
Composition of Metric-Fair Algorithms



Recall: Individual (aka Metric) Fairness

𝐶:𝑈 → Δ 𝑂

𝐶 𝑥 − 𝐶 𝑦 ≤ 𝑑(𝑥, 𝑦)

𝑢

𝑣

Yes

No

“Similar people” have similar probabilities of “Yes” and “No” outcomes

tiny 𝑑



Pop Quiz
● Does Individual Fairness address the equal FPR, FNR, PPV problem?



Intuition
If all of the parts are fair, then the 

whole should be fair.



Reality
It’s complicated.



Task-Competitive Composition

Tasks ‘compete’ for individuals. 

● Example: Advertisers compete 

for a single ad slot 

● Goal: Individual Fairness for tech 

jobs advertising and groceries 

advertising simultaneously

tech firm vs grocery delivery service



Naïve Task-Competitive Composition

2
Tech company  

bids among those

not claimed by 

groceries ($0.50)

1
Grocery service 

decides whether 

to bid ($1)



Not Guaranteed to be Fair

Theorem. For any two tasks T and T’ with 

nontrivial metrics D, D’, and for any tie-

breaking function, not necessarily the 

same for each individual,  there exist 

classifiers C and C’ that are individually fair 

in isolation, but when naïvely combined 

violate multiple task fairness.

A metric is trivial if all distances are in {0,1}



Proof Sketch (for case ties go to T)

● 0 < pu < pv

● pu’ ≥ pv’ > 0 and the distance is 

maximized subject to D’.

Not Guaranteed to be Fair

Theorem. For any two tasks T and T’ with 

nontrivial metrics D, D’, and for any tie-

breaking function, not necessarily the 

same for each individual,  there exist 

classifiers C and C’ that are individually fair 

in isolation, but when naïvely combined 

violate multiple task fairness.

𝑝𝑣𝑝𝑢

𝑝′𝑣 𝑝′𝑢

A metric is trivial if all distances are in {0,1}



Proof Sketch (continued)
The difference in probability of positive 

classification for T’:

(1-pu)pu’ - (1-pv)pv’ = D’(u,v) + pvp’v-pup’u

If D’(u,v) = 0 then done:  (pu < pv. ; pu’= pv’>0) 

Write α = pv/pu so pvp’v-pup’u = αpup’v – pup’u
αpup’v – pup’u>0 ⇔

αp’v-p’u > 0 ⇔

α = pv /pu> p’u /p’v

Easy to ensure w/o violating fairness for T.      

Omitted: a bit of cleanup for other elements.

Proof Sketch (for case ties go to T)

● 0 < pu < pv

● pu’ ≥ pv’ > 0 and the distance is 

maximized subject to D’.

𝑝𝑣𝑝𝑢

𝑝′𝑣 𝑝′𝑢



An Algorithm: Randomize Then Classify
Procedure:

● Fix a probability distribution X over the tasks.

● Choose a task T∼ X

● Classify using a fair classifier for T.

Homework: Prove RTC is individually fair.



Functional Composition



OR Fairness: Applying to multiple colleges
Relevant outcome: get in to at least one college.

Definition. A set of classifiers C for task T with metric 

D satisfy OR-Fairness if for all u, v in U 

|pu - pv| ≤  D(u,v), where pw is the probability that w 

is accepted by at least one classifier in C.

Theorem. For any nontrivial task, there exists a set of 

classifiers that are fair in isolation, but violate OR-

Fairness.

Proof Sketch: Characterize when 1-(1-pu)
n

grows faster than 1-(1-pv)
n.

Fair distance 

exceeded

pv

pu

n



OR Fairness: Applying to multiple colleges
Relevant outcome: get in to at least one college.

Definition. A set of classifiers C for task T with metric 

D satisfy OR-Fairness if for all u, v in U 

|pu - pv| ≤  D(u,v), where pw is the probability that w 

is accepted by at least one classifier in C.

Theorem. For any nontrivial task, there exists a set of 

classifiers that are fair in isolation, but violate OR-

Fairness.

Observation. If for all 𝐶𝑖 and all u in U the probability 

of positive classification for u under 𝐶𝑖 is above ½, 

then fairness is preserved under OR-composition. 

…𝐶1 𝐶2 𝐶𝑘

OR

OR of “heavy” ORs



OR Fairness: Applying to multiple colleges
Relevant outcome: get in to at least one college.

Definition. A set of classifiers C for task T with metric 

D satisfy OR-Fairness if for all u, v in U 

|pu - pv| ≤  D(u,v), where pw is the probability that w 

is accepted by at least one classifier in C.

Theorem. For any nontrivial task, there exists a set of 

classifiers that are fair in isolation, but violate OR-

Fairness.

Theorem. Any set of individually fair classifiers for a 

task which have an aggregate probability of positive 

classification > ½ for all u ∈ U also satisfy OR-

Fairness.

…𝐶1 𝐶2 𝐶𝑘

OR

OR of “heavy” ORs



OR Fairness: Applying to multiple colleges
Relevant outcome: get in to at least one college.

Definition. A set of classifiers C for task T with metric 

D satisfy OR-Fairness if for all u, v in U 

|pu - pv| ≤  D(u,v), where pw is the probability that w 

is accepted by at least one classifier in C.

Theorem. For any nontrivial task, there exists a set of 

classifiers that are fair in isolation, but violate OR-

Fairness.

Theorem. Any set of individually fair classifiers for a 

task which have an aggregate probability of positive 

classification > ½ for all u ∈ U also satisfy OR-

Fairness 

OR

…

OR of “heavy” circuits

𝐹1 𝐹𝑘



Dependent Classifications

Dwork and Ilvento 2018



Dependent Compositions
In many cases outcomes are not independent:

- Can only accept n students 

- Must accept at least n/2 students who can 

pay tuition

- Can’t grant too many loans or hire too 

many people on a particular day

Two main settings:

● Cohort Selection (fixed size 𝑛)

● Universe Subset Problems: operate on 

subset, but still want fairness wrt all pairs

The last fry



Dependent Composition: Many Possible Axes… 

Offline

vs

Online

Uniform Random 

vs 

Adversarial Ordering

Constrained

Outputs 

Universe

vs

Subset
𝒀



The Cohort Selection Problem
Cohort Selection: Given a universe of 

individuals U and an integer n < |U|, select n 

individuals from U such that for every u and v in 

U the difference in probability of selection pu

and pv respectively satisfies D(u,v) ≥ |pu-pv|.

Cannot independently classify each element, as 

the number of previously selected elements must 

be taken into account.

Independent Classification:

By applying a fair

classifier C independently to

each element, can select up to 

|U| elements.

C

≤ |U|

Cohort Selection:

Must select n elements without

increasing distances. Probability

of selection dependent on other 

elements.

C

= n



Constrained Cohort Selection
Definition. For A ⊆ U, p ∈ [0,1], fairly 

select a set of n elements of U such that at 

least a p fraction of those selected are in A.

● Must have at least n/2 students who 

pay full tuition to cover operating 

costs

● Must satisfy statistical parity for legal 

reasons

● Must accept at least p*n students of 

each gender who can play a 

particular sport to field a team



An Impossibility Result (simple special case)  

B is a blown-up version of A, and |A| = n/2=pn

∀𝑢 ∈ 𝐴: 𝑝𝑢 = 1

∃𝑣 ∈ 𝐵: 𝑝𝑣≤ 1/𝑘. Let 𝑢 ∈ 𝐴 satisfy 𝐷 𝑢, 𝑣 = 0.  

QED.

k

A B

D(  ,  ) = 0

D(  ,  ) = 0 

D(  ,  ) = 0



The Universe Subset (Cohort Selection) Problem
Let 𝒀 be a distribution over subsets of U. Let 𝑿= 𝑿(V)} 𝑉⊆ 𝑈 be family a distributions, where 

𝑿(V) is a distribution on permutations of the elements of V. For a system Sn: Π 2𝑈 x r → U*, 

Experiment(Sn,𝑿,𝒀,u): 

1. Choose r ~ {0,1}*

2. Choose V ~ 𝒀

3. Choose 𝛑 ~ 𝑿(V)

4. Run Sn, and output 1 if u is selected

The system is individually fair (and a solution to the Cohort Selection Problem) if ∀u, v ∈ U,

|𝔼[Experiment(Sn, 𝑿, 𝒀, u)]-𝔼[Experiment(Sn, 𝑿, 𝒀, v)]| ≤ D(u,v) 

(and Sn outputs a set of n distinct elements of U).



Solutions for Basic, Offline Cohort Selection

Permute then Classify

1. Choose 𝛑 ~ S|U|, where S|U| is the set of all 

permutations of |U| elements

2. Apply 𝛑 to U, and classify each element as 

usual until either:

- n elements are selected: stop

- there are exactly enough elements left in the 

permutation to select n total: take all remaining 

elements

Weighted Sampling

1. Enumerate all sets of size n, and for each 

set T assign weight 

w(T) ∝ ∑u ∈ T E[C(u)]

2. Sample from all of the sets with 

probability proportional to the weights

Easiest Setting: decisions made offline, with access to the entire universe U and the metric D with no 

constraints on the output set other than size. 



Individual Fairness in Pipelines

● Hire a cohort; one year later, promote a cohort member to team leader

○ Whether or not you are promoted depends on the cohort

○ Not so crazy: hiring decisions not necessarily made by team’s organizational head; hiring 

manager often different than manager one year later

● Gives rise to yet another catalog of evils

DworkJagadeesanIlvento 2020



Two-Stage Cohort Pipeline

● Universe 𝑈, Permissible set of cohorts 𝐶 ⊆ Pow 𝑈 ∖ ∅

● Cohort selection mechanism 𝐴:𝑈 → 𝐶, aka the “hiring manager”

● A set of scoring functions 𝐹: 𝐶 × 𝑈 → [0,1] and 𝑓 ∈ 𝐹
○ Scoring is contextual, i.e., may have 𝑓 𝑐, 𝑢 ≠ 𝑓(𝑐′, 𝑢)

○ Undefined if 𝑢 ∉ 𝐶

● The pipeline is 𝐴 ∘ 𝑓

● 𝐶𝑢: set of cohorts in 𝐶 containing individual 𝑢 ∈ 𝑈

● Probability that 𝐴 selects 𝑢 is 𝑝 𝑢 = σ𝑐∈𝐶𝑢
Pr[𝐴 𝑈 = 𝑐]

○ Assume intra-cohort fairness ∀𝑐 ∈ 𝐶 ∀𝑢, 𝑣 ∈ 𝑐 𝑓 𝑐, 𝑢 − 𝑓 𝑐, 𝑣 ≤ 𝑑(𝑢, 𝑣)



Informal, Deceptively Simple, Fairness Definition

For 𝑓 ∈ 𝐹, the pipeline instantiated with 𝑓 is individually fair with respect to 

similarity metric 𝑑 and distribution metric 𝐷: Δ Opipeline × Δ Opipeline → [0,1] if 

∀ 𝑢, 𝑣 ∈ 𝑈: 𝐷 𝑓 ∘ 𝐴 𝑢 , 𝑓 ∘ 𝐴 𝑣 ≤ 𝑑(𝑢, 𝑣).

If the pipeline is individually fair wrt 𝑑, 𝐷 for all 𝑓 ∈ 𝐹, then it is robust to 𝐹.

The hitch: outcome space Opipeline = 0,1 ∪ {⊥}: individuals drop out, voluntarily 

or otherwise, from the pipeline.



Unconditional and Conditional Distributions

Starting point: 

𝜉𝑢 ∈ Δ Opipeline places probability 1 − 𝑝(𝑢) on ⊥

𝜉𝑢 ∈ Δ Opipeline places probability σ𝑐∈𝐶𝑢
Pr 𝑓 𝑐, 𝑢 = 𝑠 𝑃𝐴(𝑐) on 𝑠 ∈ [0,1]

Unconditional distribution: as above, but treat ⊥ as having score of 0

For 𝑠 ∈ (0,1]: place probability σ𝑐∈𝐶𝑢
Pr 𝑓 𝑐, 𝑢 = 𝑠 𝑃𝐴(𝑐) on 𝑠

For 𝑠 = 0:      place probability 1 − 𝑝 𝑢 + σ𝑐∈𝐶𝑢
Pr 𝑓 𝑐, 𝑢 = 0 𝑃𝐴(𝑐)

Conditional distribution: condition on positive 𝑝(𝑢):

For 𝑠 ∈ [0,1] place probability 
σ𝑐∈𝐶𝑢 Pr 𝑓 𝑐,𝑢 =𝑠 𝑃𝐴(𝑐)

𝑝(𝑢)
on 𝑠

Probabiltiy that 

𝐴 outputs 𝑐 ∈ 𝐶



Is This Fair?

● 𝑑 𝑢, 𝑣 = 0.1

● Under 𝐴, 𝑝 𝑢 = 𝑝(𝑣) ≝ 𝑝∗ but 𝐴 never outputs a cohort containing both

● Constrain 𝑓 for the unconditional distribution 𝑝 𝑢 𝑓 𝑢 − 𝑝 𝑣 𝑓 𝑣 ≤ 𝑑(𝑢, 𝑣),  

Simplifies to 𝑝∗ 𝑓 𝑢 − 𝑓 𝑣 ≤ 𝑑(𝑢, 𝑣)

● Weak fairness constraint when 𝑝∗ is small!  

Congratulations, you are offered a job!  After a year you, may expect a promotion 

with probability 𝑓(𝑢) (or, for 𝑣, 𝑓(𝑣)).  

Ulfar and Virginia receive offers with the same probability, but correctly perceive 

the offers very differently.

Unconditional distribution: treat ⊥ as having score of 0



Metric-Fair Affirmative Action



Fair AA via Metrics (highly simlplified)
● Pair up S’s and T’s to minimize 

σ𝑖 𝑑(𝑠𝑖 , 𝑡pair 𝑆𝑖 )

● Classify 𝑠𝑖 by classifying 𝑡pair(𝑠𝑖)

Sage

Thyme



Transforming One Distribution to Another
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Transforming One Distribution to Another

𝑥 𝑦 𝑥𝑦

𝑑 𝑦, 𝑦 = 0
𝑑(𝑥, 𝑦) depends on the metric

“Cost” (in clay-moving) captures difference between distributions



Amount to 

“haul” from  

𝑥 to 𝑦

The Earthmover Linear Program

𝐸𝑀 𝑆, 𝑇 = min Σ𝑥,𝑦∈𝑉 ℎ 𝑥, 𝑦 𝑑(𝑥, 𝑦)

s.t.                            Σ𝑥∈𝑉ℎ 𝑥, 𝑦 = 𝑇 𝑦

Σ𝑦∈𝑉ℎ 𝑥, 𝑦 = 𝑆 𝑥

ℎ 𝑥, 𝑦 ≥ 0



Transforming One Distribution to Another

Suppose 1/2 the clay on the right is pink…



Transforming One Distribution to Another

Then 1/2 the clay on the left is pink!



Classifier

𝑇
O

𝑀

𝑆

Map uniform distribution on 𝑆 to uniform distribution on 𝑇 (via EM, L)

Fair Affirmative Action via Metrics 

𝐸𝑀 + 𝐿

statistical 

parity

(pink clay)

individual 

fairness



Classifier

𝑇
O

𝑀

𝑆

1. ∀𝑦 ∈ 𝑇, 𝑜 ∈ 𝑂 ∶ 𝐿′ 𝑦, 𝑜 = σ𝑥∈𝑆 𝜇𝑥 𝑦 𝐿 𝑥, 𝑜 + 𝐿(𝑦, 𝑜) where 𝜇𝑥 is from the EM+L mapping

2. Run the Fairness LP only on 𝑇, using 𝐿′

Fair Affirmative Action via Metrics 

𝐸𝑀 + 𝐿



Classifier

𝑇
O

𝑀

𝑆

𝑑 𝐸𝑀+𝐿 𝑆, 𝑇 ≝ min 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥 𝑑(𝑥, 𝑦)

s.t.

𝐷 𝜇𝑥 , 𝜇𝑥′ ≤ 𝑑 𝑥, 𝑥′ ∀𝑥, 𝑥′ ∈ 𝑆

𝐷𝑇𝑉 𝜇𝑆 , 𝑈𝑇 ≤ ε
𝜇𝑥 ∈ Δ 𝑇 ∀𝑥 ∈ 𝑆

Given {𝜇𝑥}𝑥∈𝑆 here and {𝜈𝑥}𝑥∈𝑇 from Fairnes LP, 

define: 𝑀:𝑉 → Δ(𝑂) :

𝑀 𝑥 = ቊ
𝜈𝑥 𝑥 ∈ 𝑇
𝐸𝑦∼𝜇𝑥𝜈𝑦 𝑥 ∈ 𝑆

Fair Affirmative Action via Metrics 
𝐸𝑀 + 𝐿

∀𝑦 ∈ 𝑇: 𝜇𝑆 𝑦 = 𝐸𝑥∼𝑆 𝜇𝑥(𝑦)



Classifier

𝑇
O

𝑀

𝑆

𝑑 𝐸𝑀+𝐿 𝑆, 𝑇 ≝ min 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥 𝑑(𝑥, 𝑦)

s.t.

𝐷 𝜇𝑥 , 𝜇𝑥′ ≤ 𝑑 𝑥, 𝑥′ ∀𝑥, 𝑥′ ∈ 𝑆

𝐷𝑇𝑉 𝜇𝑆 , 𝑈𝑇 ≤ ε
𝜇𝑥 ∈ Δ 𝑇 ∀𝑥 ∈ 𝑆

Given {𝜇𝑥}𝑥∈𝑆 here and {𝜈𝑥}𝑥∈𝑇 from Fairnes LP, 

define: 𝑀:𝑉 → Δ(𝑂) :

𝑀 𝑥 = ቊ
𝜈𝑥 𝑥 ∈ 𝑇
𝐸𝑦∼𝜇𝑥𝜈𝑦 𝑥 ∈ 𝑆

Fair Affirmative Action via Metrics 
𝐸𝑀 + 𝐿

Minimizes loss AND disruption of 𝑆 × 𝑇
Lipschitz requirement,  subject to parity and 

the within-group Lipschitz constraints



Classifier

𝑇
O

𝑀

𝑆

𝑑 𝐸𝑀+𝐿 𝑆, 𝑇 ≝ min 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥 𝑑(𝑥, 𝑦)

s.t.

𝐷 𝜇𝑥 , 𝜇𝑥′ ≤ 𝑑 𝑥, 𝑥′ ∀𝑥, 𝑥′ ∈ 𝑆

𝐷𝑇𝑉 𝜇𝑆 , 𝑈𝑇 ≤ ε
𝜇𝑥 ∈ Δ 𝑇 ∀𝑥 ∈ 𝑆

Given {𝜇𝑥}𝑥∈𝑆 here and {𝜈𝑥}𝑥∈𝑇 from Fairnes LP, 

define: 𝑀:𝑉 → Δ(𝑂) :

𝑀 𝑥 = ቊ
𝜈𝑥 𝑥 ∈ 𝑇
𝐸𝑦∼𝜇𝑥𝜈𝑦 𝑥 ∈ 𝑆

Fair Affirmative Action via Metrics 
𝐸𝑀 + 𝐿

More flexibility still: can eliminate the re-

weighting, prohibiting expression of opinions 

on the fate of elements in 𝑆.  May make sense 

if vendor has done no market research on 𝑆



Classifier

𝑇
O

𝑀

𝑆

𝑑 𝐸𝑀+𝐿 𝑆, 𝑇 ≝ min 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥 𝑑(𝑥, 𝑦)

s.t.

𝐷 𝜇𝑥 , 𝜇𝑥′ ≤ 𝑑 𝑥, 𝑥′ ∀𝑥, 𝑥′ ∈ 𝑆

𝐷𝑇𝑉 𝜇𝑆 , 𝑈𝑇 ≤ ε
𝜇𝑥 ∈ Δ 𝑇 ∀𝑥 ∈ 𝑆

Given {𝜇𝑥}𝑥∈𝑆 here and {𝜈𝑥}𝑥∈𝑇 from Fairnes LP, 

define: 𝑀:𝑉 → Δ(𝑂) :

𝑀 𝑥 = ቊ
𝜈𝑥 𝑥 ∈ 𝑇
𝐸𝑦∼𝜇𝑥𝜈𝑦 𝑥 ∈ 𝑆

Fair Affirmative Action via Metrics 
𝐸𝑀 + 𝐿

Compare to just adding statistical parity the 

Fairness LP, and eliminating the cross-group 

Lipschitz constraints: the approach here is 

more faithful to the 𝑆 × 𝑇 distances, providing 

protection against the “self-fulfilling prophecy” 

evil in which one deliberately selects the 

“wrong” subset of 𝑆



Classifier

𝑇
O

𝑀

𝑆

𝑑 𝐸𝑀+𝐿 𝑆, 𝑇 ≝ min 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥 𝑑(𝑥, 𝑦)

s.t.

𝐷 𝜇𝑥 , 𝜇𝑥′ ≤ 𝑑 𝑥, 𝑥′ ∀𝑥, 𝑥′ ∈ 𝑆

𝐷𝑇𝑉 𝜇𝑆 , 𝑈𝑇 ≤ ε
𝜇𝑥 ∈ Δ 𝑇 ∀𝑥 ∈ 𝑆

Given {𝜇𝑥}𝑥∈𝑆 here and {𝜈𝑥}𝑥∈𝑇 from Fairnes LP, 

define: 𝑀:𝑉 → Δ(𝑂) :

𝑀 𝑥 = ቊ
𝜈𝑥 𝑥 ∈ 𝑇
𝐸𝑦∼𝜇𝑥𝜈𝑦 𝑥 ∈ 𝑆

Fair Affirmative Action via Metrics 
𝐸𝑀 + 𝐿

The metric is everything.

In this view, one can adjust the metric in such 

a way that the Lipschitz condition will imply 

statistical parity; makes sense if one believes 

that the metric does not fully reflect potential 

that may be undeveloped because of unequal 

access to resources.  Reflected in the ranking

approach discussed below.



Classifier

𝑇
O

𝑀

𝑆

𝑑 𝐸𝑀+𝐿 𝑆, 𝑇 ≝ min 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥 𝑑(𝑥, 𝑦)

s.t.

𝐷 𝜇𝑥 , 𝜇𝑥′ ≤ 𝑑 𝑥, 𝑥′ ∀𝑥, 𝑥′ ∈ 𝑆

𝐷𝑇𝑉 𝜇𝑆 , 𝑈𝑇 ≤ ε
𝜇𝑥 ∈ Δ 𝑇 ∀𝑥 ∈ 𝑆

Given {𝜇𝑥}𝑥∈𝑆 here and {𝜈𝑥}𝑥∈𝑇 from Fairnes LP, 

define: 𝑀:𝑉 → Δ(𝑂) :

𝑀 𝑥 = ቊ
𝜈𝑥 𝑥 ∈ 𝑇
𝐸𝑦∼𝜇𝑥𝜈𝑦 𝑥 ∈ 𝑆

Fair Affirmative Action via Metrics 
𝐸𝑀 + 𝐿

Claim: 𝑀(𝑥) satisfies 

(1) statistical parity between 𝑆 and 𝑇 up to 

bias 𝜀; and 

(2) the Lipschitz condition for every within-

group pair.

𝐷𝑇𝑉 𝑀 𝑆 ,𝑀 𝑇 = 𝐷𝑇𝑉 𝐸𝑥∈𝑆𝐸𝑦∼𝜇𝑥𝜈𝑦, 𝐸𝑥∈𝑇𝜈𝑥
≤ 𝐷𝑇𝑉 𝜇𝑆, 𝑈𝑇 ≤ 𝜀



Fair Affirmative Action via Metrics
● We know how to handle multiple disjoint groups / strata / ZIP+4s

○ With a metric

● The intersectional case?

Sage

Rosemary

Thyme



Fair Affirmative Action via Rankings

● Example: Universities of Texas and California

○ Top 10% of students in each high school class

● Example [John Roemer]:

○ Stratify students according to education level of mother

○ Rank students within each stratum by number of hours spent on homework per week

○ Admit to university top k% from each stratum

● Example [Danielle Allen, “Talent is Everywhere”]

○ Stratify students according to SAT/GPA and discard all below a fixed threshold 

○ Admit randomly so as to maximize geographic diversity



Metric-Fair Affirmative Action
● We know how to handle multiple disjoint groups / strata / ZIP+4s

○ With a metric

○ Without a metric, from a “fair ranking”

● The intersectional case? 

● Can address intersectionality via Evidence-Based Ranking

○ Hold that thought

Sage

Rosemary

Thyme


