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Goal

Fractons is a general name for a number of theoretical puzzling
phases of matter. They have a lattice formulation, but they do
not seem to fit the general, standard framework of continuum
qguantum field theory.

| was asked to talk about “QFT for Fractons.” But | would like to
frame it in a larger context — the relation between lattice
theories and continuum QFT.

Zhenghan Wang: “the continuum is so slippery.”

We will start with a review of known systems, partly from a new
perspective.

Then, we will focus on some exotic systems, which are a good
introduction to systems with fractons, because they exhibit
subsystem global symmetries and their associated subtleties.

The next step will be to gauge these subsystem symmetries.



Lattice vs. continuum QFT

QFT is enormously successful. Yet, it is not mathematically
rigorous.

One approach is to regularize it by placing it on a lattice. It can
be a spatial lattice, when we use a Hamiltonian formalism, or it
can be a Euclidean spacetime lattice for a Lagrangian
formulation.

* Then, the system is well defined.

* Continuum limit: introduce a lattice spacing a, takea = 0
and the number of sites to infinity holding all the physical

lengths fixed. (Can also scale the lattice parameters to special
values.)

— Compute correlation functions at positions a < x.
Here, the lattice gives a definition of the continuum QFT. It is its

UV version. ,



Lattice vs. continuum QFT

In condensed matter physics, the problem is defined on a lattice
and the goal is to find its low-energy/long-distance limit.

* |tis expected to be described by an effective continuum field
theory.

e Unlike the lattice model, the continuum field theory depends
on a finite number of parameters — universality — and hence, it
is more effective.

« Often, it has new properties, not present on the lattice, e.g.,
emergent symmetries and new dualities.

* This use of QFT leads to a powerful description of possible
phases and the transitions between them.

Here, the continuum QFT is the answer to a question —the IR
limit of a given problem.



Challenges in using a lattice to define a
given continuum QFT

Does the limit exist and is it independent of the details of the
lattice theory?

Some continuum theories depend on the topology of field
space, which relies on continuity of the fields. How is this
captured by the lattice theory?

— This issue affects various topological terms in the action,
certain global symmetries, anomalies, etc. (More below.)

Some QFTs (e.g., theories with self-dual forms or chiral
fermions) do not admit a suitable Euclidean lattice action.

Some QFTs do not even have a continuum Lagrangian, let
alone a lattice version of it.



Challenges in finding a continuum low-
energy QFT of a given lattice model

Exotic models, e.g., XY-plaquette model [Paramekanti, Balents,
Fisher; ...] (see below), fracton models [Chamon; Haah; Vijay,
Haah, and Fu; ...] (see below), do not have a standard continuum
limit.

In order to understand that, we should first review and extend the
discussion of other situations we do understand.



Canonical example of lattice vs. continuum:
XY-model in 1+1d

[...; Jose, Kadanoff, Kirkpatrick, Nelson; ...]

One of the most studied quantum field theories.
Use a Euclidean formulation.

Start with a 1+1d Euclidean, periodic lattice with sites labeled by
(t=12,..,.L, x=1,2,...,L,).

The degrees of freedom are phases e'? at the sites.
The Euclidean action is

S=-L Z Cos(Auqb)

links
Global U(1) symmetry (momentum)

d(x,1) - p(X, 1)+«



Canonical example of lattice vs. continuum:
XY-model in 1+1d

[...; Jose, Kadanoff, Kirkpatrick, Nelson; ...]

S=—p z Cos(Auqb)

links
The continuum theory, is obtained by introducing a lattice
spacing a and taking L., L, = o and a — 0 holding the physical
lengths £, = L, a and £, = L a fixed.

For large 5, we expect ¢ to become smooth (discontinuities are
suppressed) and then the action becomes

S = gjdrdx(auqb)z o~ ¢+ 2m

In high-energy physics it is common to use R = /7.



XY-model in 1+1d — the continuum theory
— ¢ = 1 compact boson

S = g f drdx(8,¢)

* Free (quadratic action).

* Global symmetries 0ju =0
Q = édxjr
— U(1)™ momentum (the charge) jut = —ifo,¢
¢(x,7) > P(x,7) +
— U(1)" winding (vorticity), emergent (not present on the
lattice) ji = %:01/(/5

No action on the fields.



— States charged under the

¢ = 1 compact boson

Spectrum: quantize using Lorentzian signature time t. The
finite circumference of space is ¢

X Znik—x
d(x,t) = ¢po(t) + Zan + a,(t)e” ¢
KEZzq
— Plane waveg (oscillators) with energy of order E ~=

¢
omentum symmetry: the charge
is the momentum p, € Z fonjugate to ¢, and the energy is

- _ Bt 2 _ 1 2 L
obtained from L = = (0;g)° > H = 252 PO E Y.

— States charged under the winding symmetry: W € Z and the
energy is obtained by substituting in the action ~ £

£

10



¢ = 1 compact boson

— The spectrum is gapless — the energies of all these states
vanish as £ — oo,

: 1
— The energies of all these states are of order 7 and hence

they are equally important.

11



¢ = 1 compact boson

* Exact self-duality (T-duality): exchanging [ < (in terms

1

(2m)*p
of R =, /nf,itisR & i) and U(1)™ < U(1)". Not present on
the lattice.

* This continuum model exists for all 5, while the original lattice
model (with cosine) has a BKT transition at f = %(R =/2) and

is gapped for smaller 5. (For small 5, the value of § in the
continuum and lattice models are not the same.)

— For smaller 3, the operators charged under the winding
symmetry are relevant and cannot be ignored. (This is related
to their dimension ~ [.) They gap the system.

— This is not the case for large 3, where they are irrelevant, and
then the winding symmetry is an emergent symmetry.



Lattice XY-model in 1+1d — RG flow
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¢ = 1 compact boson — ‘t Hooft anomaly

Couple the system to background gauge fields for these symmetries
15 2 L, . -
S = f drdx (E (0,0 —A,)" + o (A0, — A, 0,0)

¢ - ¢+alxT)
/}u _’Au +6Ma

.A“ - A, +0,a
[ , y
S-S5+ %fdrdx a(axAT — 6TAx)

No problem to leading order in A and A. Hence, there is no problem
with the global symmetry. (And of course, there is no inconsistency.)

But for nonzero gauge fields, we cannot preserve both the U(1)™
and the U(1)Y gauge symmetries. This cannot be fixed by adding any
local term in 1+1d. (Can cancel it using a local term in a 2+1d bulk.)

14



Lattice XY-modelin 1+1dvs.c =1
compact boson

* The spectrum of plane waves and momentum states is easy to

derive on the lattice at weak coupling (large ) — same as in the
continuum.

 No winding symmetry on the lattice, but at weak coupling, there
is an approximate winding symmetry with the same winding
states as in the continuum.

* No self-duality on the lattice (relates strong to weak coupling).

* Since there is no winding symmetry on the lattice, we cannot
discuss its ‘t Hooft anomaly.

Can we find another lattice model, with all these properties for all
f?

15



XY-model in 1+1d — modify the lattice theory

Use the Villain formulation — replace ¢ € S with ¢ € R coupled
to a gauge field n, € Z on the links (with gauge symmetry k € Z)

; .
Svittain =5 ) (Buh — 2m,)

links

O ~¢+2mk
”u"’nu‘l'Auk

This action is free (quadratic). Its physics is similar to that of the
original, nonlinear action with cosines.

Following [...; Gross, Klebanov; ...; Sachdev, Park; ...], “suppress the
vortices” on the lattice. Can do it by adding

K 2 (A’cnx T Axn’c)z

plaq

16



XY-model in 1+1d — getting closer to the

continuum
P A 2mn, )’ A A.n.)?
E ( u(P o T[nu) + K ( Ty — xnr)
links plaq

For k = oo, the field strength (curvature) of the Z gauge field,
A n, — A, n; vanishes — the gauge field is flat.

We can replace the action by the modified Villain action
[Gorantla, Lam, NS, Shao]

p 2 .
Smod.Villain — E Z (A,u¢ o 27‘[7’1“) + 1 Z d)(ATnx o Axnr)

links plaq
with a Lagrange multiplier field ¢ ~ ¢ + 21 on the plaquettes.

This lattice theory is similar to the continuum theory...

17



XY-model in 1+1d — modified Villain action

5 2 . .
Smod. Villain = E Z (A,u(p - ZTL'TLM) + 1 Z d(Any — Ayny)
links vlaq
* Free
* Exact global symmetries

- U(1)™ momentum, ¢ > ¢ +a, j'=-ip(A,¢p—2mn,)

- U)Y winding, §-d+a j¥==2(,¢-2mn,)
— ‘t Hooft anomaly. Essentially as in the continuum. These
global symmetries act locally. But the Lagrangian density is

not invariant; only e ® is invariant.
— Hence it is gapless for all .

18



XY-model in 1+1d — modified Villain action

p 2 -
Smod. Villain = E z (A,ud) - 27‘[71”) T 1 z d(Any — Ayny)

links vlaq

1
(2m)2p -
This self-duality is exact on the lattice. It is related, but not
exactly the same, as the standard duality of the XY lattice model.

* Forsmall a and large L with fixed £ = La, the same spectrum
and the same anomaly as in the continuum theory for all .

* Using Poisson resummation, self-duality: ¢ < gﬁ, f e

This lattice model is very close to the continuum theory and
provides a good regularization of it.

19



XY-model in 1+1d vs. the modified Villain
model vs. the continuum theory

links plaq
k=0
\ \ 1 1
\ \ ] \
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An exotic theory: XY-plaquette model in
2+1d [Paramekanti, Balents, Fisher; ...

We will use a Euclidean-time, Lagrangian formulation.
On the lattice, phases e'? at the sites with the action
S=—fo ) cosbp)—f ) cos(Bhyh)
T—links xy—plaq

Global U(1) subsystem (momentum) symmetry

¢(X,5,7) = d(X,9,7) + ax(X) + a,(Y)
L, + Ly, — 1 elements. For simplicity, we will set L,, = L,, = L.
Continuum limit: a, ~ a? - 0, with . = L_a,, £ = al fixed.

a 1a
o = Po—; 5

S = fdrdxdy (% (0,0)% + %(axaycp)z) b ~¢+2m

21



XY-plaquette model in 2+1d — the
continuum limit — ¢-theory

Free
Because of the derivative structure, some discontinuous (in x, y)
field configurations ¢ = ¢, (x,7) + ¢, (¥, T) are not suppressed

Subsystem global symmetries 0rjr = 0x0yjxy
Q*(x) = jédyjr , Q') = jédxjr

— U(1)™ momentum Jit = g0z, Jyy = iaxayc/)
¢(x,y,7) = d(x,y,7) + ay(x) + ay,(y)
a, (x), ay, (y) can be discontinuous.

— U(1)" winding (vorticity), emergent
. 1 . 1
jt = Eaxayqb y Ixy = Eargb

22



¢-theory in 2+1d

‘t Hooft anomaly between them [Gorantla, Lam, NS, Shao]

Couple the system to background gauge fields for these subsystem
symmetries (such tensor gauge fields will appear below):
S

U 1 2
- f dexdy (70 (8T¢ — AT)Z - ﬂ (axabe — Axy)

i .
+ oy (A,0,0,¢ + Axy0T¢)>

¢ = ¢+alxy1)
A, > A, +0;a Ayy = Ayy + 0,0,

A’T N AT + af& ) Axy — Axy + axay&
j 3 »
S>S+ %jdrdx a(axay/lr - arAxy)

23



¢-theory in 2+1d — spectrum [NS, Shao]

 Quantize using Lorentzian signature time t. The finite
circumference of space is £ (for simplicity, £,, = £,, = £)
271 <k§x+k¥y>
Ak ky) (L)

d(x,y,t) = P (x,t) + P, (y, t) +

K Ky €L+
k2K

it . Because of
0

— Plane waves (oscillators) with w? = (21)?

this dispersion relation:

1 1 .
N Chady: (and not ,»asinmore standard systems)

* Forlarge ¢, can have low w with large p,, = ﬁ , provided

k
Dy = {)y is sufficiently small — high momentum with low

energy. This leads to UV/IR mixing. (More below.)

24



¢-theory in 2+1d — spectrum

.(kxx ky)’)
2TTL 7 + 7
¢(X, Y t) - ¢x (X, t) + (:by (y; t) + 2 a(kx,ky) (t)e

Ky, ky€ZLxg

— States charged under the momentum symmetry:

* The modes ¢, (x,t), ¢, (¥,t) can be thought of as
associated with the spontaneous breaking of the
momentum symmetry. We will soon see that this is not the
case.

* They include the standard winding modes ¢ = %ﬂ (Wxx +

Wyy) and hence these should not be considered separately.

25



¢-theory in 2+1d — spectrum

* For simplicity, ignore the facts that ¢, (x, t) and ¢, (y,t) share
their zero modes and that this zero mode couples to them. Then,
¢ (x,t) and ¢, (y, t) are independent rotors at different positions:

flo

5= 20 [ ae(fax upetx0)" + § ay (0, 0,0)')

Restoring the lattice spacing a,

1
2011, a(E Ny (%) +2ny(37)2> ’ n,(X), n,(y) € Z

N\ N\

y

H =

1

Hota

e The momentum subsystem symmetry was spontaneously broken
in the classical theory, but it is restored in the quantum theory.

Their energies diverge ~ — 00,

26



¢-theory in 2+1d — spectrum

What about states charged under the winding subsystem
symmetry? To be periodic modulo 2w and carry charge, they must
be of the form

¢ = (x@(y Vo) + vO(x — xp) —%) 0<x,y<?
1 1
o :Ea dy¢p = (5()’ YO)+5(X—X0)—E>

0*(x) = 35 dy j¥ = 8(x — x,),
() = fdyjfw = 5(y — o)

These configurations have infinite energy. Restoring the lattice
21)?

ufa

spacing a, their energy is ~ . (They will be important later.),,



¢-theory in 2+1d — spectrum

To summarize:

. H 1
* Plane waves (oscillators) with energy of order E ~ 7z
1
e States charged under the momentum symmetry E"™ ~ E
0
. ° 2 2
e States charged under the winding symmetry E" ~ (“2

Only the plane waves are in the spectrum of the continuum theory.

The momentum and winding states exist on the lattice, but they
are not dynamical excitations in the continuum theory.

Since they carry conserved charges, they are defects that can be
added to the continuum theory.

They are similar to the charged states in the toric code, which are
represented by defects in the continuum TQFT. 28



¢-theory in 2+1d

e Exact self-duality — T-duality (not present on the lattice)

U
— Ho © (27)2

- UD)""eu)"
 The defects charged under these symmetries are exchanged.
Note that their (divergent) energies are exchanged:

m 1 o EV ~ (21)?
Uota uta

Many questions:

* Should we trust this continuum analysis with divergent
energies? Make the treatment more rigorous.

* How much of that depends on the continuum theory? Can we
find these phenomena (winding subsystem symmetry, ‘t Hooft
anomaly, self-duality, etc.) on the lattice?



XY-plaquette model in 2+1d — getting closer
to the continuum [Gorantla, Lam, NS, Shao]

Repeat the discussion of the 1+1d XY-model for this model.

S=—f ) cosdd)—f ) cos(Bhyp)

T—links xy—plaq
Use the Villain form

Svillain = % 2 (A — 2nnr)2 +§ 2 (AxAy¢ - Znnxy)

T—links xy—plaq

2

Here ¢ € R, n,,n,, € Z. Ztensor gauge symmetry with k € Z

(similar to the tensor gauge symmetry above and below)
o~ ¢+ 2nk
n, ~n; + Ak
Nyy ~ Nyy + B Ay k

This gauge symmetry makes ¢ effectively circle valued. .



XY-plaquette model in 2+1d — getting closer
to the continuum

* Add to the action the gauge invariant term

K z f? f =027y —AA N,
cubes
 For k — oo the field strength (“curvature”) of the Z tensor gauge
field (n;, nyy,), f vanishes. Then, we can replace the action by

the modified Villain action
Smod. Villain

— % z (AT¢ — 27an)2 +§ z (AxAy(:b o ZnnXY)Z

T—links xy—plaq

+1 z QE(ATnxy o AxAynT)
cubes

with a Lagrange multiplier ¢ ~ ¢ + 2. 31



XY-plaquette model in 2+1d — getting closer
to the continuum

Smod. Villain

— % z (AT¢ — 27'[711-)2 + g z (AxAy¢ o 27Tnxy)2

T—links xy—plaq

+ 1 z CB(Arnxy _ AxAynr)

cubes
Similar to the continuum version of the XY-plaquette model:

* Free
e Exact subsystem global symmetries

— U(1)™ momentum ¢(X,5,7) = ¢(X,9,1) + a, (%) + a, ()
— U(1)Y winding (R, 9,1) = P&, 9,%) +a,x) + a, ()

32



XY-plaquette model in 2+1d — getting closer
to the continuum

* ‘t Hooft anomaly between these two global symmetries —
essentially as in the continuum analysis.

The spectrum is as in the continuum analysis: light plane waves
and heavy momentum and winding states.

Using Poisson resummation, exact self-duality:

~

—peoP
~Foe <2n1)23
- U1 " U)%

This lattice model is completely rigorous. It exhibits all the features
we found the in continuum model.

For 5, By > 1, itis the same as the nonlinear model with cosines.
33



¢-theory in 2+1d — Robustness

The main surprising result of the analysis of the spectrum is that
the states charged under the momentum and winding subsystem
symmetries have high energy — infinite in the continuum limit.

The operators that create these states, exp(i¢) and exp(icﬁ), exist
on the lattice, but vanish in the continuum theory. These
operators have infinite dimension in the continuum limit —
infinitely irrelevant.

Consequently, the continuum theory is robust under small
deformations violating the momentum and winding symmetries.

This is similar to the issue of robustness of the 1+1d compact
boson above or below the BKT point. The main differences are
that here, both the momentum and winding symmetries are
robust, and that they are infinitely robust.

34



¢-theory in 2+1d — UV/IR mixing

1 1
Plane waves E ~ 7= 2

The charged states E ~ — = —

fa La?
We are interested in L. —» ©o.

Above, we took a = 0 with fixed £ = La. This kept the plane
waves and pushed the charged states to infinity.

Alternatively, if we hold a fixed, i.e., £ = oo, all these states have
Zero energy.

We see that
[ > c0,a—->0]+#0
UV/IR mixing.
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¢-theory in 2+1d — UV/IR mixing

For £ — oo (set u = uy = 1 and drop constants)
(

oy <l

1. 7|
Tyl

Singular as xy — 0. This seems like a UV divergence. Asx — 0, itis

associated with large momenta p,.. (And similarly fory — 0.)

(0:9(0,0,0)0:¢(x,y,7)) ~

T > |X
= 71 > |yl

2
Because of the dispersion relation w? ~ (pxpy) , we can have large
Py With finite w, provided p,, is small enough. Regularize the IR by

P 1 . . 1 ¢
setting finite £, then, |p, | = y and the singularity becomes — T—Zlog o

Again, UV/IR mixing.
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2+1d tensor gauge theory — A-theory

Above, we discussed systems with a global subsystem symmetry
with current conservation 0;j; = 0,0y jyx, .

We also coupled them to background gauge fields A;j; + Ayyjxy
with the gauge symmetry
A, ~ A + 0,
Ayy ~ Ayy + 0,0,

Now, we will study this gauge theory for dynamical (not
background) fields and will focus on the pure gauge theory — no
matter fields.

This and related theories on the lattice and in the continuum
were discussed in [Xu, Wu; Slagle, Kim; Bulmash, Barkeshli; Ma,
Hermele, Chen; Pretko; You, Burnell, Hughes; ...].

37



2+1d tensor gauge theory — A-theory

The gauge invariant continuum action is
S = fd dxd ! E2 0 —FE
I et 292 T o
Eyy = 07Axy — 0,0, A;
No magnetic field in 2+1d.

Here, we included also a 8-term. It will soon be clear why it is
nontrivial (not a total derivative) and why the physics is periodic
in @ — flux quantization.

38



2+1d tensor gauge theory — A-theory

On a Euclidean lattice, place phases U, on the time links and
phases Uy, on the spatial plaquettes.

The interaction is associated with cubes. It is a product of two
Uy, on the spatial faces and four U; on the time links.

U; 1UT1

The gauge parameters are phases e'® at the sites. Each phase
multiplies the link and plagquette variables that touch it.

39



2+1d tensor gauge theory — A-theory

Alternatively, we can use a Villain formulation

B 2 .
S = 2 (E (A Ayy — Dy AL — 2T Npyy)” + 074y,

cubes
Here, A;, Ay € R, nyyyy € Z and we have the gauge symmetry
A, ~ A, + ALa + 2k,
Ayy ~ Ayy + DAy + Zﬂkxy
Nixy ~ Nxy T ATkxy — AxAykT
witha € R, kg, ky, € Z.

There is no need to modify the Villain theory by constraining the
field strength (curvature) of n;,,, —there is no such field strength.

This formulation of the gauge theory is free (quadratic), the gauge
group is U(1) rather than R, and it is easy to add the O-term,
which is manifestly nontrivial and periodic in 6. 40



2+1d tensor gauge theory — A-theory

Note, the continuum Ay, and A; differ from their lattice

counterparts by factors of a? and a, respectively.
1

g?a?a;
Therefore, we can consider a continuum limita,a, —» 0
* with fixed lattice coupling f and then g - o

* or with fixed continuum coupling g, and then § — oo.

Hence, [ =

41



2+1d tensor gauge theory — A-theory

Next, we will discuss

* Global aspects of the gauge group (flux quantization)
* Defects and operators

* The spectrum

We can use either the continuum or the lattice (in its Villain form)
formulations. We'll write it in continuum language.

As in the discussion of the matter theory, the ¢-theory, this Villain
formulation allows us to justify the treatment of the continuum

formulation.

42



2+1d A-theory — flux quantization

Globally, a is subject to the identifications

a~a+?2n (Wx(x) + Wy(y)) , wy (x), W, (y) EZ
Therefore, we can have large gauge transformations like
2T XYy
a =7(x®(y—y0) +y 0(x — xp) —7)

In a Euclidean box, with such a transition function around the
Euclidean time circle, we find quantized fluxes

%dr dx Eyxy = 216y — yp)
fdr dy Ey, = 2m6(x — x¢)

j dtdxdy E,,, € 21

43



2+1d A-theory — defects

The simplest defect (in Lorentzian signature) is

exp (lf dt AO>

represents the world-line of a probe particle at fixed position.
Gauge invariance prevents it from moving. It is a fracton.

A dipole of probe particles at x4, x, is represented by the gauge
invariant defect (similar dipole at y4, y,)

X2
exp (i f dx f (dt d0,Aq + dy Axy) )
X1 C

C is a curve in the (y,t) plane. The dipole is restricted to a line. It
is alineon.

This restricted mobility follows from the gauge symmetry. "



2+1d A-theory — operators

Defects at fixed time are “Wilson strips.” Along y (and similarly

along x)
X2
W,(x1,x2) = exp <1J dx fdy Axy>
X1

Point operators Exy

Since Gauss law sets 0,0, Ey,, = 0,
Exy = e, (x) + ey(y)
They satisfy

(—g?w when they touch
[W' Exy] =9

. 0 when they do not touch

45



2+1d A-theory — spectrum

The Lorentzian signature Lagrangian is
L= iE2 ’ —F
292 T om
Because of the flux quantization, 8 ~ 6 + 2m.
Choose Ay = 0, then Gauss law sets
0,0y Exy, =0

Up to a gauge transformation

1 1
Axy - zfx(x» t) + zfy(% t)

No local excitations.
Reminiscent of ordinary U(1) gauge theory in 1+1d.

46



2+1d A-theory — spectrum

1 1
Ay = fo(x: t) + ny(y' t)

lgnoring the (common) zero mode and focusing on one of them

1 6
L — Zngfdx (aofx)z +%%dxaofx

The large gauge transformation above means that
fx(x; t) ~ fx(x: t) + 2mé(x — xO)
i.e., here the radius of the rotor is infinite.

We restore the spatial lattice with lattice spacing a. Then, the

periodicity of f,. is 2w /a and the energies are small —vanish in the
continuum limit. Infinite ground state degeneracy in that limit

g?a’t .6 ’ R
> n(x) — - , n(x) e Z

5C\ 47



2+1d A-theory — spectrum

2 2
gzaf (ma-i) | n(%) € Z

X
If instead, we take the continuum limit with fixed lattice coupling

,8= 1

gfa‘ag

, then the energies diverge as

BY A
2a a; z (n(x) B ﬁ)

o

and we are left only with the ground state n(x) = 0.

All these results about the continuum theory, using discontinuous
fields and gauge parameters (flux quantization, defects and
operators, the spectrum) can be justified using the Villain
formulation of this theory.



2+1d Zp tensor gauge theory on the lattice

On a Euclidean lattice, place Z, phases U; on the time links and
Ly phases Uy, the spatial plaquettes.

The interaction is associated with cubes. It is a product of two
Uy, on the spatial faces and four U; on the time links.

U; 1UT1

The gauge parameters are Zy phases e'* at the sites. Each phase
multiplies the link and plaquette variables that touch it.
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2+1d Z, tensor gauge theory on the lattice

Alternatively, we can use a modified Villain formulation. This is a
Zy tensor gauge theory with vanishing field strength (curvature).

We place integers n; on the Euclidean time links, n,,, on the

spatial plaquettes, and 71 on the cubes, and write the action

211 ~
S = N n(ATnxy — AxAynT)

cubes

It has the gauge symmetry k, k¢, kyy, ke
n,~n;+A0k+ Nk,
Nyy ~ Nyy +AxAyk + N ky,y,
fi~f+NEk
(n;, Ny, ) are the same as the integer tensor gauge fields of the
Villain formulation of the XY-plaquette model. 50



2+1d Zp tensor gauge theory in the
continuum

Couple the ¢-theory to the A-theory, Higgsing U(1) — Zy. In
Euclidean signature,
L =ib (0;¢p — NA;) + ie (0,0,¢ — NAy,)
A; > A + 0«
xy = Axy + 0,0,
o—->¢p+Na
b and e act as Lagrange multipliers, forcing the Higgsing.

A

We can dualize ¢ to @, as above, and find a BF-like description

N L
L:l%quxy , ¢~¢+2TL’
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2+1d Zy tensor gauge theory — defects

The gauge invariant defects in Lorentzian signature are as in
the A-theory

» fracton at a fixed position

exp <lf dt AO>

* dipole lineon, which can move in y, but not in x (similarly
with x © vy)

X2
exp (LJ dx J (dt d0,A¢ + dy Axy) )
X1 C

The only difference is that their N'th powers are trivial defects.
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2+1d Z, tensor gauge theory — operators

The gauge invariant operators are:

* Electric “Wilson strips” along y (similarly along x)

X2
W, (xq1,x,) = exp (lf dx fdy Axy> , wh =1
X1
* Magnetic point operators 0 = exp(i(ﬁ) ) oV =1
Gauss law sets 0 = 0,.(x)0,,(y)
2711
They satisfy WO =e NOW when they touch

Wo=0W when they do not touch
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2+1d Zy tensor gauge theory — spectrum

In Lorentzian signature,
L=b(0yp— NAgy) + e (0,0, — NAy,)

Solve Ay = %aocp, Ayy = %Oxayqb.

Then, the ground states are {¢}/¢p ~ p + Na
These are generated by

= 27 (7 Oy = ¥0) + 55 O — %) — 7
¢ = ﬂfx Y —DYo X — Xo PXpy
For every value of xy and for every value of y, we have an integer
modulo N. Accounting for the common zero mode and placing on

a lattice, we have

NLx+Ly—1

states. .y



2+1d Zp tensor gauge theory

This entire discussion of the continuum theory can be phrased
using the modified Villain version of the model.

Gapped. Only zero energy states (infinitely many in the
continuum limit)

The spectrum is in the simplest representation of the algebra
of operators.

The local operators O = exp(iq’?) generate an electric
symmetry. Itis a symmetry of the nonlinear lattice model.

The strip operators generate a magnetic symmetry. It exists in
the continuum and in the modified Villain lattice version of the
model, but not in the original non-linear lattice model.



2+1d Zp tensor gauge theory — robustness

e 0= exp(igﬁ) preserves all the symmetries of the lattice
model, but not the magnetic symmetry, which is absent in the
nonlinear lattice model.

— Starting with the nonlinear lattice model, O = exp(icﬁ) can
appear in the continuum Lagrangian and destabilize it — lift
the degeneracy. The system is not robust!

— The nonlinear lattice model does not exhibit the ground
state degeneracy.

— This is not the case for its modified Villain version.

If we want to have fractons and robustness (no point operators
acting in the space of ground states), we have to go up in
dimensions.
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Reminiscent of the ordinary Zy gauge
theory in 1+1d

It has a continuum description based on Higgsing
L=1ib (0,0 —NA,) +e (0,0 —NA,)

It has a dual BF-description 1%& E .

The holonomy of the Zy gauge theory generates a magnetic

Zy global symmetry.

It has no bulk excitations.

On a circle, it has N degenerate states labeled by the holonomy.
0 = exp(icﬁ) breaks that magnetic symmetry and makes it not

robust. Starting with a lattice theory without this symmetry,
the N states are not degenerate.
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3+1d models

Repeat the discussion in 2+1d:
* Here, we preserve the cubic group S, € SO(3).
* Lattice

— nonlinear model

— modified Villain model with more symmetries, anomalies, and
exact dualities

* Different ways of taking the low-energy limit
— Fixed lattice coupling constants

— Fixed continuum coupling constants — low energy combined
with a limit of the lattice coupling. This continuum theory has
similar symmetries, duality, etc. to the modified Villain model.

* Reminiscent of ordinary field theories in 2+1d.



3+1d models

Gapless theories

* ¢-theory: similar to the discussion in 2+1d, except that it is
dual to an exotic U(1) gauge theory, A-theory.

* A-theory: similar to the discussion in 2+1d, except that it is
dual to a non-gauge theory, $-theory.

* Several other systems associated with other U (1) subsystem
symmetries, e.g., a U(1) version of the checkerboard model.

Gapped theories are obtained by Higgsing these gauge theories
U(l) - Zy.



3+1d models

* 3 dual exotic Zy gauge theories (similar to the discussion in
2+1d): Higgs the A-theory by ¢, Higgs the A-theory by cﬁ, a BF-
type theory involving A and A (related to [Slagle, Kim]).

— They describe the long-distance behavior of one of the

most celebrated fracton models, the X-cube model [Vijay,
Haah, Ful].

— Unlike the 2+1d exotic Zy theory, it does not have local
operators. Hence, it is robust!

— Similar to ordinary Z, gauge theory in 2+1d (and the
related toric code)
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Summary

* |tis common to use a lattice theory to define a continuum
guantum field theory.

 The low-energy limit of a lattice theory is expected to be a
continuum quantum field theory.

» Exotic lattice models are challenging counter examples,
primarily because of their UV/IR mixing:

— Subsystem global symmetry

— Large ground state degeneracy (infinite in the continuum
limit)

— Discontinuous and even singular observables in the
continuum limit

 These seem incompatible with the standard framework of
continuum QFT.



Summary

* The continuum field theory descriptions of these exotic models
necessarily involve discontinuous fields.

* The modified Villain versions of these models provide a

rigorous justification for the analysis of these continuum field
theories.
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Thank you
Stay healthy



