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Quantum States Can't be Cloned

-
=

Quantum money
Quantum encodings
Copy-protected software

Quantum rewinding
Quantum oracle queries

“Quantum no-cloning theorem”
Park (1970); Dieks & Wootters-Zurek (1982)



Quantum Information

Can be tasted, but this leaves a mark.

Can be shared, but there is a total of
1 item to be shared.

Cannot be copied.
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Conventional Information

Can be observed without changing it.

Can be shared at wiill.

Can be copied.



Unclonable Authenticity

Quantum Money

Wiesner (ca. 1969)



Submitted to IEEE, Information Theory

This paper treats a class of codes made possible by
restrictions on measurement related to the uncertainty

principal. Two concrete examples and some general

results are given. .

Written in 1968 i
Conjugate Coding

Published 1983

Stephen Wiesner

* Columbia University, New York, N.Y¥.
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Thé:EEEEg}ainty pri%EE%EE:;mpcses restrictions on the

capacity of certain types of communication channels. This

- paper will show that in compensation this '"guantum noise",

guantum mechanics allows us(novel forms of coding yithout

analogue in communication channels adequately described by -

classieal physicé.
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Wiesner’s conjugate coding
rickbasiso € (0,1 . [N

Pick bit b € {0,1}.
let |b)g = HP|b) |1)

|+)
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Given a single copy of |b)g for uniform b, 6:

 Can easily verify |b)g if b, 8 are known (how?).

* Intuitively: without knowledge of the encoding basis, and given
|b)g, no third party can create two quantum states that both
pass this verification with high probability.




For bit-strings 8 = 6,0, ...0,,,b = b1 b, ... by, define
|bYo=|b1)e, @ |b2)g, - & |bn)e,

A quantum banknote is |b)g for random b, 8 € {0,1}" :

A quantum banknote, containing particles in a secret set
of quantum states, cannot be copied by counterfeiters, who
would disturb the particles by attempting to observe them.

©OAAAS (1992)




Wiesner’s security argument

Could there be some way of duplicating the money without
learning the sequence Ni? No, hecause if one copy can be
made (so that there are two pieces of the money) then many
copies can be made by making copies of copies. Now given
an unlimited supply of systems in the same state, that state
can be determined. Thus, the sequence Ni could be recovered.

But this is impossible.




Security of Wiesner’s guantum money

A uz verify
Femvmendt

verify

How does the difficulty of cloning quantum
money scale with the number of qubits, n?

For a single qubit, one possible attack is to guess a basis uniformly, measure in that basis,
and re-send two qubits that correspond to this measurement
* |If the basis is correct (prob= %), the attack succeeds with prob. 1.
» If the basis is incorrect, the attack success with prob. 1/4 since the attack prepares
gubits in the complementary basis, and the probability that both verifiers accept is
BV =Y.
Success prob. of attack = 5 + %:*% = 5/8.

Can actually achieve % (and this is optimal).
11



Security of Wiesner’s guantum money

“attack”

, -**,”:‘1 @J

How does the difficulty of
cloning quantum money scale

) ] Optimal counterfeiting attacks and generalizations for
with the number of qubits, n? Wiesner’s quantum money

Abel Molina,* Thomas Vidick,! and John Watrous*

Feb 20,2012
Answer: e

Abstract

We present an analysis of Wiesner's quantum money scheme, as well as some natural gen-

eralizations of it, based on semidefinite programming. For Wiesner's original scheme, it is

n determined that the optimal probability for a counterfeiter to create two copies of a bank note

from one, where both copies pass the bank's test for validity, is (3/4)" for n being the number

of qubits used for each note. Generalizations in which other ensembles of states are substituted

for the one considered by Wiesner are also discussed, including a scheme recently proposed by

Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on higher dimensional quan-

tum systems. In addition, we introduce a variant of Wiesner’s quantum money in which the

verification protocol for bank notes involves only classical communication with the bank. We

show that the optimal probability with which a counterfeiter can succeed in two independent

verification attempts, given access to a single valid n-qubit bank note, is (3/4 + \,-’E/S}”_ We
also analyze extensions of this variant to higher-dimensional schemes. 12




QUANTUM MONEY “REVIVAL’

Noise-tolerant (‘feasible with current technology’) quantum money
« Pastawski, Yao, Jiang, Lukin, Cirac (2012)

Quantum Money with classical verification
« Gavinsky (2012)

Public-key quantum money (can be verified by any user)
« Farhi, Gosset, Hassidim, Lutomirski, and Shor (2012)

« Aaronson and Christiano (2012)
« Zhandry (2017)



Unclonable Information
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Ultimate goal:
unconditional security

AES ?
No !

RSA ?

No !



The One-time Pad Encryption Scheme

Plaintext z € {0,1}
Key ker {0,1}
Ciphertext TPk

Since the ciphertext is uniformly random (as long as k is random, unknown and used
only once), the plaintext is perfectly concealed.

Le masque jettable

This Photo by Unknown Author is licensed under CC BY-
NC-ND


https://www.tahliasmasks.com/what-kind-of-mask-should-i-buy-for-covid-19-protection/
https://creativecommons.org/licenses/by-nc-nd/3.0/

The Washington-Moscow Hot Line
(est.1963)







The Quadratic Curse

2 users

1 secret key



The Quadratic Curse

4 users

6 secret keys



The Quadratic Curse

8 users

28 secret keys



The Quadratic Curse

1 users

n 2—” secret keys



CONJUGATE CODING TO
THE RESCUE!

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA)
Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

“BB84 quantum key distribution”



BB384 QKD

Version 1
A very high-level



Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

P

.

Eavesdropping

~

/

Errors

Detection

* Use quantum channel to send a random key
* If no eavesdropping detected, use the one-

time pad to send message




BB384 QKD

Version 2
A high-level



« BB84 » Protocol (Bennett & Brassard, 1984)

Alie

& b XK Kb Kb <> X Coding basis

© Philippe GBangier



« BB84 » Protocol (Bennett & Brassard, 1984)
Alice

4_1_> T wx x<_1_, x4_I_, ._I_. X Coding basis

fl '\1 /g A > ); ?1 e \1 Bit value

0

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

4—1—» o oe X<-I-> x4-1-> <-I-> X Coding basis

t \1 )o' )g — )z fl - \1 Bit value

Alee

© philippe Gramgier



4-1-» e o8 X<-I-> x4-1-> <-I-> B Coding basis

f\ A A _,0)' f —>O\ Bit value
11 0o “o o 1 L

© pPhilippe Grangier
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« BB84 » Protocol (Bennett & Brassard, 1984),

"I" xR X*I" X<—I-> 4—1—» B Coding basis

t \1 )O' )g - /z ?1 = \1 Bit value

! I
e

%) )

—l
.; ﬁ»’»’ 4_1_"{";{‘{":& o 4—1—» 4—1—» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© pPhilippe Grangier
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« BB84 » Protocol (Bennett & Brassard, 1984),

"I" xR X*I" X<—I-> 4—1—» B Coding basis

t \1 )O' )g - /z ?1 = \1 Bit value

! I
e

%) )

—l
.; ﬁ»’»’ <$><$>X<$>x o 4—1—» 4—1—» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© pPhilippe Grangier
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« BB84 » Protocol (Bennett & Brassard, 1984),

"I" xR X*I" X<—I-> 4—1—» B Coding basis

fl \1 )O' )g - /z ?1 = \1 Bit value

! I
e

gre )

—l
.; ﬁ»’»’ 4_1_"{";{‘{":& o 4—1—» 4—1—» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© philippe Grangier
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« BB84 » Protocol (Bennett & Brassard, 1984),

"I" xR X*I" X<—I-> 4—1—» B Coding basis

t \1 )O' )g - /z ?1 = \1 Bit value

! I
e

gre )

—l
.; ﬁ»’»’ <$><$>X<$>x o 4—1—» 4—1—» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© philippe Grangier
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« BB84 » Protocol (Bennett & Brassard, 1984),

"I" xR X*I" X<—I-> 4—1—» B Coding basis

t \1 )O' )g - /z ?1 = \1 Bit value

! I
e

%) )

—l
.; ﬁ»’»’ 4_1_"{";{‘{":& o 4—1—» 4—1—» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© pPhilippe Grangier



|

« BB84 » Protocol (Bennett & Brassard, 1984),

4—1—» e o8 X<-I—> x<-1-> <-I-> B Coding basis

t \1 )o' )g — )z fl > \1 Bit value

" l
[

'
4-1-» <-I-> x«i-» o L 4_1.> 4{.» % Decoding basis

- )' f \ / f —> \ Read out

© philippe Grangier
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« BB84 » Protocol (Bennett & Brassard, 1984)

4—1—» x i X«-I-» Xq-i-» 4-1-» X Coding basis

e - Bit value
h A e T Wi

'
4-1-» 4{-» X‘{" on o q_I.> <_I.> % Decoding basis

t - )O’ t \1 )O' fl —> \1 Read out

—.‘CI

5%

1 —> VS Discussion

© Philippe Grangier
45
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« BB84 » Protocol (Bennett & Brassard, 1984),

4—1—» e o8 X<-I—> x<-1-> <-I-> B Coding basis

t \1 )o' )g — )z fl > \1 Bit value

" l
[

'
4-1-» <-I-> x«i-» o L 4_1.> 4{.» % Decoding basis

- )' f \ / f —> \ Read out

KT Discussion

\ Sifted key

© philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

4—1—» e o8 X<-I—> x<-1-> <-I-> B Codingbas:is

t \1 )01 )g — )z 1‘1 —> V\l Bit value

'
4-1-» 4{-» x«i-» o L 4_1.> 4{.» % Decoding basis

- )' f \ / f —> \ Read out

KT Discussion

\ Sifted key

© philippe Grgngier



« BB84 » Protocol (Bennett & Brassard, 1984)
Alice

,'ﬂ <_I_> x x x 4_}> x 4%; 4%; X Coding basis

)O')' - /" ? - \ Bit value

<%>X<%><$~$><$~%>x X

=
o
it 3
4 " i
=
"

© philippe Gremgier



« BB84 » Protocol (Bennett & Brassard, 1984)

4—1—» ool X<-I->x 4-1-» 4-1-» B Coding basis

fl \1 )o' )g — )z fl = \1 Bit value

Kb XK

f\ R, = ?1 ?1 \1 \1

0

4-1-»4{-»}{4-1-»}{ o <_I.> 4{.» % Decoding basis

t - % fl \1 /0' fl fl \1 Read out

1

i
';-.‘;.
ks >
& " 4
"

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> ool X«I-»X 4-1-» 4-1-» X Coding basis

fl \1 )o' )g — )z fl = \1 Bit value

B R XX

?1 \1 R, = ?1 ?1 \1 \1

: ¥
¥ .‘4 |
: =
& " ¢

4-1-><-I->x<-i->x o <_I.> 4_1.> % Decoding basis

t - % fl \1 /0' fl fl \1 Read out

1

N /' ?1 fl \] Discussion

0

© philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> ool X«I-»X 4-1-» 4-1-» X Coding basis

fl \1 )o' )g — )z fl = \1 Bit value

B R XX

?1 \1 R, = ?1 ?1 \1 \1

: ¥
¥ .‘4 |
: =
& " ¢

4-1-><-I->x<-i->x o <_I.> 4_1.> % Decoding basis

t - % fl \1 /0' fl fl \1 Read out

1

Q ® ~ ?1 f1 \1 Discussion
@ o

0

A 4 :'.1‘1.3 % Sifted key

1
© pPhilippe Grangier




« BB84 » Protocol (Bennett & Brassard, 1984}

A B R 3 b b 3R Coting bass

fl \1 a f‘ - /T fl > \1 Bit value

 Hadrdredb < W K m‘

Alice

QKD Assumes authenticated classical
communication

[ N
iy

1
— Information-theoretic authentication can ‘%; b, B s B B
be achieved with a short initial shared o B e
secret (Wegman-Carter authentication) B T OELVET R

1‘ ® \ ® ® ﬂ t f \ Dis
— Thus, QKD is more accurately described yoINE oz i

as a key expansion protocol.

* From a Sifted key to a private key (in a nutshell)

— Publicly compare half of the sifted bits to obtain estimate of error
rate. Abort if the error rate is too high (specific rate depends on
parameter choice; approx. 11% is the theoretical maximum)

— Information Reconciliation (aka Error Correction): corrects the
remaining strings so that they agree in all positions with high
probability.

* Can be done via a series of parity checks, or more generally, using error
correcting codes.

— Privacy amplification: Eve has some information about the key
(from eavesdropping and Information Reconciliation).

« Alice and Bob apply a random hash function {0, 1}" — {0, 1}}



Security of BB84 Quantum Key
distribution?

e Security of QKD is often informally attributed to
the no-cloning theorem.

* Actual proofs (which appeared 15 years later or
more) use much more sophisticated techniques
— Quantum error correcting codes
— De Finetti reductions
— Entropic uncertainty relations
— Sampling

 More formal presentation and analysis of QKD to
come.



QKD Firsts

e 1989: First Experimental demonstration
e 1998-2000: First proofs of security for QKD
e 2004: First bank transfer using QKD

e 2008: First network secured with QKD
(200km, 6 nodes)

e 2016: First quantum satellite for space-to-
ground quantum communication.

QKD Commercial Products

Quintessence

IDQ il N
FROM VISION TO TECHNOLOGY g T Data Uncompromised



Practicality of BB84 Quantum Key

* Alice only needs to prepare & send single-
qubits.

* Bob only needs to measure single qubits in a
random basis

* Error correction is integrated into the protocol
so that under a small amount of noise:

— The protocol does not abort

— The noise is corrected and the final keys agree.

Noise-tolerant, single-qubit prepare-and-measure

55



Recent Direction in QKD

Device-independent and one-sided device-
independent QKD

— See Qcrypt 2019 Tutorial by Rotem Arnon
Friedman (https://youtu.be/5KsW0d9JeqQ)

Continuous-Variable QKD
Finite-size effects in QKD
Side-channel attacks



A Sampling-based proof
of QKD

Bouman, N. J., & Fehr, S. (2010). Sampling in a quantum population, and
applications. In Annual Cryptology Conference CRYPTO (pp. 724-741).

Fehr, S. (2010). Quantum cryptography. Foundations of Physics, 40(5), 494-531.%

*notation, equations and figures from this reference



BB84 quantum key distribution

e protocol - @
31)+)0)0> ) h

l-l
I-Tl)l+)l0)l0)| M) . Ir

Measure each qubitin a

Prepare |b)g random basis.

for random b, 6 € {0,1}" « Compare a sample of
(basis, outcome) pairs with
Alice.

Either noise level is too
high and they abort, or
they amplify the secrecy of
the remaining
measurement outcomes.

58



Entanglement-based

Measure each qubit
in a random basis 6.

e Same as before.

If Eve sends ppr = 1/V2 (]00) + |11)) ® ApAiE
Pe ,then:
* 6 = 0:If Alice observes |i), Bob’s system

becomes |[i)

* 6 = 1:If Alice observes H|i), Bob’s system
becomes H|i) (check)

Claim: security of entanglement-based scheme

implies security of original scheme

From now on: show security of the
Entanglement-based QKD

59



Review : Hybrid classical-quantum
systems

X:random variable with finite range X', Py probability distribution

tum system E that is randomized: with
_ Py (x o a quan
PE Z x(X)PE|X=2 probability Py, the system is pg x—y .
X

We can “encode” the choice of x into a quantum state
|x), and denote the hybrid classical-quantum (“c-q”)
system:

PXE = Z Py (x)[x x| ® pg|x=x
Let px =tre(pxe) =), Px(x)|x)(x|
X is independent of E if and only if PXE = pPx ® PE
Let iy denote the completely mixed state #x = 7 X, 1¥)x] = 1x7lx
X is random-and-independent of £ if and

only if
y PXE = M1x @ pE



Trace distance and Security of a key

For two density matrices p, o, the trace distance 6 (p, o) =

Etrlp — o| where |p — | is the unique positive semi-definite square
rootof (p —a)(p — o0)*

The operational meaning is more important for us: for any physical

processing, the two states behave identically, except with probability
at most §(p, o)

For key distribution, we’ll say that the scheme is secure if the trace
distance d(pxe. nx®pe)  is small.

* Shown to be the “right” (“composable”) definition [Koenig-
Renner 2005, Ben-Or et al. 2005]



* From a Sifted key to a private key :
— Publicly compare half of the sifted bits to obtain estimate of error

[ ]
rate. Abort if the error rate is too high (specific rate depends on
r ro r O r re C I O n parameter choice; approx. 11% is the theoretical maximum)

— Information Reconciliation (aka Error Correction): corrects the
remaining strings so that they agree in all positions with high
probability.

* (Can be done via a series of parity checks, or more generally, using error
correcting codes.

— Privacy amplification: Eve has some information about the key
(from eavesdropping and Information Reconciliation).

= Alice and Bob apply a random hash function {0, 1}" — {0, 1}*

* Let X;be Alice’s bit string and Y; be Bob’s (i = 1, ...n),

* Error Correction: Alice chooses a random codeword C € {0,1}" from a
suitable error correcting code and sends U = C @ X to Bob. Bob decodes
C' = U @ Y to the closest codeword € and computes X = C @ U as his
guess for X.

— If X, Y differin only aAfewApositions, C=U@Y=CPXPYisclosetoC,soC =C, and
Bob’s guessfor X isX =COU=CHCPH X = X.

* For efficiency, note that in a linear code, Alice can send the syndrome of X
instead of U. (Let k be the log of the size of the code; then the syndrome is
n — Kk bits in length)

e Error correction leaks information about X. We'll show how to compensate
for this later.



From a Sifted key to a private key :

L -
P r I Va Cy — Publicly compare half of the sifted bits to obtain estimate of error

rate. Abort if the error rate is too high (specific rate depends on
parameter choice; approx. 11% is the theoretical maximum)

L3 : — Information Reconciliation (aka Error Correction): corrects the
I I l p I I C a I O n remaining strings so that they agree in all positions with high
probability.

* (Can be done via a series of parity checks, or more generally, using error
correcting codes.

— Privacy amplification: Eve has some information about the key

(from eavesdropping and Information Reconciliation).
+ Alice and Bob apply a random hash function {0, 1} — {0, 1}*

Entropy: a measure of uncertainty in a system
* Shannon entropy: H(Px)=—2. Px(0)log Px()

* Min-entropy:  He(P=—log(maxPx»)  (captures how
hard it is to guess the value described by the random
variable X)

e Conditional min-entropy: Hoo(Pxy|Y) Same as entropy, with
an auxiliary Y.

* Quantum conditional min-entropy for a c-q state pyr is
the negative-log of the success probability of predicting X
when using an optimal strategy and having access to the
guantum system E.



Privacy Amplification

* Quantum conditional min-entropy for a c-q state pyr is the
negative-log of the success probability of predicting X when

using an optimal strategy and having access to the quantum
system E.

* Quantifies how much uncertainty Eve has on classical X.

Privacy Amplification: transforms a bound the conditional min-
entropy into a uniform key.
— Key K is computed as K = (S, X) (SPL/S0=76] = |ﬁ;|)

— f is a universal hash function if forall x # x/,

— The privacy amplification theorem [Renner and Koening (2005)]
tells us that for such an f with an €-bit output:

I For € at most the quantum
conditional min-entropy, we get an

| oy

3(pksE, uk ® psg) < 5 2~ 7 Hoo(XIE)=0)
€-bit, uniform key (up to some
exponentially small error)




Classical sampling: estimating the

relative Hamming weight

* Hamming weight of bit string X = X, X5, ... X,,, is W(X) =
2 Xi;
W(X)

* Relative Hamming weight is w(X) = ——

* Definew(X) =, Bif|lw(X)—pB| <e.
Given a unknown X = X, X,, ... X,,,, consider the following
“sample-and-estimate strategy” :

— Choose a random subset T (X) of {1, ..., m} of size linear in m, and
output w(X7) as estimate of w(X7).

stim(XT1)

* Define the error probablllty err.(m) := [}m} P[m(x;,—)% estim(xr) ]

* Claim: for the above strategy: ,,, ;) <2.~%en2,
where T is of size am.



Quantum sampling

Given an unknown A = A4, A,, ... A, (possibly entangled with a system E),
consider the strategy of measuring a subset T of the qubits in the
computational basis, as an estimate of the “relative Hamming weight”.

r T estim(X1)
1] I 1 O 0
L i LL L

PP @8 8@

St

%, . 1 . ?
_,|_,1,.h =]

Theorem [Bouman, Fehr 2010]: (informal) If the estimation strategy has a small
error in the classical case, then it also has a small error in the quantum case:
after the measurement of A7 (giving estimate () the state of A7E is of the
form

@Az E) =2y ay[y)®leg)

where the y’s are such that w(y) = [; except with some small error.



PABE

Quantum sampling in QKD

Let pgapg be the c-q state after the sifting.
Alice obtains X; when measuring in basis 8
Bob obtains Y; when measuring in basis 6

if @ =0,

Define —X.aY X
Ss=X;8Y; and W, {}? if @ = 1.

Let pgxyswE be the corresponding c-q state. We can obtain this state instead by
applying the unitary U|b)|c) = H|b)|b @ c): Note that U(H|b)H|c)) =

|b @ c)H|c)), so after U, S; is in the first or second register depending on 6,
and W; is in the other register. From these, we can compute X;,Y;. Let

Ogxyswg be the resulting state. Then pgxyswre = OoxyswE-

Idea: take 8;= 0 to be the sample subset T in the sampling technique on the
state obtained after U. So the estimate f of the relative Hamming weight is the
computed error rate in QKD. By the Bouman-Fehr Theorem, the error in the
estimate [ of the relative Hamming weight for the rest of the system is
exponentially small, hence we are close to ) _a.|z) ® |¢}.) , where each

z has Hamming weight approx. [5.
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Wearecloseto ) _a;|z) ® [@}) , where each z has Hamming weight
approx. f3. )

Lemma (Bouman-Fehr): Given the state above and thanks to the fact that S is
small, we can bound the min-entropy of W, obtained by measuring in the
Hadamard basis

Hoo (W|ES®Test) =n —h(B + e)n

h(p) = —(p -log(p) + (1 — p) - log(l — p))
This implies the same bound for Hoo(X[ES®Test) |

It remains to compensate for the further classical information that Eve gets. By
the chain rule, each bit of communication costs at most a bit of qguantum min-
entropy. After compensating for X;.; and the error-correction syndrome, we
are left with min-entropy at least at least (I —2h(8))n.

Privacy amplification completes the proof.
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