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QCur Focl

e Binary classification algorithms

O Classify each person as positive (eg, high risk for disease) or negative (low risk)

e Scoring functions f(x) = p € [0,1]
O Often interpreted as a probability; more about that later



Theor'y of- A\aorH'hmic Fairness

o Definitions: Group vs Individual ~ « Group Fairness Examples

Group notions fail under scrutiny O Statistical parity. demographics of
accepted students are same as in
population

m 48.7% female

O Balance for positive class: the
average score for a positive member
of A is the same as the average score
for a positive member of B

DworkHardtPitassiReingoldZemel2012



Theory of- AlaoriJrhmic Fairness

o Definitions: Group vs Individual ~ « Group Fairness Examples

Group notions fail under scrutiny O Statistical parity. demographics of
— steak ads for vegetarians accepted students are same as in
population

— very different distributions, reward

. , o O Balance for positive class: the
minority that “look like” majority forp

average score for a positive member

= surprisingly hard to test of A is the same as the average score
— natural desiderata are mutually for a positive member of B
exclusive

— which groups? Intersectionality?

NeilWinship2019
Chouldechova 2016; KleinbergMullainathanRaghavan2016 DworkHardtPitassiReingoldZemel2012



Theor'y of- A\aorH'hmic Fairness

o Definitions: Group vs Individual e Individual Fairness

O People who are similar with respect
to a given classification task should
be treated similarly

B |[C(x) — C()| < dr(x,2)

Group notions fail under scrutiny

Individual Fairness requires a task-
specific metric




Theor'y of- A\aorH'hmic Fairness

o Definitions: Group vs Individual e Individual Fairness

Group notions fail under scrutiny

O People who are similar with respect

to a given classification task should

Individual Fairness requires a task-

specific metric
.

be treated similarly

1CCO) — C@| < dr(x,2)
Strong legal foundation

° dT(x, Z)?
llvento19: O(1) hard queries
GillenJungRothKearns18
KimReingoldRothblum18
RothblumYona18



Tan’m\izinﬂ Break’rhrouah! a s : DA

Three Insights for Metric Learning for Individual Fairness:

1. Distances from a single “representative” element produce useful
approximations to the true metric.

2. "Parallax” can be achieved by aggregating approximations obtained from a
small number of additional representatives

. : h .
3. Can generalize to unseen elements under simple a SUME.ons about learning
threshold functions a

d>0

C llvento 2019



Theor'y of- A\aorH'hmic Fairness

o Definitions: Group vs Individual e Individual Fairness

Group notions fail under scrutiny O People who are similar with respect
to a given classification task should
be treated similarly

m Strong legal foundation

o dr(x,2)?

m The "Metric Conjecture”: a
metric can be extracted from
any “fair” system or “fairness”
oracle

Individual Fairness requires a task-
specific metric

DworkllventoRothblumSur2020



Individual Probabilities: the DeJ.linin@ Problem ofF Al

Risk predictors assign numbers in [0,1] to individual instances:
e What is the probability that it will rain tomorrow?
e What is the probability that X will repay the loan?

e What is the probability that this tumor will metastasize?

What is the “probability” of a non-repeatable event?



The Tumor Exampie

e "“Probabilities” are learned from binary outcomes data
— did vs did not metastasize

. Locations considered in Study 1 . Locations considered in Study 2

>



The Tumor Exampie

e Representation matters!
— vector for introduction of bias

. Locations considered in Study 1 . Locations considered in Study 2

>



Representations (InFormal)

e X: All possible real people
e Algorithm operates only on a representation of the person
The algorithm only knows what it is told about you
Distinct individuals may be mapped to the same representation

Name: Alice Amazing
Home State/Country: Arizona/USA
High School: Tempe High/Public

Representation
——

Essay 2: 5k words

Name: Bob Boring

Home State/Country: Billings/USA
High School: Tempe High/Public
GPA: 3.6

Extracurricular Activities: baking
Standardized Tests: 78%ile
Recommendation 1: .5k words
Recommendation 2: 1k words
Essay 1: 5k words

Essay 2: 5k words




Representations (InFormal)

e X: All possible real people

e Algorithm operates only on a representation of the person
The algorithm only knows what it is told about you
Distinct individuals may be mapped to the same representation
We make no such assumption

Name: Alice Amazing
Home State/Country: Arizona/USA
High School: Tempe High/Public

Representation
——

Essay 2: 5k words

Name: Bob Boring

Home State/Country: Billings/USA
High School: Tempe High/Public
GPA: 3.6

Extracurricular Activities: baking
Standardized Tests: 78%ile
Recommendation 1: .5k words
Recommendation 2: 1k words
Essay 1: 5k words

Essay 2: 5k words




\Nhy are AlgoriJrh _

e Unrepresentative training dat
e Training labels are historical

decisions, which are biased
e Features used are

differentially expressive
O Zero AP classes
O Access to Medicaid data but
not to private medical insurance [eE}&
e Unbalanced outcome proxies
O Referral bias and re-arrest bias
instead of child abuse and recidivism



Paradiam

e Definitions: Define what it means for an algorithm to be fair
O Catalog of evils: what do we wish the algorithm to prevent
O Problematic for technical and social reasons

e Algorithms: Construct algorithms that are fair according to the definition
O Some success

e Composition: Prove that systems built from fair pieces are fair in toto
O Often not the case



(lncomple’re) Ca’raloa of Algor‘iJrlnmic Fairness Evils

e Explicit discrimination: explicitly test for membership in S and give less
desirable outcome

e Redlining: Discrimination based on redundant encoding or property
correlated with membership in S

. (. Bt ’ 7 P R A
? > .




(IncompleJre) Ca’raloa of AlgoriJrlnmic Fairness Evils

e Explicit discrimination: explicitly test for membership in S and give less
desirable outcome

e Redlining: Discrimination based on redundant encoding or property
correlated with membership in §

How Air Pollution Across America
Reflects a Racist Policy From the
1930s

A new study shows how redlining, a

Depression-era housing policy, contributed

to inequalities that persist decades later in f"”‘""
U.S. cities. 3y

Redlined %
neighborhoods

NO2 pollution, 2010

More —
L eee—



(IncompleJre) Ca’raloa of Algoriﬂnmic Fairness Evils

Explicit discrimination: explicitly test for membership in S and give less
desirable outcome

Redlining: Discrimination based on redundant encoding or property
correlated with membership in §

Cutting off business with an S-heavy segment of the population

Deliberately choosing “wrong” members of S (possibly in order to build a bad
track record for S)

Reverse tokenism: denying service to a highly qualified member of T — the

token rejectee
Your evil here!




DePining Fairness for Groups

e Group fairness properties are statistical requirements

O Statistical Parity: demographics of people assigned positive (negative)
classification are the same as the demographics of the general population




DePining Fairness for Groups

e Group fairness properties are statistical requirements

O Statistical Parity: demographics of people assigned positive (negative)
classification are the same as the demographics of the general population

B May be meaningful in the breach; flawed as a solution concept

o




DePining Fairness for Groups

e Group fairness properties are statistical requirements

O Statistical Parity: demographics of people assigned positive (negative)
classification are the same as the demographics of the general population

O Permits targeting the wrong subset of S




Def—ininﬂ Fairness +or Groups
e Group fairness properties are statistical requirements

O Calibration within groups: for each group G € {S,T} and each bin b with
associated score v, “v (s correct on G in expectation”

@ o
® os5
© o9

@ o1
® os5
© o9




Def—ininﬂ Fairness +or Groups
e Group fairness properties are statistical requirements

O Calibration within groups: for each group G € {S,T} and each bin b with
associated score v, “v (s correct on G in expectation”

B Nothing forces even remotely comparable differentiation

B Example: both groups composed of equal numbers of 0.1's and 0.9's

0.1 0.1
0.5 ® os5
0.9 0.9




UHequaI Error Rates as Glroup unfairness

e Equal False Positive Rate (FPR) across groups
e Equal False Negative Rate (FNR) across groups
e Equal Positive Predictive Value (PPV) across groups

No imperfect classifier can simultaneously ensure equal FPR, FNR, PPV unless
the base rates are equal

(P 1 — PPV PR
FPR_(l—p)( PPV >( — FNR)

p=5/13
Chouldechova 2016



Proof
e Write

- ps \ /T—PP¥K\
FPR 3 <] (1 — FNR«
T (1 - PS)( PPV ( RSQ

: S opr \71- PPVT {
. FPRy = 1 - FNR
S (1 - PT) ( PPVT E‘ T)

Chouldechova 2016



POP Quiz

Is the problem solved by introducing a human into the process?



PoP Quiz

What about a classification deity?




5corina Functions

e A general group fairness goal.
Ex-p[A(R(x))|x € S, t(x) = v] =

Ex-plARG@))Ix € T,£(x) = v] /Aﬂ/x

O Truly similar individuals receive, on L 0.75 ~
average, similar treatment, independent 74
of group 0.5 05

O No promise about correctness

0.25 0.25
e Compare to Calibration for Groups

O Implies that the scores “mean” the same g

thing across groups.

T
Half % get 1, halfget 0.2  All % get 0.6



Inconsic;Jrer\cy fFor Scor‘inﬂ Functions
e Balance for positive class: Eqx ) [f (X)|x €S,y = 1] = E )y [f () [x €T,y = 1]
e Balance for negative class: E¢,,)[f (x)|x € S,y = 0] = Eqx )y [f(X)|x €T,y = 0]
e fiscalibrated on bothSand T

These three conditions cannot be satisfied simultaneously for imperfect
predictors unless the base rates are the same in S and T.

Kleinberg, Mullainathan, Raghavan 2016



surprisingly DitFicult to Audit



Benchmark Test For Police Stops

e Examines differences of rates of police contact, scaled by race-specific rates of
expected contact were the police not to discriminate

e Nature of the inference: higher scaled rate of contact indicates discrimination
e Problem: The choice of denominator strongly affects the conclusion

Neil and Winship, 2019



Kohler-Hausmann (2018) makes a particularly powerful case against definitions of discrimina-
tion that are based on the notion of individuals who are similarly situated but for race. She argues
that if we think race is a social construct—as most social scientists do—then it does not make sense
to speak of discrimination as the treatment effect of race, as race is not something confounded by
other features but rather something that is constituted by those features. Put differently, were we
capable of controlling for everything else, there would be no treatment—no solid-state race—that
remained because those features and relations exist in a complex interrelationship that together
constitute racial categories as we know them. She argues that whether or not something is dis-
crimination is thus a normative question, which can only be made sense of with situated cultural
knowledge about the relevant categories of stratification. As an example, she describes a hypothet-
ical audit study in which male and female job candidates are sent out wearing the same dresses:
They are not similarly situated candidates but for sex, because sex makes the dress mean something
different.



Benchmark Test

Table 1  Hypothetical data and analyses

S T
Data
Population 100,000 100,000
Criminals 15,000 10,000
Stops 10,000 (10%) 5,000 (5%)
Searches 5,000 (50%) 1,250 (25%)
Hits 250 (5%) 125 (10%)
Analyses

Population-based benchmark test for stops

(10,000/100,000):(5,000/100,000) = 2:1

Criminal-based benchmark test for stops

(10,000/15,000):(5,000/10,000) = 1.33:1

Stop-based benchmark test for searches

(5,000/10,000):(1,250/5,000) = 2:1

Outcome test for searches

(250/5,000):(125/1,250) = 1:2




|Stops(S)| | |Stops(T)|

Benchmark Test Sl T
Table 1  Hypothetical data and analyses
S T
Data
Population 100,000 100,000
Criminals 15,000 10,000
Stops 10,000 (10%) 5,000 (5%)
Searches 5,000 (50%) 1,250 (25%)
Hits 250 (5%) 125 (10%)
Analyses

Mtion-based benchmark test for stops

(10,000/100,000):(5,000/100,000) = 2:1 =

Criminal-based benchmark test for stops

(10,000/15,000):(5,000/10,000) = 1.33:1

Stop-based benchmark test for searches

(5,000/10,000):(1,250/5,000) = 2:1

Outcome test for searches

(250/5,000):(125/1,250) = 1:2




Benchmark Test

Table 1  Hypothetical data and analyses

|Stops(S)|  |Stops(T)|
|Crim(S)| ~ |Crim(T)|

S T
Data
Population 100,000 100,000
Criminals 15,000 10,000
Stops 10,000 (10%) 5,000 (5%)
Searches 5,000 (50%) 1,250 (25%)
Hits 250 (5%) 125 (10%)
Analyses

Population-based benchmark test for stops

(10,000/100,000):(5,000/100,000) = 2:1

—Criminal-based benchmark test tor stops

(10,000/15,000):(5,000/10,000) = 1.33:1___——>

Stop-based benchmark test for searches

(5,000/10,000):(1,250/5,000) = 2:1

Outcome test for searches

(250/5,000):(125/1,250) = 1:2




Extreme Example: Criminalier in Denominator

In S: 85,000 of 100K are innocent

In T: 90 of 100K are innocent

Stops(S)=Stops(T)

ZERO criminals stopped in each group (epic police fail)
Stops/innocent in S > Stops/innocent in T!



|Stops(S)|  |Stops(T)|

|Crim(S)| ~ |Crim(T)|
Criminalier in Denominator is Problematic

Table 2 Using crime as a benchmark understates discrimination against the higher-crime group

S T
Criminality Innocent Criminal Innocent Criminal
Number of individuals 85,000 15,000 90,000 10,000
Probability of stop 0.0647 0.30 0.0333 0.20
Stops 5,500 4,500 3,000 2,000

< Criminal-based benchmark test for stops

| (10,000/15,000):(5,000/10,000) = 1.33:1 —

Police don’t know who is a criminal. The data here are consistent with previous table.
Probability of a stop for an innocent in S is nearly twice that for an innocent in T, so the 1.33
. 1 ratio underestimates the unfairness.



Suppose: police only stop people in public spaces, everyone in public space has probability

0.25 of being stopped, and 40,000 members of S, but only 20,000 members of T, use public
spaces. “Similarly situated (but for S/T) are treated similarly;” no discrimination(??)

Table 1  Hypothetical data and analyses

S T
Data
Population 100,000 100,000
Criminals 15,000 10,000
Stops 10,000 (10%) 5,000 (5%)
Searches 5,000 (50%) 1,250 (25%)
Hits 250 (5%) 125 (10%)
Analyses

Population-based benchmark test for stops

(10,000/100,000):(5,000/100,000) = 2:1

Criminal-based benchmark test for stops

(10,000/15,000):(5,000/10,000) = 1.33:1

Stop-based benchmark test for searches

(5,000/10,000):(1,250/5,000) = 2:1

Outcome test for searches

(250/5,000):(125/1,250) = 1:2




Individual Fairness

“Similar people” are treated similarly
sk U 1 | Yes
ﬁ;;li"i ¢ ® No
1%
Need “right” notion of (dis)similarity d(u, v) for the specific classification task

DworkHardtReingoldPitassiZemel 2012



Individual Fairness

“Similar people” are treated similarly

) | Yes

® No

“You have to draw the line somewhere”

DworkHardtReingoldPitassiZemel 2012



Individual Fairness

“Similar people” have similar probabillity distributions on outcomes

Yes

No

“You have to draw the line somewhere”

Really?

DworkHardtReingoldPitassiZemel 2012



QAO Oggf

Algorithms For Ir\clividually Fair ClassitFication



Perspecﬁve

Fairness is a hard constraint, accuracy is best possible

In contrast to the case in the traditional privacy notion in secure function
evaluation (SFE, MPC): produce exact answers, privacy is best possible; and
in contrast to maximizing revenue as a hard constraint with best possible

fairness

In this work, the implicit assumption was that the data are extremely rich,
capturing everything needed for correct prediction, preparing for a dystopic
future in which your computer — or your advertiser -- knows everything about

you



Individual Fairness

“Similar people” have similar probabillity distributions on outcomes

Yes
No
C:U - A(0)
1C) — CWI| < d(x,y)
1 P(a) Q(a)
Dy (P, Q) = ) GEZ; |P(a) — Q(a)| Do(P, Q) = igglog (max { 0@ P@) })



u+i|i+y

Yes

No

L(v,0) ="Loss” incurred by mapping v to o



Assemble Inareclierﬂrs

"Minimize vendor’s utility loss, subject to the fairness conditions.”
Loss function: soft constraints
Fairness conditions: hard constraints

“Fairness LP”

T, Fue o L
ty € AO)

i, = tol| = d(u, v) (Lipschitz)

DworkHardtReingoldPitassiZemel 2012



Assemble IngreclienJrs

"Minimize utility loss, subject to the fairness conditions.”
Loss function: soft constraints

Fairness conditions: hard constraints ° ®
Generalizability via relaxing to “Probably Approximately Fair” P
[
o [
o ® ®
o © ® ®
o o ®
@ o ®
@ .
[
[
PS [

RothblumYona 2018



Privaay-Pre;ervlna Data Analysie

Dataset : data analyst

e Driving scenario: analysis of US Census data
e 55+ year old problem



DifLerential Privacy

M gives e-differential privacy if for all pairs of adjacent data
sets x,y, and all output events S

Pr[see S on M(x)] < @r[see SonM(y)]
“Privacy Loss” bound

Randomness introduced by M

DworkMcSherryNissimSmith’06



The ExPonerH'iaI Mechanism

¢ f(X) SRORS {51162“"'61{}

O Strings, experts, small databases, prices, models, ...

Each & € E has a utility for x, denoted u(x, &)
A(w) = max |u(x,¢) —u(y,$)|
§,adj x,y

e Intuition: Output & with probability o ¥ $)€/Au

€/Au

exp(u(x, §)) = [euoc,f)—u(yf)]e/ Au

exp(u(y, §))

IA



The ExPonerH'iaI Mechanism

® f(X) EE= {51'621"”61{}

O Strings, experts, small databases, prices...

Each & € E has a utility for x, denoted u(x, &)

Alu) = cmax lu(x, &) —uy,§)|

eu(x, E@u

F lly, output ith it 7
e Formally, output ¢ with probability 7 eu(x’g@m ——

e Proof of e-DP: ratio of numerators < exp(g);

ratio of denominators > exp(— g)




u+i|i+y of ExPonen+iaI Mechanism

e Theorem: Let Z* € E be the set of optimal-utility outputs for x: u(x,&*) =
OPT = u* Vé* € E*.

= 2A =
|Elecv/28% _ |E] p€(W—u")/2Au

Then Vv: Pr[u(x,M(x)) < v] < T jeew At = (g

e Proof:
O Ifu(x, &) < v then un-normalized weight of £ is at most e€¥/22% There are at
most |Z| such elements.

O There are |E*| elements with un-normalized weight e€*"/24% 5o the
normalization term is at least |2*|e€% /20u



u;ina DP to Obtain Fairness: Preliminaries

Differential Privacy automatically ensures (degraded) privacy for groups
e If Mise-DP thenitis ke-DP for groups of size k (homework)

e Generally, e-differential privacy ensures that for all events E, and for all not
necessarily adjacent x,y: Pr[E|x] < e *AYIPr[E|y]

O xAy set of elements appearing in just one of x and y



u;ina DP to Obtain Fairness: Preliminaries

® i, € A(O) maps an individual x to a distribution on outcome space 0

e A Lipschitz constraint on do, (i, ity ) < d(x, ) translates to familiar form:

O ue(a) <e?®y (a)forall a € 0 (but remember: x and y are individuals, not databases!)
O For fixed x, y these are linear constraints
O u, € A(O) is captured by 0 < p,(a) <1 and Y e tx(a) =1

e—dxv)

o Let B, be the distribution over individuals v € V: B, (V) = s———5;
vevV '

o Claim (homework): |8, — By|| < 2d(x,y).

Denominator £ N, > 1 because d(x,x) =0




e Doubling Dimension of (V,d) 6
O Least k suchthatvx € V,VR > 0
B(x,R) = {y € V |d(x,y) < R} can be covered by 2* balls of radius R /2

o (V,d) is well-separated if 3¢ > 0 such that |B(x,¢)| =1forallx eV MM;(S/L
e Fact: Suppose S is a set of points in a metric space with doubling dimension
<k If
S is contained in some ball of radius r and
Vy,z € Ssuchthaty # z, d(y,z) > ¢,
then |S| < (4r/¢)k.




u;ina DP t+o Obtain Fairness

Theorem: Let (d,V) be well separated with bounded doubling dimension. Then
{Bx}xev satisfies Exey E,p d(x,y) = 0(1).

Proof: Fact = |B(x,r)| < (4r/e)k = (4/&)krk = 200k,

ExEVEy~ﬁxd(x;y) < ExevE y~p, d(x,y) + ExevE yop, d(x,y)
d(x,y)<1 d(x,y)=1

<1+ EvE y-p, d(x,y)
d(x,y)=1

e —-d(x,v)

Be) = 5



EXEVEy"’ﬁxd(x’ y) S 1 + EXEVE y~ﬁx d(x,y)

d(x,y)z1
1 + ExEVE y~ﬁx d(X, y)
d(x,y)=1
(0] e—‘}"
<1+4+E,ey | r—|B(xr)|dr
Ny
d(x,y) B, (y) for y at distance r #y at distance < r

co

<1 +ExEVj re "|B(x,r)|dr

/ )
e —-d(x,v)

because N, =1 Pr(v) = T, ey e 4y




(o]

ExevEy-p d(x,y) <1+ Exevf re "|B(x,r)|dr
1

1 +Ex€Vf re "|B(x,r)|dr =1 +j re "E,cy|B(x,1)|dr
1 1
- k
— 4‘7" k
< 1+f re "Eyey <?> dr |B(x,r)| < (4r/¢)
1

4\* (o

< 1+<—) j rk+tle="qy
€ 1
4\* (o

< 1+<—) j rk+tle="qy
€ 0

=1+2000r(k+2) =1+ 2k +1)! = 0(1)
I'(z) = foooxz‘le‘xdx

I'(n) = (n — 1)! for positive integer n



