or ) —
{iel|e # &nabl = b} has size more than 0.7en.
Since .Eg ni = l, and thus l.ru UI||_ - |In1 + Ihl, it
suffices to show
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Unconditionally Secure Quantum Bit Commitment is Impossible

Dominic Mayers

Département IRO, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Ouébec, Canada H3C 307
{Received 21 March 1996; revised manuscript received 25 July 1996)

The claim of gquantum cryptography has always been that it can provide protocols that are
unconditionally secure, that is, for which the security does not depend on any restriction on the time,
space, or technology available to the cheaters. We show that this claim does not hold for any quantum
bit commitment protocol. Since many cryptographic tasks use bit commitment as a basic primitive, this
result implies a severe setback for quantum cryptography. The model used encompasses all reasonable
implementations of quantum bit commitment protocols in which the participants have not met before,
including those that make use of the theory of special relativity. [S0031-9007(97102996-7]
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Is Quantum Bit Commitment Really Possible?

Hoi-Kwong Lo* and H. F. Chau’

School of Natral Sciences, Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
(Received 8 March 1996)

We show that all proposed quantum bit commitment schemes are insecure because the sender, Alice,
can almost always cheat successfully by using an Einstein-Podolsky-Rosen=type of attack and delaying
her measurement until she opens her commitment. [S0031-9007(97102967-0]




Schmidt decomposition:

Let |[y) € A @ B (a pure state). Then there exist orthonormal bases
{la;)} for A and {|b;)} for B, and non-negative real numbers {p;} such that:

)= > Vpila) @ Iby)

Corollary:

Let |¢), [Y) € A @ B. Suppose that
Tre(lpX@l) = Tre(lYXyYl)

Then there exists unitary U such that

(Ia @ U)l9) = )




Impossibility of Quantum Bit Commitment

o . Recall:
eorem. . « Alice cannot modify b
There is no perfectly concealing and perfectly (binding)

binding Quantum Bit Commitment protocol . Bob cannot read learn b

(concealing)

Proof: Suppose such a scheme exists. Suppose WLOG that all operations
are unitary in the protocol (follows from purification)
Consider the joint state after the commit phase:

W) EAQRQB,ifb=0

W,) €EARB,ifb=1

By the hiding property, Tr([poXWol) = Tra(lp1)w11)
By the Corollary, there exists unitary U such that (U @ I)|Yg) = [;)

Therefore, the binding property is completely broken - Alice can change
her mind about the committed bit, even after the commit phase.

*A generalization to the approximate case also holds.



Possibilities for Bit Commitment

1. Using a computational assumption, classical bit commitment is
possible
e Statistical binding, computational hiding
 Computational binding, statistical hiding
2. Using a physical assumption, information-theoretic quantum
bit commitment is possible
 Bounded quantum-storage
* Noisy quantum-storage
* Isolated qubits (no multi-qubit operations)

Broadbent, A., Schaffner, C. Quantum cryptography beyond quantum key distribution. Des. Codes
Cryptogr. 78, 351-382 (2016). https://doi.org/10.1007/s10623-015-0157-4
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Rewateutzropstations

¢
’

*online data storage
web-based email
*online income tax software



|

Foundations of Secure Computation (1978)

ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman
Michael L. Dertouzcs

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well-known technique for preserving the
privacy of sensitive information. One of the basic, apparently
inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
the data for the user; any more complicated operations seem to
require that the data be decrypted before being operated on.
This limitation follows from the choice of encryption functions
used, however, and although there are some truly inherent
limitations on what can be accomplished, we shall see that it
appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption
of the operands, for many sets of interesting operations. These
special encryption functions we call "privacy homomorphisms";
they form an interesting subset of arbitrary encryption schemes
(called '"privacy transformations').

Homomorphic Encryption

/Plain RSA is multiplicatively
homomorphic:

server can compute
¢y (mod m) = (z - y)¢ (mod m).

|

Given z¢ (mod m) and y¢ (mod m),

~

o




Fully Homomorphic Encryption

“Fully Homomorphic Encryption Using Ideal
Lattices”
by Craig Gentry (STOC 2009)




Delegating Private Quantum Computations

Applications

Shor’s factoring algorithm:
*Server helps client crack an
RSA public key without finding
out the key.

Processing quantum data
 *Processing quantum money
\ or quantum coins.

Very relevant given current
challenges in building quantum
computers!

Our Scenario
«Information-theoretic security
Interactive

*Client is almost-classical



Client’s power

Client only needs to:

« Encrypt quantum data
* Decrypt quantum data
» Classical processing
Send random qubits

]
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:'.Q}V random qubits < used for
7o quantum key

distribution

Broadbent, A. (2015). Delegating private quantum computations. Canadian
Journal of Physics, 93(9), 941-946.

 Fisher, K. A., Broadbent, A., Shalm, L. K., Yan, Z., Lavoie, J., Prevedel, R.,
Jennewein, T.& Resch, K. J. (2014). Quantum computing on encrypted
data. Nature communications, 5(1), 1-7.




Universal set of quantum gates

ST

1 0 N 0 -1
Pauli gates 4 M
1 0 11 1 0
6D el e 6
1 000 »
Neon-Clifford group gate
o1 0 0 \_ ),
CNOT = 00 0 1
00 10
Clifford group gaies
.Single-qubit ‘O> Universal
iﬂi preparation — Quantum
*Single-qubit - C@fﬁpﬂféﬁ@ﬁ
measurement L7

\_ /




The One-time Pad Encryption Scheme

1. The classical one-time pad

Plaintext z € {0,1}
Key ker {0,1}
Ciphertext TPk

Since the ciphertext is uniformly random (as long as k is random and
unknown), the plaintext is perfectly concealed.

2. The quantum one-time pad [Ambainis, Mosca, Tapp, de Wolf 2000]

Plaintext [Y) = a|0) + B 1)
Key (a,b) €r {0,1}
Ciphertext Z°X" [4p)

¥

0 1 I 0
o) 2= 5)

Pauli gates

Without knowledge of the key, the ciphertext always appears as the
maximally mixed state, .



The protocol

: 1
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Protocol for single-qubit preparation

0,0
0)

Protocol for single-qubit measurement

a:b a




Protocols for Clifford group gates

z- g) 01)\

The Clifford Group is the set of operators
Pauh gates that conjugate Pauli operators into Pauli

operators.

1 (1 1

- (1]

0 0 a,b a,b

0 0 X

0 1

1

a,b a,b
roup gaies 7

a?b b,a al}bl ar]_?b]_ @bz




Protocol for non-Clifford group gate

4 N Applying the R gate on encrypted data
1 0 causes a Clifford error in the key:
R = (() em/4> Xayzb xayzadbpa
R

\_Nen-Clifford group gate /

Main Idea: the client makes the server
“correct” this error by making him apply a
hidden P correction.

a,b k [
R i':;f\-:-
Server

{TZGEBEJ': _______ !_:_ &

Client 1

a@c,alcdydl)pbdddy

| | 7d |
+) PY z 7. Server sends measurement result to client;
(y.d €r{0.1}) Client uses this to update the encryption key.




Correctness of the R_gate protocol (Circuit derivation techniques inspired by
[Childs, Leung, Nielsen, PRA 2005])

1. Start with X-teleportation a7} A= c
circuit of Zhou, Leung and .
Chuang (PRA 2000): +) Xe |a)
2. modify the input: X*Z°y) —R T =
|+) XRX2Zb|y)) = X*&eZaEbpaR|y)

3. add rotations on the X321y —{R] P— A= <
bottom wire: ) - Al
4. Since P and Z commute with control, the output is:
pa®y _ 7a-ypaty /P=PZ:P?2=7 PX = XZP

\

paEHydey}(ﬂ%r:zaEBbpﬂ RIﬁ:j) — Za-ypa-l—yzd yxﬂ%czﬂ%bPﬂRw-J)
ZP = PZ; P2 =7 W‘Zﬂ%bpﬂﬁm
_ szHa-yﬂﬁyxaEHcZﬂ{ﬂ%cj Pazﬂ%bpa R|'If!)

Fa) va-ubuha ha - .
_ xﬂ\_,chEl_-!a ybyba“ba CszwJ}

_ Kﬂ%ﬂzﬂ(ﬂ%g%l}%bﬂ%dﬂ%yﬁ L‘}




Security definition

How to formalize that “the server learns nothing from its interaction with the client”?
pinEC®S meC@S

N\
N\

Let S’ be any deviating server.

A simulator Sg for S’ is any general quantum circuit that agrees with S’
on the input and output dimensions.

We say that a protocol for delegated quantum computation is secure if
for every S’ there exists a simulator Sg such that the channels ® and ¥
are indistinguishable.



Indistinguishability of channels

The diamond norm is a measure of indistinguishability of two
quantum channels.

Operational Definition:

Suppose quantum channels ® and ¥ agree their input and output spaces. Given
that ® or ¥ is applied with equal probability, the optimal procedure to determine
the identity of the channel with only one use succeeds with probability

1 ”(I)_\Il”o
o 4

|® — Wlo = max{[|(® © 1w)(p) — (¥ @ Lw)(p)lli : p € D(X @ W)}



ProofOutIineE ~ #

d
Main Idea: change the client’s protocol such that: l

1. The server cannot notice the change
2. The protocol is easily proven secure

Method: allow the client to share entanglement with the server

1. Instead of sending encrypted qubits, client sends half-EPR pairs

2. Instead of sending auxiliary qubits, client sends half-EPR pairs

3. The client delays inserting her actual input until the after the
Interaction with the server is complete: the protocol is trivially
secure!

Inspiration: Shor-Preskill proof of security for quantum key
distribution (PRL 2000).



Proof /1

Instead of sending an encrypted qubit, the client sends a half-EPR pair
and “teleports in” her input by performing a Bell basis measurement.

Create an EPR- pair

) r— T " m Bell basis

| |U> —H
Client | measurement
9 - |0) N —1 A= a

Do this for each input qubit.
The server’s view and the effect of the protocol is unchanged.



Proof /2
For the R- gate protocol:

1. Instead of sending an auxiliary qubit, the client sends a half-EPR pair
2. Instead of sending bit x, a random bit is sent
3. The “hidden P gate” is now chosen as a function of a and x.

\ 4. The value d is now determined by a measurement
l i Xa zb |HI.> R C; f’_/""\ —
Send a random bit x ﬂ
\l N pz xaeecza{cﬂayeljeba:ada:ale_u-e,)
((rer {0,1} —
N = 1

getd

Client ¢ . 10) —H L | (y=adx) | Measureto
|
b

"Choose y as a function
of a and x

Create an EPR- pair

Do this for each R- gate protocol.
The server’s view and the effect of the protocol is unchanged.



Proof /3

In both sub-protocols (encryption and R-gate), delay all of the client’s
measurements until the output register is returned by the server.

_________

We construct the simulator Sg. that generates
the transmissions that the client would send
in this protocol and feeds them to S’ (which it
then internallly simulates), but that never
performs any measurements.

Access to the actual input is not required. By
the previous slides, S’ view is unchanged. It
follows that the two channels are identical.

”(I) - \Ij||<> =0



Conclusion

Main result: method to compute on encrypted data

) &« Client uses quantum encryption and sends Wiesner

states; otherwise is classical.

L « Information-theoretically secure against any cheating
server, even with quantum side information.




Related work

Universal Blind Quantum Computation. A. Broadbent, J. Fitzsimons and
E. Kashefi. “(FOCS, 2009 ‘
. Auxiliary qubits in {75(10) +e 1) [0=0,%, 5, 5, m, 3,
» Correctness in terms of measurement-based quantum computing
» Each gate: 8 auxiliary qubits, 24 bits of communication in each
direction.

OO0 B e - Bt

Figure 3: Implementation of a Hadamard gate. Figure 7: Tiling for a 4-qubit circuit with three gates.




Verifying a Quantum Computation  [Aharonoy, Ben-Or & Eban 2010]
[Aharonov & Vazirani 2012]

» How do you know that the outcome of a delegated quantum
computation is correct?
* In general, we cannot predict the output of a quantum
computation.
* |Is the scientific method of predict-and-verify doomed?
» There is hope...
« Consider factoring. The experimentalist can efficiently
verify the solution.
\\» More generally, we want the experimentalist to be convinced
“\\ of the correctness of the solution even though she cannot

=8\ compute the solution herself.
A\ > We know of bootstrapping methods
B\ > If experimentalist is convinced she can characterize
and control a small quantum system (e.g. single
qubits) then we can expand this to an entire quantum
system.



Verifiability

Unconditionally Verifiable Blind Quantum Computation

Joseph F. Fitzsimons!? and Elham Kashefi**

“Trap” qubit in
random hidden
position.




Interactive verification of
guantum computations

“benign
prover”

} Indistinguishable to the
prover “non-
benign
prover”

Computation
run

Output of the
computation run is
“correct”

4 N\

detected in a test run

Broadbent, A. (2018). How to Verify a
Quantum Computation. Theory of
Computing, 14(1), 1-37.



Classical verifier

Using two isolated provers
[Reichardt, Unger & Vazirani 2013]

Using computational assumptions
[Mahadev 2018]




Certified Deletion

Anne Broadbent
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Certified Deletion

A “physical” type of encryption:
. N

N
“

Alice inserts a message
into a safe, closes it and
sends it to Bob.

" @D
Bob decides

» return the closed safe before the
combination is revealed as a proof that
message was not read

XOR

» Keep the safe and when the combination

Is available, open & read the contents

Can we achieve this in a digital world?

Broadbent, Islam (2020)



Can we achieve this in a digital world?
No!

Proof by contradiction..

! ! Encodey(msg) Encodey (msg) .
>
bl Encodey (msg)

Bob can:
« Convince Alice that he did not read the message(use copy #1)
AND
« Using combination, open & read the content (use copy #2)



Certified Deletion
-application

® 5K

Last Will and Testament

1. Alice can use Certified Deletion to store her will with a lawyer.
« When she wants to update to a new will, the lawyer first proves deletion.



Quantum Encryption with

Certified Deletion

Quantum mechanics enables the best of the
physical and digital worlds:
( I’ « Encoding (encrypting) a classical message

“ into a quantum state
« Bob can prove that he deleted the message

by sending Alice a classical string




Basic prepare-and-measure certified deletion scheme by example:

T 0 1 1 0

r random
Wiesner encoding I7)e |0) |—) |1) |+)
Teomp: SUbstring of r where 8 = 0 Teomp 0 1
Tdiag: SUbstring of r where 6 = 1 Tdiag 1 0

To encrypt m € {0,1}%, send |r)g, m @ Teomyp

To delete the message, measure all qubits in diagonal basistogety =x1 % 0.
To verify the deletion, check that the 6 = 1 positions of d equal 74

To decrypt using key 6, measure qubits in position where 6 = 0, to get 1;ymmp, then use
m @ 1omp to compute m.



Proof intuition

T 0 1 1 0

)6 0) =) 1) |+)

Teomp 0 1

Tdiag 1 0

As the probability of predicting 744, INCreases

(Le. adversary produces convincing “proof of

deletion”) 1
HX)+H(Z) > logz

The probability of guessing 7,4, decreases

(Le. adversary Is unable to decrypt, even given
the key) Maassen & Uffink, 1988



Certified Deletion Security Game

Accept & yis

consistent with 7444 Note after the lecture:
(looking only at There is a mistake in this

positions where 6 = 1) defiqition. Please see latest arXiv
O version for an update.

-AB

0

[ ] - -
memory . ' memory ‘ '
. : g Certified Deletion:
‘ . P(win) <=+ negl(d).

win & Accept AND (b" = b)



abroadbe
Text Box
Note after the lecture: 
There is a mistake in this definition. Please see latest arXiv version for an update. 
-AB


Proof Outline

1. Consider Entanglement-based game

Measure .
A system in 0 9 ACC:_Pt < 3];”‘ 2. Use Entropic uncertainty relation (Tomamichel & Renner 2011):
basis — 1 —F goil 110?5 WIS X: outcome if Alice measures n qubits in computational basis
. consistent with ~ Z: outcome if Alice measures n qubits in diagonal basis
y 4 Tdiag Z':outcome of Bob who measures n qubits in diagonal basis
AN PABE / e ,
' Hmin(X | E) + Hrenax(Z | Z ) =n,
o : . '
. — . H:..(X | E) :average prob. that Eve guesses X correctly
€ ry. . . ,
B Measure . HS . (Z | Z"): # of bits that are required to reconstruct Z from Z'.
B system in
diagonal basis
-y By giving an upper bound on the max-entropy, we obtain a lower

bound on the min-entropy.

Refinements of the basic protocol:
-reduce and make uniform E’s advantage: Use privacy amplification (2-universal hash
function) to make 1, exponentially close to uniform from E’s point of view:

: 1
P(win) < >+ negl(d).
-noise tolerance: Accept y if less than ké bits are wrong; use error correction.

Kundu, Tan (2020) : Composably secure device-independent encryption with certified deletion

. Quantum Encryption with Certified Deletion, Revisited: Public Key, Attribute-Based, and Classical Communication
Taiga Hiroka; Tomoyuki Morimae; Ryo Nishimaki; Takashi Yamakawa
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