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- physics of the ground state

Zero temperature equilibrium phases of 
quantum matter

- topological phases: characterized 
by spectrum of anyons

2d: unitary modular 
tensor categories, all the 
math you heard about 
yesterday



Zero temperature equilibrium phases of 
quantum matter

space of Hamiltonians

gapped Hamiltonians

- physical realization: 2d electron gas in semiconductor quantum wells:

magnetic field

2 dimensional 
electron gas
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Alkalai atoms in 
optical lattice:

quantumoptics.at

Trapped ions:

Mott insulator - 
superfluid transition

effective Ising spin chain:

Quantum anti-
ferromagnetism
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- many advantages but difficult to cool to ground state



Nuh Gedik group, Nature Physics 
12, 306–310 (2016)

Floquet driven systems

trivial topological
Lindner, Galitski, Refael 2010
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Example of Chiral Floquet model:
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✓x is threaded. It is reminiscent of the expression for the
edge topological invariant, nedge, Eq. (6), defined in terms
of the “deformed” evolution operator Ũ"(T ). Below, we
give a heuristic argument that indeed Q1 = nedge, up
to corrections that are exponentially small in `. A more
rigorous (but technically cumbersome) derivation of the
relation between the pumped charge and the bulk invari-
ant is presented in Appendix C. Numerical evidence for
the quantization of the pumped charge is shown in Sec. V.

Our strategy in analyzing the pumped charge is to de-
form the evolution operator into the “ideal” form, Ũ"(T )
of Eq. (5), for which the pumped charge is exactly quan-
tized, and to put bounds on the correction to the pumped
charge due to the deformation. We define the deforma-
tion process according to Appendix A, with `0, the width
of the strip beyond which the quasi-energy spectrum be-
comes flat, chosen such that ` ⇠ `0. Clearly, for the
deformed evolution operator, nj = 1 for every eigenstate
of Ũ1. Therefore, the deformed evolution operator has an
exactly quantized pumped charge, equal to nedge.

Now, consider the pumped charge of the original (un-
deformed) evolution. We can roughly divide the Floquet
states that contribute to Eq. (10) into three categories:

1. States that are localized far from occupied region,
y � `. For these states, nj is exponentially small,
and hence their contribution to Q1 is negligible.

2. States that are localized near the edge, y ⌧ `.
These states have nj ⇡ 1. Their wavefunctions
and quasi-energies, and hence their contribution to
Q1, are essentially una↵ected by the deformation
process.

3. States that are localized near the boundary be-
tween occupied and unoccupied sites, y ⇠ `. For
such states, nj is neither close to 0 nor to 1; how-
ever, these states are localized in the x direction
(as are all the bulk states in the AFAI). Therefore,
@"j/@✓x of these states is exponentially small, and
they contribute negligibly to Q1.

As ✓x varies, there are avoided crossings in the spec-
trum, in which the character of the eigenstates changes.
E.g., an eigenstate localized around y1 ⌧ ` may undergo
an avoided crossing with an eigenstate localized around
y2 ⇠ `. When ✓x is tuned to such degeneracy points, the
two eigenstates hybridize strongly, and do not fall into
either of the categories discussed above. Such resonances
a↵ect both @"j/@✓x and the occupations nj of the res-
onant states. However, since the eigenstates that cross
are localized in distant spatial areas, the matrix element
that couples them is exponentially small. Therefore sig-
nificant hybridization requires their energies to be tuned
into resonance with exponential accuracy, limiting the
regions of deviation to exponentially small ranges of ✓x,
of order e�`/⇠. The number of such resonances increases
only polynomially with the size of the system, and there-
fore for Ly � ` � ⇠ and Lx / Ly, their e↵ect on Q1 is
exponentially small.
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FIG. 3. Simple model for achieving the anomalous Floquet-
Anderson phase. The Hamiltonian is piecewise constant, de-
fined in five equal length segments of duration T/5. During
steps 1-4, nearest-neighbor hopping is applied along the col-
ored bonds as shown. The hopping strength J is chosen such
that a particle hops between adjacent sites with probability
one during each step. In the fifth step, all hopping is turned
o↵ and a random disorder potential is applied (the same po-
tential is used for all subsequent driving cycles).

We conclude that, in the thermodynamic limit, all the
contributions to Q1 in Eq. (10) that are not exponen-
tially suppressed are also exponentially insensitive to the
deformation process. Therefore, Q1 = nedge.

IV. MODEL FOR AN ANOMALOUS
FLOQUET-ANDERSON PHASE

In this section, we study a simple model which allows
us to explicitly demonstrate the existence and robustness
of the AFAI phase. We start from a solvable model in-
troduced in Ref. [24], which exhibits perfectly flat bulk
Floquet bands, and hosts chiral edge modes at its bound-
aries. Adding a specific kind of disorder to this model
results in localization of all the bulk states, while pre-
serving the edge states; the system is thus in the AFAI
phase. We then argue that this phase is robust to generic
small perturbations (i.e., the bulk states remain localized,
and the chiral edge states persist).

We consider a system on a square lattice with a
periodic, piecewise-constant Hamiltonian of the form:
Hclean(t) = Hn, for (n�1)T

5  t < nT

5 , n = 1, . . . , 5.
The square lattice is divided into two sublattices, A and
B (shown as filled and empty circles in Fig. 3, respec-
tively). During each of the first four segments of the driv-
ing, n = 1, . . . , 4, hopping matrix elements of strength J
between the A and B sublattices are turned on and o↵
in a cyclic, clockwise fashion, as shown in Fig. 3: during
segment n = 1, 2, 3, or 4, each site in the A sublattice is
connected by hopping to the site above, to the right, be-
low, or to the left of it, respectively. In the fifth segment
of the period, all the hoppings are set to zero, and an on-
site potential �A,B is applied on the A and B sublattice
sites, respectively.

We choose the hopping strength J such that JT

5 = ⇡

2 .
For this value of J , during each hopping segment of the

- free fermion `anomalous Floquet-Anderson insulator’

figure from Titum, Berg, Rudner, Refael, Lindner, 
Phys. Rev. X 6, 021013 (2016)

- replace fermion sites by bosonic spins (of arbitrary Hilbert space 
dimension p) and hopping by swap gates => get ind(Y)=p

- after one time step nothing happens in the bulk, but a translation occurs 
on the edge

Rudner, Lindner, Berg, Levin ’13; 
Titum, Berg, Rudner, Refael, Lindner ‘16
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- stable to interactions and all symmetry breaking in Floquet-MBL 
setting



Analogy

Quantum Hall 
system (equilibrium) MBL Floquet system

Low energy field 
theory for the 1d edge Locality preserving unitary Y on the 1d edge

Bulk gap Bulk Many body localized

lack of 1d UV 
completion for low 
energy edge theory 
(e.g. chiral anomaly)

Impossibility of writing Y as the Floquet 
evolution of a 1d driving Hamiltonian
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