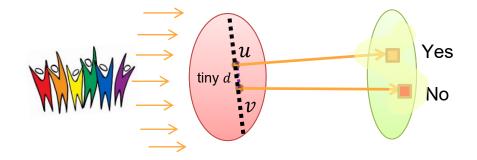


Composition of Metric-Fair Algorithms

Recall: Individual (aka Metric) Fairness

"Similar people" have similar probabilities of "Yes" and "No" outcomes



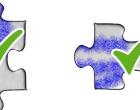
 $C: U \to \Delta(0)$ $||C(x) - C(y)|| \le d(x, y)$

Pop Quiz

• Does Individual Fairness address the equal FPR, FNR, PPV problem?

Intuition

If all of the parts are fair, then the whole should be fair.



Reality

It's complicated.

Task-Competitive Composition

Tasks 'compete' for individuals.

- Example: Advertisers compete for a single ad slot
- Goal: Individual Fairness for tech jobs advertising and groceries advertising *simultaneously*

tech firm vs grocery delivery service

Naïve Task-Competitive Composition

Grocery service decides whether to bid (\$1)

Tech company bids among those not claimed by groceries (\$0.50)

Not Guaranteed to be Fair

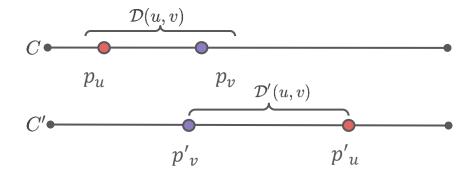
Theorem. For any two tasks T and T' with nontrivial metrics D, D', and for any tiebreaking function, not necessarily the same for each individual, there exist classifiers C and C' that are individually fair in isolation, but when naïvely combined violate multiple task fairness.

A metric is trivial if all distances are in {0,1}

Not Guaranteed to be Fair

Theorem. For any two tasks T and T' with nontrivial metrics D, D', and for any tiebreaking function, not necessarily the same for each individual, there exist classifiers C and C' that are individually fair in isolation, but when naïvely combined violate multiple task fairness. Proof Sketch (for case ties go to T)

- $0 < p_u < p_v$
- p_u' ≥ p_v' > 0 and the distance is maximized subject to D'.



A metric is trivial if all distances are in {0,1}

Proof Sketch (continued)

The difference in probability of positive classification for T':

$$(1-p_u)p_u' - (1-p_v)p_v' = D'(u,v) + p_v p'_v - p_u p'_u$$

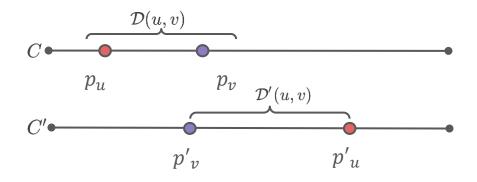
If D'(u,v) = 0 then done: $(p_u < p_{v_i}; p_u' = p_v' > 0)$

Write
$$\alpha = p_v/p_u \operatorname{so} p_v p'_v - p_u p'_u = \alpha p_u p'_v - p_u p'_u$$

 $\alpha p_u p'_v - p_u p'_u > 0 \Leftrightarrow$
 $\alpha p'_v - p'_u > 0 \Leftrightarrow$
 $\alpha = p_v/p_u > p'_u/p'_v$

Easy to ensure w/o violating fairness for T. Omitted: a bit of cleanup for other elements. Proof Sketch (for case ties go to T)

- $0 < p_u < p_v$
- p_u' ≥ p_v' > 0 and the distance is maximized subject to D'.



An Algorithm: Randomize Then Classify

Procedure:

- Fix a probability distribution X over the tasks.
- Choose a task T~ X
- Classify using a fair classifier for T.

Homework: Prove RTC is individually fair.

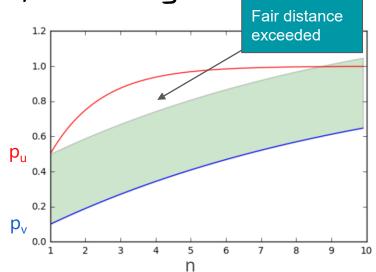
Functional Composition

Relevant outcome: get in to at least one college.

Definition. A set of classifiers *C* for task T with metric *D* satisfy *OR-Fairness* if for all u, v in U $|p_u - p_v| \le D(u,v)$, where p_w is the probability that w is accepted by at least one classifier in *C*.

Theorem. For any nontrivial task, there exists a set of classifiers that are fair in isolation, but violate OR-Fairness.

Proof Sketch: Characterize when $1-(1-p_u)^n$ grows faster than $1-(1-p_v)^n$.

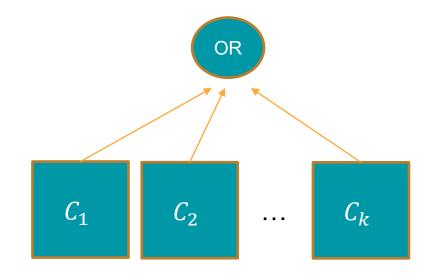


Relevant outcome: get in to at least one college.

Definition. A set of classifiers *C* for task T with metric *D* satisfy *OR-Fairness* if for all u, v in U $|p_u - p_v| \le D(u,v)$, where p_w is the probability that w is accepted by at least one classifier in *C*.

Theorem. For any nontrivial task, there exists a set of classifiers that are fair in isolation, but violate OR-Fairness.

Observation. If for all C_i and all u in U the probability of positive classification for u under C_i is above $\frac{1}{2}$, then fairness is preserved under OR-composition.



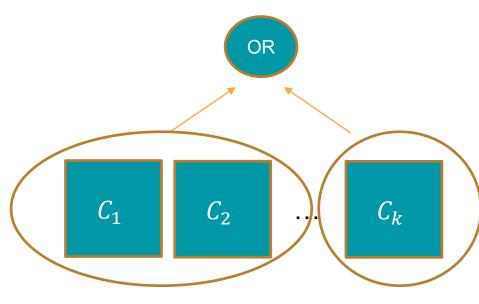
OR of "heavy" ORs

Relevant outcome: get in to at least one college.

Definition. A set of classifiers *C* for task T with metric *D* satisfy *OR-Fairness* if for all u, v in U $|p_u - p_v| \le D(u,v)$, where p_w is the probability that w is accepted by at least one classifier in *C*.

Theorem. For any nontrivial task, there exists a set of classifiers that are fair in isolation, but violate OR-Fairness.

Theorem. Any set of individually fair classifiers for a task which have an aggregate probability of positive classification > $\frac{1}{2}$ for all $u \in U$ also satisfy OR-Fairness.



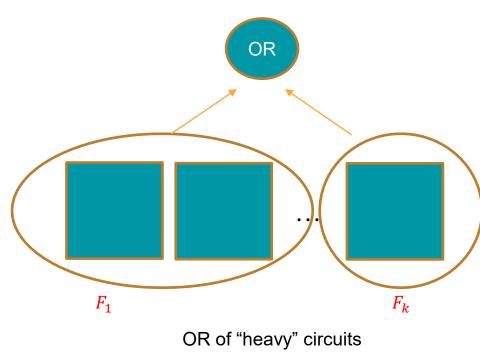
OR of "heavy" ORs

Relevant outcome: get in to at least one college.

Definition. A set of classifiers *C* for task T with metric *D* satisfy *OR-Fairness* if for all u, v in U $|p_u - p_v| \le D(u,v)$, where p_w is the probability that w is accepted by at least one classifier in *C*.

Theorem. For any nontrivial task, there exists a set of classifiers that are fair in isolation, but violate OR-Fairness.

Theorem. Any set of individually fair classifiers for a task which have an aggregate probability of positive classification > $\frac{1}{2}$ for all $u \in U$ also satisfy OR-Fairness



Piano-Forte mouson for Ameurel in. Dud ! Astimal In Dependent Classifications aller yor min mill mingon two Openial a. min horizon in freb una miles Dwork and Ilvento 2018

Dependent Compositions

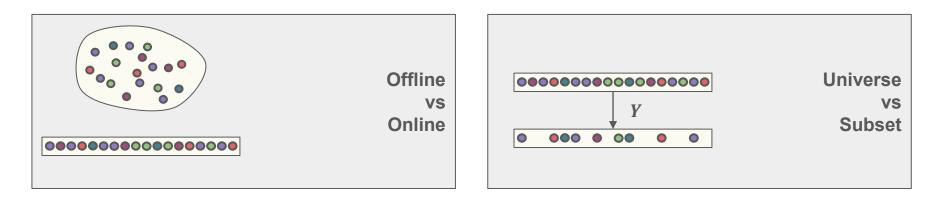
In many cases outcomes are not independent:

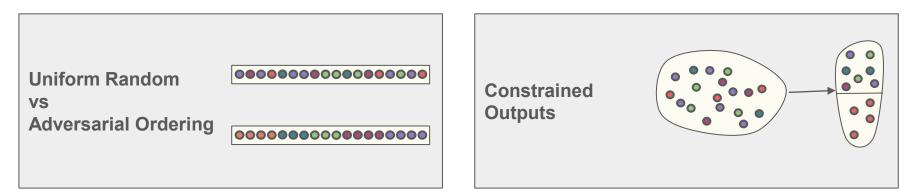
- Can only accept *n* students
- Must accept at least n/2 students who can pay tuition
- Can't grant too many loans or hire too many people on a particular day

Two main settings:

- Cohort Selection (fixed size *n*)
- Universe Subset Problems: operate on subset, but still want fairness wrt all pairs

Dependent Composition: Many Possible Axes...

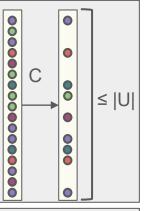




The Cohort Selection Problem

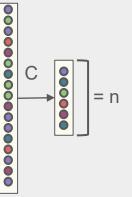
Cohort Selection: Given a universe of individuals U and an integer n < |U|, select n individuals from U such that for every u and v in U the difference in probability of selection p_u and p_v respectively satisfies $D(u,v) \ge |p_u-p_v|$.

Cannot independently classify each element, as the number of previously selected elements must be taken into account. Independent Classification: By applying a fair classifier C independently to each element, can select up to |U| elements.



Cohort Selection:

Must select n elements without increasing distances. Probability of selection dependent on other elements.

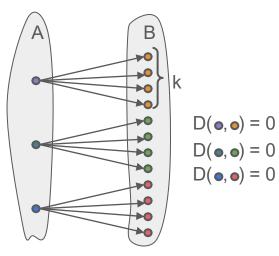


Constrained Cohort Selection

Definition. For $A \subseteq U$, $p \in [0,1]$, fairly select a set of n elements of U such that at least a p fraction of those selected are in A.

- Must have at least n/2 students who pay full tuition to cover operating costs
- Must satisfy statistical parity for legal reasons
- Must accept at least p*n students of each gender who can play a particular sport to field a team

An Impossibility Result (simple special case)



B is a blown-up version of A, and |A| = n/2=pn $\forall u \in A: p_u = 1$ $\exists v \in B: p_v \le 1/k$. Let $u \in A$ satisfy D(u, v) = 0. QED.

The Universe Subset (Cohort Selection) Problem

Let Y be a distribution over subsets of U. Let $X = \{X(V)\}\}_{V \subseteq U}$ be family a distributions, where X(V) is a distribution on permutations of the elements of V. For a system $S_n: \Pi(2^U) \times r \to U^*$, Experiment (S_n, X, Y, u) :

- 1. Choose r ~ {0,1}*
- 2. Choose V ~ **Y**
- 3. Choose $\pi \sim X(V)$
- 4. Run S_n , and output 1 if u is selected

The system is individually fair (and a solution to the Cohort Selection Problem) if $\forall u, v \in U$,

```
|\mathbb{E}[\text{Experiment}(S_n, X, Y, u)] - \mathbb{E}[\text{Experiment}(S_n, X, Y, v)]| \le D(u, v)
```

(and S_n outputs a set of n distinct elements of U).

Solutions for Basic, Offline Cohort Selection

Easiest Setting: decisions made offline, with access to the entire universe U and the metric D with no constraints on the output set other than size.

Permute then Classify

- 1. Choose $\pi \sim S_{|U|}$, where $S_{|U|}$ is the set of all permutations of |U| elements
- 2. Apply π to U, and classify each element as usual until either:
 - n elements are selected: stop
 - there are exactly enough elements left in the permutation to select n total: take all remaining elements

Weighted Sampling

- Enumerate all sets of size n, and for each set T assign weight w(T) ∝ ∑_{u ∈ T} E[C(u)]
- 2. Sample from all of the sets with probability proportional to the weights

Individual Fairness in Pipelines

- Hire a cohort; one year later, promote a cohort member to team leader
 - Whether or not you are promoted depends on the cohort
 - Not so crazy: hiring decisions not necessarily made by team's organizational head; hiring manager often different than manager one year later
- Gives rise to yet another catalog of evils

Two-Stage Cohort Pipeline

- Universe U, Permissible set of cohorts $C \subseteq Pow(U) \setminus \emptyset$
- Cohort selection mechanism $A: U \rightarrow C$, aka the "hiring manager"
- A set of scoring functions $F: C \times U \rightarrow [0,1]$ and $f \in F$
 - Scoring is contextual, i.e., may have $f(c, u) \neq f(c', u)$
 - Undefined if $u \notin C$
- The pipeline is $A \circ f$
- C_u : set of cohorts in C containing individual $u \in U$
- Probability that A selects u is $p(u) = \sum_{c \in C_u} \Pr[A(U) = c]$
 - <u>Assume</u> intra-cohort fairness $\forall c \in C \forall u, v \in c | f(c, u) f(c, v) | \le d(u, v)$

Informal, Deceptively Simple, Fairness Definition

For $f \in F$, the pipeline instantiated with f is individually fair with respect to similarity metric d and distribution metric $D: \Delta(O_{\text{pipeline}}) \times \Delta(O_{\text{pipeline}}) \rightarrow [0,1]$ if $\forall u, v \in U: D([f \circ A](u), [f \circ A](v)) \leq d(u, v).$

If the pipeline is individually fair wrt d, D for all $f \in F$, then it is robust to F.

The hitch: outcome space $O_{\text{pipeline}} = [0,1] \cup \{\bot\}$: *individuals drop out*, voluntarily or otherwise, from the pipeline.

Unconditional and Conditional Distributions Starting point: $\xi_u \in \Delta(0_{\text{pipeline}})$ places probability 1 - p(u) on \perp $\xi_u \in \Delta(0_{\text{pipeline}})$ places probability $\sum_{c \in C_u} \Pr[f(c, u) = s] P_A(c)$ on $s \in [0,1]$

Unconditional distribution: as above, but treat \perp as having score of 0 For $s \in (0,1]$: place probability $\sum_{c \in C_u} \Pr[f(c,u) = s] P_A(c)$ on sFor s = 0: place probability $1 - p(u) + \sum_{c \in C_u} \Pr[f(c,u) = 0] P_A(c)$

Conditional distribution: condition on positive p(u): For $s \in [0,1]$ place probability $\frac{\sum_{c \in C_u} \Pr[f(c,u)=s]P_A(c)}{p(u)}$ on s

Is This Fair?

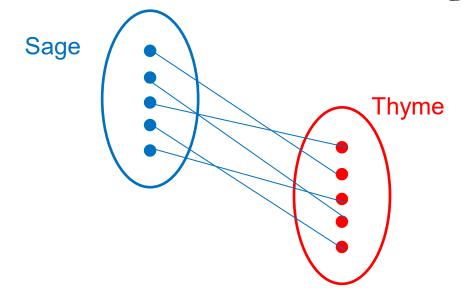
- d(u, v) = 0.1
- Under A, $p(u) = p(v) \stackrel{\text{\tiny def}}{=} p^*$ but A never outputs a cohort containing both
- Constrain f for the unconditional distribution $|p(u)f(u) p(v)f(v)| \le d(u, v)$, Simplifies to $p^*|f(u) - f(v)| \le d(u, v)$
- Weak fairness constraint when p^* is small!

Congratulations, you are offered a job! After a year you, may expect a promotion with probability f(u) (or, for v, f(v)).

Ulfar and Virginia receive offers with the same probability, but correctly perceive the offers very differently.

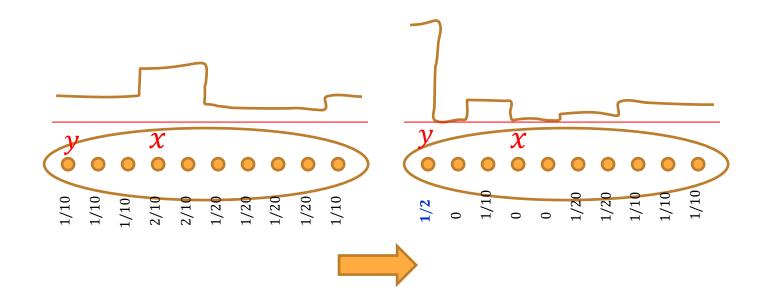
Metric-Fair Affirmative Action

Fair AA via Metrics (highly simlplified)



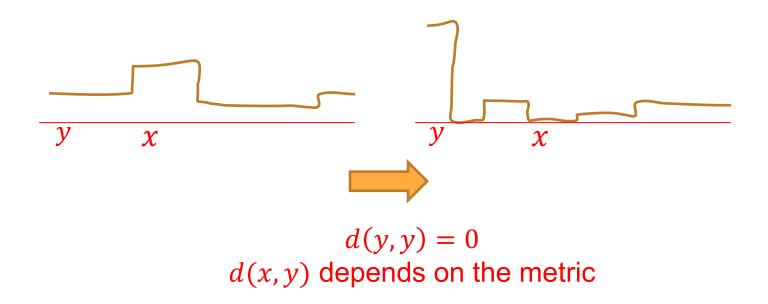
- Pair up S's and T's to minimize $\sum_{i} d(s_i, t_{\text{pair}(S_i)})$
- Classify s_i by classifying $t_{\text{pair}(s_i)}$

Transforming One Distribution to Another



Transforming One Distribution to Another

"Cost" (in clay-moving) captures difference between distributions



The Earthmover Linear Program

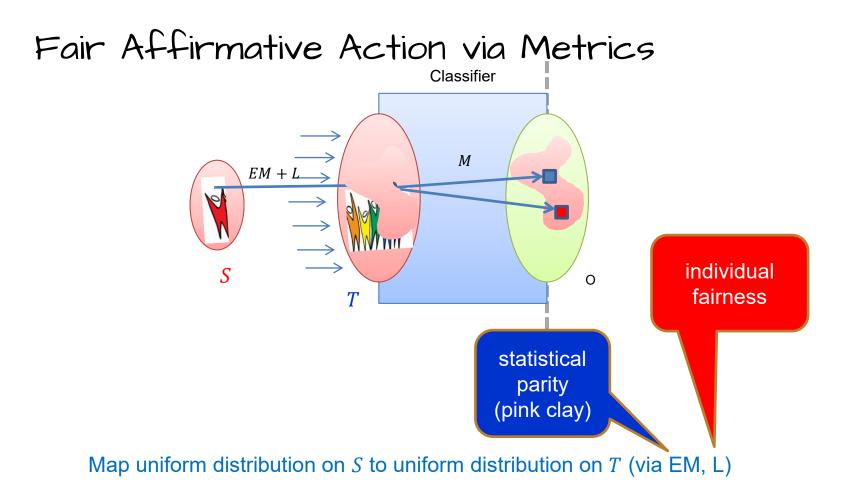


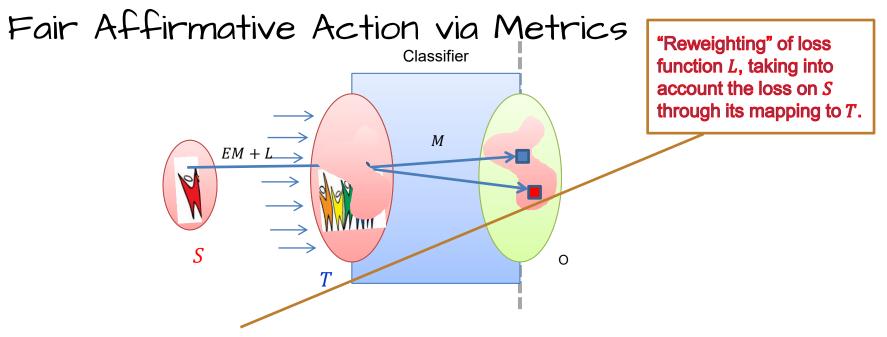
Transforming One Distribution to Another

Suppose 1/2 the clay on the right is pink...

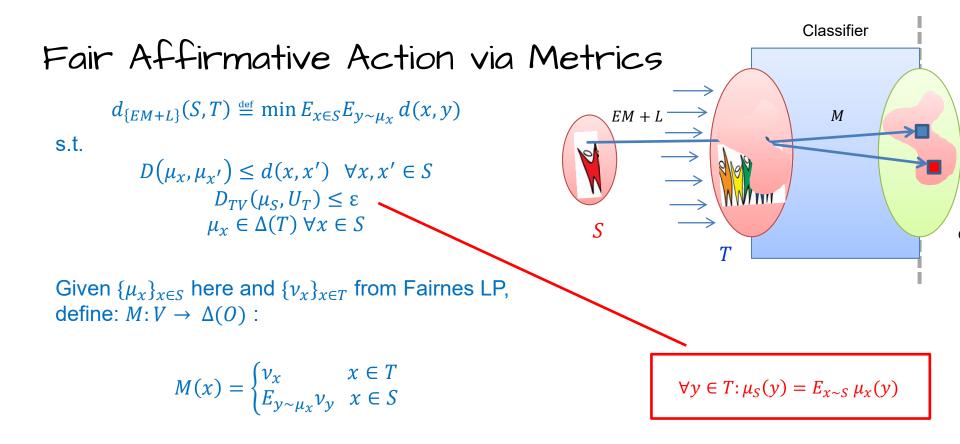
Transforming One Distribution to Another

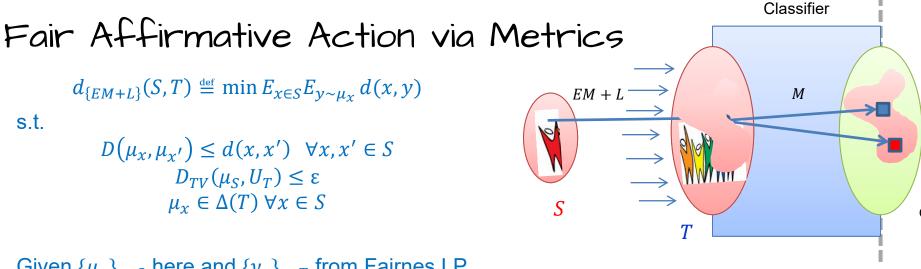
Then 1/2 the clay on the left is pink!





1. $\forall y \in T, o \in O : L'(y, o) = \sum_{x \in S} \mu_x(y)L(x, o) + L(y, o)$ where μ_x is from the EM+L mapping 2. Run the Fairness LP only on *T*, using *L*'

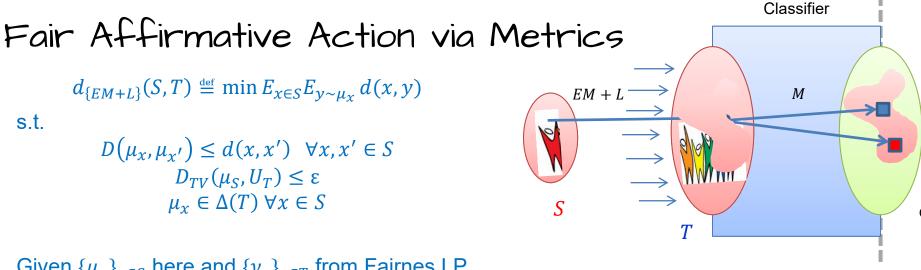




Given $\{\mu_x\}_{x \in S}$ here and $\{\nu_x\}_{x \in T}$ from Fairnes LP, define: $M: V \to \Delta(0)$:

$$M(x) = \begin{cases} \nu_x & x \in T \\ E_{y \sim \mu_x} \nu_y & x \in S \end{cases}$$

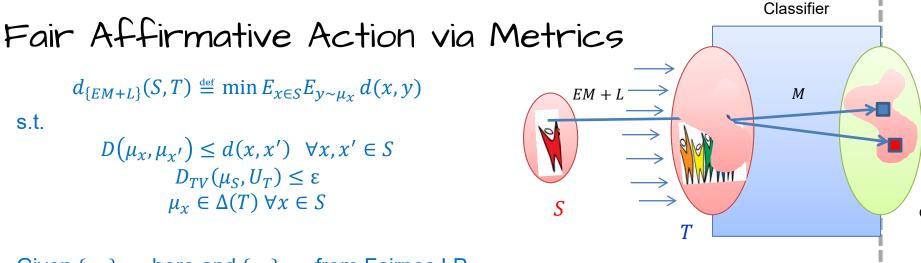
Minimizes loss AND disruption of $S \times T$ Lipschitz requirement, subject to parity and the within-group Lipschitz constraints



Given $\{\mu_x\}_{x\in S}$ here and $\{\nu_x\}_{x\in T}$ from Fairnes LP, define: $M: V \to \Delta(0)$:

$$M(x) = \begin{cases} \nu_x & x \in T \\ E_{y \sim \mu_x} \nu_y & x \in S \end{cases}$$

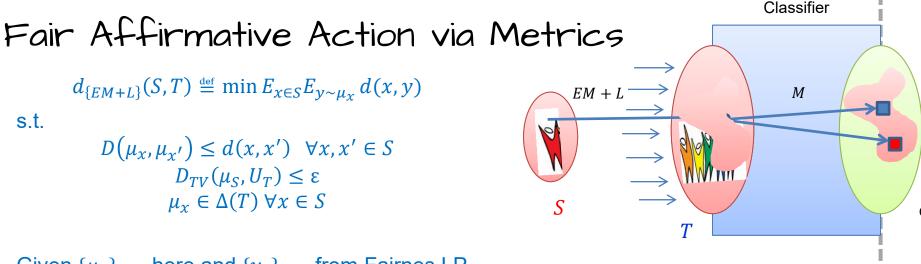
More flexibility still: can eliminate the reweighting, prohibiting expression of opinions on the fate of elements in *S*. May make sense if vendor has done no market research on *S*



Given $\{\mu_x\}_{x \in S}$ here and $\{\nu_x\}_{x \in T}$ from Fairnes LP, define: $M: V \to \Delta(0)$:

$$M(x) = \begin{cases} \nu_x & x \in T \\ E_{y \sim \mu_x} \nu_y & x \in S \end{cases}$$

Compare to just adding statistical parity the Fairness LP, and eliminating the cross-group Lipschitz constraints: the approach here is more faithful to the $S \times T$ distances, providing protection against the "self-fulfilling prophecy" evil in which one deliberately selects the "wrong" subset of *S*

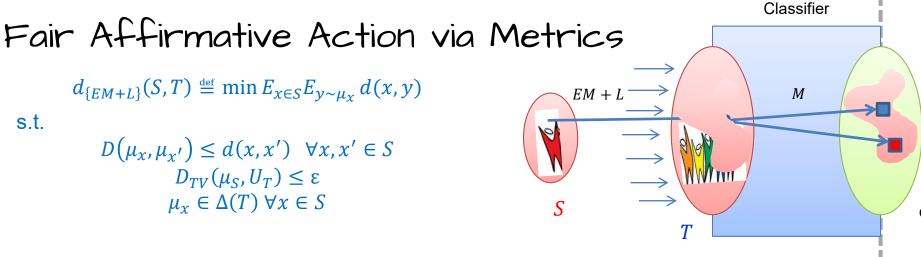


Given $\{\mu_x\}_{x \in S}$ here and $\{\nu_x\}_{x \in T}$ from Fairnes LP, define: $M: V \to \Delta(0)$:

$$M(x) = \begin{cases} \nu_x & x \in T \\ E_{y \sim \mu_x} \nu_y & x \in S \end{cases}$$

The metric is everything.

In this view, one can adjust the metric in such a way that the Lipschitz condition will imply statistical parity; makes sense if one believes that the metric does not fully reflect potential that may be undeveloped because of unequal access to resources. Reflected in the <u>ranking</u> approach discussed below.



Given $\{\mu_x\}_{x\in S}$ here and $\{\nu_x\}_{x\in T}$ from Fairnes LP, define: $M: V \to \Delta(0)$:

$$M(x) = \begin{cases} \nu_x & x \in T \\ E_{y \sim \mu_x} \nu_y & x \in S \end{cases}$$

Claim: M(x) satisfies

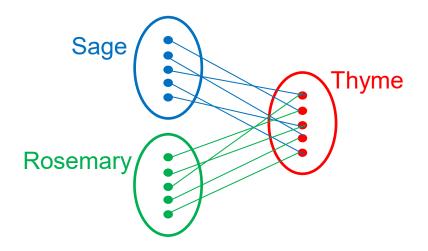
- (1) statistical parity between *S* and *T* up to bias ε ; and
- (2) the Lipschitz condition for every withingroup pair.

$$D_{TV}(M(S), M(T)) = D_{TV}(E_{x \in S}E_{y \sim \mu_x}v_y, E_{x \in T}v_x)$$

$$\leq D_{TV}(\mu_S, U_T) \leq \varepsilon$$

Fair Affirmative Action via Metrics

- We know how to handle multiple disjoint groups / strata / ZIP+4s
 - O With a metric
- The intersectional case?



Fair Affirmative Action via Rankings

- Example: Universities of Texas and California
 - O Top 10% of students in each high school class
- Example [John Roemer]:
 - O Stratify students according to education level of mother
 - O Rank students within each stratum by number of hours spent on homework per week
 - O Admit to university top k% from each stratum
- Example [Danielle Allen, "Talent is Everywhere"]
 - O Stratify students according to SAT/GPA and discard all below a fixed threshold
 - O Admit randomly so as to maximize geographic diversity

Metric-Fair Affirmative Action

- We know how to handle multiple disjoint groups / strata / ZIP+4s
 - O With a metric
 - O Without a metric, from a "fair ranking"
- The intersectional case?
- Can address intersectionality via Evidence-Based Ranking
 - Hold that thought

