
Biased By Design
 The National Resident Matching Program

 Gale-Shapley

 Implementation choice:  program-proposing vs applicant-proposing
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Our Foci
● Binary classification algorithms

○ Classify each person as positive (eg, high risk for disease) or negative (low risk)

● Scoring functions 𝑓 𝑥 = 𝑝 ∈ [0,1]

○ Often interpreted as a probability; more about that later



Theory of Algorithmic Fairness
● Group Fairness Examples

○ Statistical parity: demographics of 

accepted students are same as in 

population 

■ 48.7% female

○ Balance for positive class: the 

average score for a positive member 

of A is the same as the average score 

for a positive member of B

● Definitions: Group vs Individual

Group notions fail under scrutiny

DworkHardtPitassiReingoldZemel2012



Theory of Algorithmic Fairness
● Group Fairness Examples

○ Statistical parity: demographics of 

accepted students are same as in 

population 

○ Balance for positive class: the 

average score for a positive member 

of A is the same as the average score 

for a positive member of B

● Definitions: Group vs Individual

Group notions fail under scrutiny

– steak ads for vegetarians

– very different distributions, reward    

minority that “look like” majority

– surprisingly hard to test

– natural desiderata are mutually 

exclusive

– which groups? Intersectionality?

Chouldechova 2016; KleinbergMullainathanRaghavan2016 DworkHardtPitassiReingoldZemel2012

NeilWinship2019



Theory of Algorithmic Fairness
● Individual Fairness 

○ People who are similar with respect 

to a given classification task should 

be treated similarly

■ 𝐶 𝑥 − 𝐶 𝑧 ≤ 𝑑𝑇(𝑥, 𝑧)

● Definitions: Group vs Individual

Group notions fail under scrutiny

Individual Fairness requires a task-

specific metric



Theory of Algorithmic Fairness
● Individual Fairness 

○ People who are similar with respect 

to a given classification task should 

be treated similarly

■ 𝐶 𝑥 − 𝐶 𝑧 ≤ 𝑑𝑇(𝑥, 𝑧)

■ Strong legal foundation

● 𝑑𝑇 𝑥, 𝑧 ?

■ Ilvento19: O(1) hard queries

■ GillenJungRothKearns18

■ KimReingoldRothblum18

■ RothblumYona18

● Definitions: Group vs Individual

Group notions fail under scrutiny

Individual Fairness requires a task-

specific metric



Tantalizing Breakthrough!
Three Insights for Metric Learning for Individual Fairness:

1. Distances from a single “representative” element produce useful 

approximations to the true metric.

2. “Parallax” can be achieved by aggregating approximations obtained from a 

small number of additional representatives

3. Can generalize to unseen elements under simple assumptions about learning 

threshold functions

Ilvento 2019

a

c

h

.6

.6
d>0

a
c

h
.6 0



Theory of Algorithmic Fairness
● Individual Fairness 

○ People who are similar with respect 

to a given classification task should 

be treated similarly

■ Strong legal foundation

● 𝑑𝑇 𝑥, 𝑧 ?

■ The “Metric Conjecture”: a 

metric can be extracted from 

any “fair” system or “fairness” 

oracle

● Definitions: Group vs Individual

Group notions fail under scrutiny

Individual Fairness requires a task-

specific metric

DworkIlventoRothblumSur2020



Individual Probabilities: the Defining Problem of AI

Risk predictors assign numbers in [0,1] to individual instances:

● What is the probability that it will rain tomorrow?

● What is the probability that X will repay the loan?  

● What is the probability that this tumor will metastasize? 

What is the “probability” of a non-repeatable event?



The Tumor Example
● “Probabilities” are learned from binary outcomes data 

– did vs did not metastasize

Locations considered in Study 1 Locations considered in Study 2



The Tumor Example
● Representation matters!

– vector for introduction of bias

Locations considered in Study 1 Locations considered in Study 2



Representations (Informal)

● 𝑋:  All possible real people 

● Algorithm operates only on a representation of the person

The algorithm only knows what it is told about you

Distinct individuals may be mapped to the same representation

Z
𝑍

Name: Alice Amazing
Home State/Country: Arizona/USA
High School: Tempe High/Public
GPA: 3.6
Extracurricular Activities: Chess team, waitressing
Standardized Tests: 85%ile
Recommendation 1: 1k words
Recommendation 2: 1k words
Essay 1: 5k words
Essay 2: 5k words
… 

Name: Bob Boring
Home State/Country: Billings/USA
High School: Tempe High/Public
GPA: 3.6
Extracurricular Activities: baking
Standardized Tests: 78%ile
Recommendation 1: .5k words
Recommendation 2: 1k words
Essay 1: 5k words
Essay 2: 5k words
… 

𝑋 𝑍

Representation



Representations (Informal)

● 𝑋:  All possible real people 

● Algorithm operates only on a representation of the person

The algorithm only knows what it is told about you

Distinct individuals may be mapped to the same representation

We make no such assumption

Z
𝑍

Name: Alice Amazing
Home State/Country: Arizona/USA
High School: Tempe High/Public
GPA: 3.6
Extracurricular Activities: Chess team, waitressing
Standardized Tests: 85%ile
Recommendation 1: 1k words
Recommendation 2: 1k words
Essay 1: 5k words
Essay 2: 5k words
… 

Name: Bob Boring
Home State/Country: Billings/USA
High School: Tempe High/Public
GPA: 3.6
Extracurricular Activities: baking
Standardized Tests: 78%ile
Recommendation 1: .5k words
Recommendation 2: 1k words
Essay 1: 5k words
Essay 2: 5k words
… 

𝑋 𝑍

Representation



Why are Algorithms Unfair?
● Unrepresentative training data

● Training labels are historical 

decisions, which are biased

● Features used are            

differentially expressive
○ Zero AP classes

○ Access to Medicaid data but           

not to private medical insurance data

● Unbalanced outcome proxies
○ Referral bias and re-arrest bias 

instead of child abuse and recidivism



Paradigm
● Definitions: Define what it means for an algorithm to be fair

○ Catalog of evils: what do we wish the algorithm to prevent

○ Problematic for technical and social reasons

● Algorithms: Construct algorithms that are fair according to the definition

○ Some success

● Composition: Prove that systems built from fair pieces are fair in toto 

○ Often not the case



(Incomplete) Catalog of Algorithmic Fairness Evils

● Explicit discrimination: explicitly test for membership in 𝑆 and give less 

desirable outcome

● Redlining: Discrimination based on redundant encoding or property 

correlated with membership in 𝑆
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correlated with membership in 𝑆



(Incomplete) Catalog of Algorithmic Fairness Evils

● Explicit discrimination: explicitly test for membership in 𝑆 and give less 

desirable outcome

● Redlining: Discrimination based on redundant encoding or property 

correlated with membership in 𝑆

● Cutting off business with an 𝑆-heavy segment of the population

● Deliberately choosing “wrong” members of 𝑆 (possibly in order to build a bad 

track record for 𝑆)

● Reverse tokenism: denying service to a highly qualified member of 𝑇 – the 

token rejectee

● Your evil here!

TS



Defining Fairness for Groups
● Group fairness properties are statistical requirements 

○ Statistical Parity:  demographics of people assigned positive (negative) 

classification are the same as the demographics of the general population

Y

N



Defining Fairness for Groups
● Group fairness properties are statistical requirements 

○ Statistical Parity:  demographics of people assigned positive (negative) 

classification are the same as the demographics of the general population

■ May be meaningful in the breach; flawed as a solution concept

Y

N



Defining Fairness for Groups
● Group fairness properties are statistical requirements 

○ Statistical Parity:  demographics of people assigned positive (negative)    

classification are the same as the demographics of the general population

○ Permits targeting the wrong subset of S

Y

N



Defining Fairness for Groups
● Group fairness properties are statistical requirements 

○ Calibration within groups: for each group 𝐺 ∈ {𝑆, 𝑇} and each bin 𝑏 with 

associated score 𝑣, “𝑣 is correct on 𝐺 in expectation”
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Defining Fairness for Groups
● Group fairness properties are statistical requirements 

○ Calibration within groups: for each group 𝐺 ∈ {𝑆, 𝑇} and each bin 𝑏 with 

associated score 𝑣, “𝑣 is correct on 𝐺 in expectation”

■ Nothing forces even remotely comparable differentiation

■ Example: both groups composed of equal numbers of 0.1’s and 0.9’s
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Unequal Error Rates as Group Unfairness
● Equal False Positive Rate (FPR) across groups

● Equal False Negative Rate (FNR) across groups

● Equal Positive Predictive Value (PPV) across groups

No imperfect classifier can simultaneously ensure equal FPR, FNR, PPV unless 

the base rates are equal

FPR =
𝑝

1 − 𝑝

1 − PPV

PPV
(1 − FNR)

𝑝 = 5/13

Chouldechova 2016



Proof
● Write

FPRS =
𝑝𝑆

1 − 𝑝𝑆

1 − PPVS
PPV𝑆

(1 − FNRS)

FPRT =
𝑝𝑇

1 − 𝑝𝑇

1 − PPVT
PPV𝑇

(1 − FNRT)

Chouldechova 2016



Pop Quiz
Is the problem solved by introducing a human into the process?



Pop Quiz
What about a classification deity?



Scoring Functions
● A general group fairness goal:

𝐸𝑥∼𝐷 𝐴 𝑅(𝑥) 𝑥 ∈ 𝑆, 𝑡(𝑥) = 𝑣 =

𝐸𝑥∼𝐷 𝐴 𝑅(𝑥) 𝑥 ∈ 𝑇, 𝑡(𝑥) = 𝑣

○ Truly similar individuals receive, on 

average, similar treatment, independent 

of group

○ No promise about correctness

● Compare to Calibration for Groups

○ Implies that the scores “mean” the same 

thing across groups.

0.25 0.25

0.5 0.5

0.75

1.0
1.0

𝑆 𝑇

Half             get 1, half get 0.2 All              get 0.6



Inconsistency for Scoring Functions

● Balance for positive class: 𝐸(𝑥,𝑦) 𝑓 𝑥 𝑥 ∈ 𝑆, 𝑦 = 1 = 𝐸(𝑥,𝑦) 𝑓 𝑥 𝑥 ∈ 𝑇, 𝑦 = 1

● Balance for negative class: 𝐸(𝑥,𝑦) 𝑓 𝑥 𝑥 ∈ 𝑆, 𝑦 = 0 = 𝐸(𝑥,𝑦) 𝑓 𝑥 𝑥 ∈ 𝑇, 𝑦 = 0

● 𝑓 is calibrated on both 𝑆 and 𝑇

These three conditions cannot be satisfied simultaneously for imperfect 

predictors unless the base rates are the same in 𝑆 and 𝑇.

Kleinberg, Mullainathan, Raghavan 2016 



Surprisingly Difficult to Audit



Benchmark Test for Police Stops

● Examines differences of rates of police contact, scaled by race-specific rates of 

expected contact were the police not to discriminate

● Nature of the inference: higher scaled rate of contact indicates discrimination

● Problem: The choice of denominator strongly affects the conclusion

Neil and Winship, 2019





Benchmark Test

S T



Benchmark Test

S T

𝑆𝑡𝑜𝑝𝑠 𝑆

|𝑆|
∶
|𝑆𝑡𝑜𝑝𝑠 𝑇 |

|𝑇|



Benchmark Test

S T

𝑆𝑡𝑜𝑝𝑠 𝑆

|𝐶𝑟𝑖𝑚(𝑆)|
∶
|𝑆𝑡𝑜𝑝𝑠 𝑇 |

|𝐶𝑟𝑖𝑚(𝑇)|



Extreme Example: Criminality in Denominator

● In S: 85,000 of 100K are innocent

● In T: 90 of 100K are innocent

● Stops(S)=Stops(T)

● ZERO criminals stopped in each group (epic police fail)

● Stops/innocent in S > Stops/innocent in T!



Criminality in Denominator is Problematic

Police don’t know who is a criminal.  The data here are consistent with previous table.   

Probability of a stop for an innocent in S is nearly twice that for an innocent in T, so the 1.33 

: 1 ratio underestimates the unfairness.

S T

𝑆𝑡𝑜𝑝𝑠 𝑆

|𝐶𝑟𝑖𝑚(𝑆)|
∶
|𝑆𝑡𝑜𝑝𝑠 𝑇 |

|𝐶𝑟𝑖𝑚(𝑇)|



Denominator Matters 

S T

Suppose: police only stop people in public spaces, everyone in public space has probability 

0.25 of being stopped, and 40,000 members of S, but only 20,000 members of T, use public 

spaces. “Similarly situated (but for S/T) are treated similarly;” no discrimination(??) 



Individual Fairness

Need “right” notion of (dis)similarity 𝑑(𝑢, 𝑣) for the specific classification task

𝑢

𝑣

Yes

No

“Similar people” are treated similarly

DworkHardtReingoldPitassiZemel 2012



Individual Fairness 

“You have to draw the line somewhere”  

𝑢

𝑣

Yes

No

“Similar people” are treated similarly

tiny 𝑑

DworkHardtReingoldPitassiZemel 2012



Individual Fairness

𝑢

𝑣

Yes

No

“Similar people” have similar probability distributions on outcomes

tiny 𝑑

“You have to draw the line somewhere”  

Really?

DworkHardtReingoldPitassiZemel 2012



Algorithms for Individually Fair Classification



Perspective

● Fairness is a hard constraint, accuracy is best possible

● In contrast to the case in the traditional privacy notion in secure function 

evaluation (SFE, MPC): produce exact answers, privacy is best possible; and          

in contrast to maximizing revenue as a hard constraint with best possible 

fairness

● In this work, the implicit assumption was that the data are extremely rich, 

capturing everything needed for correct prediction, preparing for a dystopic 

future in which your computer – or your advertiser -- knows everything about 

you



Individual Fairness

𝐶:𝑈 → Δ 𝑂

𝐶 𝑥 − 𝐶 𝑦 ≤ 𝑑(𝑥, 𝑦)

𝑢

𝑣

Yes

No

“Similar people” have similar probability distributions on outcomes

tiny 𝑑



Utility 

𝐿(𝑣, 𝑜) = “Loss” incurred by mapping 𝑣 to 𝑜

𝑢

𝑣

Yes

No
tiny 𝑑



Assemble Ingredients
“Minimize vendor’s utility loss, subject to the fairness conditions.”

Loss function: soft constraints

Fairness conditions: hard constraints

min
𝑀= 𝜇𝑢 𝑢∈𝑈

𝐸𝑢∈𝑉𝐸𝑜∼𝜇𝑢 𝐿(𝑢, 𝑜)

𝜇𝑢 ∈ Δ(𝑂)

||𝜇𝑢 − 𝜇𝑣|| ≤ 𝑑(𝑢, 𝑣) (Lipschitz)

“Fairness LP”“Fairness LP”

DworkHardtReingoldPitassiZemel 2012



Assemble Ingredients
“Minimize utility loss, subject to the fairness conditions.”

Loss function: soft constraints

Fairness conditions: hard constraints

Generalizability via relaxing to “Probably Approximately Fair”

RothblumYona 2018



Privacy-Preserving Data Analysis 

● Driving scenario: analysis of US Census data 

● 55+ year old problem

Dataset data analyst

M
q1

a1
q2
a2



𝑀 gives 𝜀-differential privacy if for all pairs of adjacent data 

sets 𝑥, 𝑦, and all output events 𝑆

Pr see 𝑆 on 𝑀 𝑥 ≤ 𝑒𝜀 Pr see 𝑆 on 𝑀 𝑦

Differential Privacy

DworkMcSherryNissimSmith’06

“Privacy Loss” bound

Randomness introduced by 𝑀



The Exponential Mechanism 

● 𝑓 𝑥 ∈ Ξ = {𝜉1, 𝜉 2, … , 𝜉𝑘}

○ Strings, experts, small databases, prices, models, …

Each 𝜉 ∈ Ξ has a utility for 𝑥, denoted 𝑢(𝑥, 𝜉)

Δ 𝑢 = max
𝜉,adj 𝑥,𝑦

|𝑢 𝑥, 𝜉 − 𝑢 𝑦, 𝜉 |Mechanism

● Intuition: Output 𝜉 with probability ∝ 𝑒𝑢 𝑥, 𝜉 𝜖/Δu

exp 𝑢 𝑥, 𝜉

exp 𝑢 𝑦, 𝜉

Τ𝜖 Δ𝑢

= 𝑒𝑢 𝑥,𝜉 −𝑢 𝑦,𝜉 Τ𝜖 Δ𝑢
≤ 𝑒𝜖



The Exponential Mechanism 

● 𝑓 𝑥 ∈ Ξ = {𝜉1, 𝜉 2, … , 𝜉𝑘}

○ Strings, experts, small databases, prices…

Each 𝜉 ∈ Ξ has a utility for 𝑥, denoted 𝑢(𝑥, 𝜉)

Δ 𝑢 = max
𝜉,adj 𝑥,𝑦

|𝑢 𝑥, 𝜉 − 𝑢 𝑦, 𝜉 |Mechanism

● Formally, output 𝜉 with probability  
𝑒𝑢 𝑥, 𝜉 𝜖/2Δu

σ
𝜉′
𝑒𝑢 𝑥, 𝜉′ 𝜖/2Δu

● Proof of 𝜖-DP:  ratio of numerators ≤ exp(
𝜖

2
); 

ratio of denominators ≥ exp(−
𝜖

2
)

Normalization 

term



Utility of Exponential Mechanism

● Theorem: Let Ξ∗ ⊆ Ξ be the set of optimal-utility outputs for 𝑥: 𝑢 𝑥, 𝜉∗ =

𝑂𝑃𝑇 = 𝑢∗ ∀𝜉∗ ∈ Ξ∗. 

Then ∀𝑣:  Pr 𝑢 𝑥,𝑀 𝑥 ≤ 𝑣 ≤
|Ξ|𝑒𝜖𝑣/2Δ𝑢

|Ξ∗|𝑒𝜖𝑢
∗/2Δ𝑢 =

|Ξ|

|Ξ∗|
𝑒𝜖(𝑣−𝑢

∗)/2Δ𝑢

● Proof:

○ If 𝑢 𝑥, 𝜉 ≤ 𝑣 then un-normalized weight of 𝜉 is at most 𝑒𝜖𝑣/2Δ𝑢 . There are at 

most |Ξ| such elements. 

○ There are Ξ∗ elements with un-normalized weight 𝑒𝜖𝑢
∗/2Δ𝑢 so the 

normalization term is at least |Ξ∗|𝑒𝜖𝑢
∗/2Δ𝑢



Using DP to Obtain Fairness: Preliminaries

Differential Privacy automatically ensures (degraded) privacy for groups

● If 𝑀 is 𝜀-DP then it is 𝑘𝜀-DP for groups of size 𝑘 (homework)

● Generally, 𝜀-differential privacy ensures that for all events 𝐸, and for all not 

necessarily adjacent 𝑥, 𝑦: Pr 𝐸 𝑥 ≤ 𝑒𝜀⋅|xΔy|Pr[𝐸|𝑦]

○ 𝑥Δ𝑦 set of elements appearing in just one of 𝑥 and 𝑦



Using DP to Obtain Fairness: Preliminaries

● 𝜇𝑥 ∈ Δ(O) maps an individual 𝑥 to a distribution on outcome space 𝑂

● A Lipschitz constraint on 𝑑∞ 𝜇𝑥, 𝜇𝑦 ≤ 𝑑(𝑥, 𝑦) translates to familiar form:

○ 𝜇𝑥 𝑎 ≤ 𝑒𝑑 𝑥,𝑦 𝜇𝑦(𝑎) for all 𝑎 ∈ 𝑂 (but remember: 𝑥 and 𝑦 are individuals, not databases!)

○ For fixed 𝑥, 𝑦 these are linear constraints

○ 𝜇𝑥 ∈ Δ(O) is captured by 0 ≤ 𝜇𝑥 𝑎 ≤ 1 and σ𝑎∈𝑂 𝜇𝑥(𝑎) = 1

● Let 𝛽𝑥 be the distribution over individuals v ∈ 𝑉:  𝛽𝑥(𝑣) =
𝑒−𝑑(𝑥,𝑣)

Σ𝑣∈𝑉𝑒−𝑑(𝑥,𝑣)

● Claim (homework): 𝛽𝑥 − 𝛽𝑦
∞
≤ 2𝑑(𝑥, 𝑦).

Denominator ≜ 𝑁𝑥 ≥ 1 because 𝑑 𝑥, 𝑥 = 0



Using DP to Obtain Fairness: Preliminaries

● Doubling Dimension of (𝑉, 𝑑)
○ Least 𝑘 such that ∀𝑥 ∈ 𝑉, ∀𝑅 > 0

𝐵 𝑥, 𝑅 = 𝑦 ∈ 𝑉 𝑑 𝑥, 𝑦 ≤ 𝑅} can be covered by 2𝑘 balls of radius 𝑅/2

● (𝑉, 𝑑) is well-separated if ∃𝜀 > 0 such that 𝐵 𝑥, 𝜀 = 1 for all 𝑥 ∈ 𝑉

● Fact: Suppose 𝑆 is a set of points in a metric space with doubling dimension  

≤ 𝑘.  If 

𝑆 is contained in some ball of radius 𝑟 and 

∀𝑦, 𝑧 ∈ 𝑆 such that 𝑦 ≠ 𝑧,  𝑑 𝑦, 𝑧 > 𝜀, 

then 𝑆 ≤ Τ4𝑟 𝜀 𝑘. 𝑦 ≠ 𝑧

𝑦
≠ 𝑧

𝑦
≠ 𝑧𝑦

≠ 𝑧

𝑦
≠ 𝑧



Using DP to Obtain Fairness

Theorem: Let 𝑑, 𝑉 be well separated with bounded doubling dimension.  Then 

𝛽𝑥 𝑥∈𝑉 satisfies 𝐸𝑥∈𝑉𝐸𝑦∼𝛽𝑥𝑑 𝑥, 𝑦 = 𝑂(1).

Proof: Fact ⇒ 𝐵 𝑥, 𝑟 ≤ Τ4𝑟 𝜀 𝑘 = Τ4 𝜀 𝑘𝑟𝑘 = 2𝑂 𝑘 𝑟𝑘.

𝐸𝑥∈𝑉𝐸𝑦∼𝛽𝑥𝑑 𝑥, 𝑦 ≤ 𝐸𝑥∈𝑉𝐸 𝑦∼𝛽𝑥
𝑑 𝑥,𝑦 ≤1

𝑑 𝑥, 𝑦 + 𝐸𝑥∈𝑉𝐸 𝑦∼𝛽𝑥
𝑑 𝑥,𝑦 ≥1

𝑑 𝑥, 𝑦

≤ 1 + 𝐸𝑥∈𝑉𝐸 𝑦∼𝛽𝑥
𝑑 𝑥,𝑦 ≥1

𝑑 𝑥, 𝑦

𝛽𝑥(𝑣) =
𝑒−𝑑(𝑥,𝑣)

Σ𝑣∈𝑉𝑒
−𝑑(𝑥,𝑣)



1 + 𝐸𝑥∈𝑉𝐸 𝑦∼𝛽𝑥
𝑑 𝑥,𝑦 ≥1

𝑑 𝑥, 𝑦

≤ 1 + 𝐸𝑥∈𝑉න
1

∞

𝑟
𝑒−𝑟

𝑁𝑥
|𝐵 𝑥, 𝑟 |𝑑𝑟

≤ 1 + 𝐸𝑥∈𝑉න
1

∞

𝑟 𝑒−𝑟|𝐵 𝑥, 𝑟 |𝑑𝑟

𝐸𝑥∈𝑉𝐸𝑦∼𝛽𝑥𝑑 𝑥, 𝑦 ≤ 1 + 𝐸𝑥∈𝑉𝐸 𝑦∼𝛽𝑥
𝑑 𝑥,𝑦 ≥1

𝑑 𝑥, 𝑦

𝑑(𝑥, 𝑦) 𝛽𝑥(𝑦) for 𝑦 at distance 𝑟 #𝑦 at distance ≤ 𝑟

because 𝑁𝑥 ≥ 1 𝛽𝑥(𝑣) =
𝑒−𝑑(𝑥,𝑣)

Σ𝑣∈𝑉𝑒
−𝑑(𝑥,𝑣)



1 + 𝐸𝑥∈𝑉න
1

∞

𝑟 𝑒−𝑟 𝐵 𝑥, 𝑟 𝑑𝑟 = 1 + න
1

∞

𝑟 𝑒−𝑟𝐸𝑥∈𝑉 𝐵 𝑥, 𝑟 𝑑𝑟

≤ 1 + න
1

∞

𝑟 𝑒−𝑟𝐸𝑥∈𝑉
4𝑟

𝜀

𝑘

𝑑𝑟

≤ 1 +
4

𝜀

𝑘

න
1

∞

𝑟𝑘+1 𝑒−𝑟𝑑𝑟

≤ 1 +
4

𝜀

𝑘

න
0

∞

𝑟𝑘+1 𝑒−𝑟𝑑𝑟

= 1 + 2𝑂 𝑘 Γ 𝑘 + 2 = 1 + 2𝑂 𝑘 𝑘 + 1 ! = 𝑂(1)

𝐸𝑥∈𝑉𝐸𝑦∼𝛽𝑥𝑑 𝑥, 𝑦 ≤ 1 + 𝐸𝑥∈𝑉න
1

∞

𝑟 𝑒−𝑟|𝐵 𝑥, 𝑟 |𝑑𝑟

𝐵 𝑥, 𝑟 ≤ Τ4𝑟 𝜀 𝑘

Γ 𝑧 = 0׬
∞
𝑥𝑧−1 𝑒−𝑥𝑑𝑥

Γ 𝑛 = 𝑛 − 1 ! for positive integer 𝑛


