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THE BIG BANG THEORY'!
Featuring Sheldon Cooper and the melting Rubik’s cube...
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FROM COMBINATORICS TO FLUIDS AND VICE VERSA
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OUTLINE OF THE LECTURE:
Euler’s contribution to fluid mechanics.
Geometric interpretation of the Euler equations for
incompressible fluids.
"Discrete” fluid motions and "generalized flows".
Optimal transport theory:
convexity and combinatorics.
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consistent set of partial differential equations.



In fluid mechanics, Euler was the follower of a
long line of famous scientists (Archimedes,
Torricelli, Pascal, Bernoulli, d’Alembert...).

But, he was the first one, in 1755, able to describe
fluids in a definite way, by what we can call now a
"field theory", with a comprehensive and
consistent set of partial differential equations.
This was the prototype of the future field theories
in Physics (Maxwell, Einstein, Schrodinger, Dirac).
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Euler: portrait, bank note and stamp...
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XXI. Nous n'avons donc qu’a égaler ces forces accélératrices
avec les accélerations aftuelles qde nous venons de trouver, & nous
obriendrans les trois équations {'uiva?ues

— D=0+ G+ G +u(i)
Q—';(ID: 7)o ri)-"”(r;,)-'*ﬂ’ S
R— XD =G+ G +(D)-+v ()

Si nous ajoutons 4 ces trois équations premi¢rement celle, que nous a
fournie la confidération de la continuité du Auide :
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Sile ﬂmde n’éroit pas mmprcﬂ' ble, la denfité g leroit la méme en Z 3
&enZ, & pnur ce cas on auroit certe équation : .

) ()=

qui eft aufli celIe fur Iaqur:lle j'ai érabli mon Mémoire latin allégué
ei- deffus.

Yann Brenier (CNRS) Fluids and Combinatorics IPAM Lecture June 2018 8/42



From the practical viewpoint, the Euler equations
are still commonly used, in particular to compute
ocean and atmosphere circulations.



From the practical viewpoint, the Euler equations
are still commonly used, in particular to compute
ocean and atmosphere circulations.

(Of course, the "source terms" P-Q-R in the Euler
equations are usually very difficult to model in
numerical codes: they rely on complex thermal
exchanges between sun, earth, air and water.)
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In the conclusion of his 1757 article, Euler leaves
to his successors the challenge of solving the
mathematical questions issued by his model.

250 years later, these problems are far from being
solved!

In addition, the Euler equations and the
companion Navier-Stokes equation are deeply
linked to one of the most outstanding open
questions in physics:

The understanding of fluid turbulence.
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tombent dans la furface méme. Or nous voyons par 14 fulﬁfammenr;
combien nous fommes encore éloignés de la connoilfance complerte du
mouvement des fluides, & que ce que je viens d'expliquer, n’en con-
tient qu'un foible commencement. Cependant rour ce que la Théorie
des fluides renferme, eft contenu dans les deux équations rapportées
cy-deffus (§. XXXIV.), de forte que ce ne font pas fes principes de
Méchanique qui nous manquent dans la pourfuite de ces recherches,
mais uniquement I'Analyle, quin'eft pas encore allés cultivée, pour
ce deflein : & partant on voir cliirement, quelles découvertes nous
reftent encore & faire dans cerre Science, avant que nous puiffioss arri-
ver 4 une Theorie plus parfaite du mouvement des fluides.

Euler’s conclusion: a mathematical challenge for the future
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ARNOLD (1937-2010) in 1966.



GEOMETRY OF THE EULER MODEL OF
INCOMPRESSIBLE FLOWS.
As already guessed by Euler himself, the
"principle of least action" is behind the Euler
equations of incompressible fluids. This has been
elaborated by the mathematician Viadimir
ARNOLD (1937-2010) in 1966.
According to Arnold, an incompressible fluid,
confined in a domain denoted by D and moving
according to the Euler equations, just follows a
(constant speed) geodesic curve along the
manifold of all possible incompressible maps of D.
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Geometric interpretation of the Euler equations by Arnold, 1966.

VLADIMIR ARNOLD

Sur la géométrie différentielle des groupes de
Lie de dimension infinie et ses applications a
I’hydrodynamique des fluides parfaits

Annales de l'institut Fourigrtome 16, A1 (1966), p. 319-361.
<http://www.numdam.org/item?id=AIF_1966__16_1_ 319_0>
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Two geodesic curves on a sphere
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Three maps of the (periodized) square: only one is incompressible.
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From a more concrete and computational
viewpiont, it is worth considering the discrete
version of an incompressible motion inside D



From a more concrete and computational
viewpiont, it is worth considering the discrete
version of an incompressible motion inside D

namely the permutation of N sub-cells of equal
volume of D.
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FROM COMBINATORICS TO FLUIDS AND VICE VERSA
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Example of a discrete incompressible motion
with 7 time steps and 12 sub-cells (in line)

123 f[al[s] 6789101 ][12]
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Example of a discrete incompressible motion
with 7 time steps and 12 sub-cells (in line)

L al[s5] 6 7
'3/ 6] 5] 8]

1] 2] 3
2 1] 4

| |
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Example of a discrete incompressible motion

with 7 time steps and 12 sub-cells (in line)
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Example of a discrete incompressible motion

with 7 time steps and 12 sub-cells (in line)

123 [a][5] 6789101 [12
2 1 [4]3 /6|58 71091211
2[4l 16 [3][8][5]10 ] 7]12]9]|1|
(all2]l6f[1][8][3/10][5]12]7][11]9]
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Example of a discrete incompressible motion

with 7 time steps and 12 sub-cells (in line)

123 [a][5] 6789101 [12
2 1 [4]3 /6|58 71091211
2[4l 16 [3][8][5]10 ] 7]12]9]|1|

2/[6 /183105127119

|

4

6l[alls 210 1][12][3][1n[5]9]7]
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Example of a discrete incompressible motion

with 7 time steps and 12 sub-cells (in line)

123 [a][5] 6789101 [12
2 1 [4]3 /6|58 71091211
2[4l 16 [3][8][5]10 ] 7]12]9]|1|

2/[6 /183105127119

|

4

6/[a] 8 210 1][12][3]11[5]|9]7]

6 l[8laftof2f12]1][n]3][9o]5]7]
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Example of a discrete incompressible motion

with 7 time steps and 12 sub-cells (in line)

123 [a][5] 6789101 [12
2 1 [4]3 /6|58 71091211
2[4l 16 [3][8][5]10 ] 7]12]9]|1|

2/[6 /183105127119

|

4

6/[a] 8 210 1][12][3]11[5]|9]7]

9
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8 | 410 [2]12]1]1n]3

610 4] 12] 2] 11] 1] 9

6
8
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Example of a discrete incompressible motion

with 7 time steps and 12 sub-cells (in line)

123 [a][5] 6789101 [12
2 1 [4]3 /6|58 71091211
2[4l 16 [3][8][5]10 ] 7]12]9]|1|

2/[6 /183105127119

|

4

6/[a] 8 210 1][12][3]11[5]|9]7]

9
3

71/ 3]s

8 | 410 [2]12]1]1n]3

610 4] 12] 2] 11] 1] 9

10 [6][12][af[1n][2]9] -1

6
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Example of a discrete incompressible motion
with 7 time steps and 12 sub-cells (in line)

1234 5] 67| 8]9]10]11]12]
2 [1][4] 3/ 6|[5] 8| 7][10]9]12]11]
2 [4a][1] 63| 8 |[5]107][12]9]11]
4] 2] 6 1] 8 310]5]12]7]11] 9]
6 4] 8] 210 112 |[3 [ 11 [[5] 9] 7]
6/ 8410 212 1][11]3]|9] 5] 7]
g8l 6|10 4]12] 2| 11]1] 93|75
gll10] 612411 2] 9][1] 7]3]5s

7 time steps have been performed.
Time is on vertical axis and space on horizontal axis.
The trajectories of 2 selected sub-cells (4 and 5) are drawn in red.
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"transportation cost" to reach the final
permutation

ff203flaf[s][e][7 ] 8] 9][10][1[12]
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"transportation cost" to reach the final
permutation

1 ][2][3][a][5] 6]
4

7|
2][1]afls][e][5] 8]

Yann Brenier (CNRS) Fluids and Combinatorics IPAM Lecture June 2018 19/42



"transportation cost" to reach the final

permutation

1j[2 3 [af[5] 67/ 8]9]10]|11[12]

2)[1/af3[6][5] 8| 7]10]9]12]|1|

2][all1flef[3][8][5]10]7[12]9][n]
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"transportation cost" to reach the final

permutation
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"transportation cost" to reach the final

permutation
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"transportation cost" to reach the final

permutation

1j[2 3 [af[5] 67/ 8]9]10]|11[12]

2)[1/af3[6][5] 8| 7]10]9]12]|1|

10 |7 [12 /9 | 11|

10 || 512 | 7]/ 11 ] 9|

5

8
3

3
8

2416

[4][2 6| 1

6 (48210 1]12] 315|097

6 8 [4a]10 212111 3] 9|57

8/[6 10 (412211 [1]9]3 7]|5]

8 /(10 ][ 6 |[12 ][4 11|29 1] 7]3]|5]
The "cost" is obtained by adding up the squares of all

=108.

displacements at all steps. Here: 12+10+12+42+10+12+10
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"transportation cost" to reach the final
permutation

1j[2 3 [af[5] 67/ 8]9]10]|11[12]
2)[1/af3[6][5] 8| 7]10]9]12]|1|
2/[a] 16 /3] 85107129/
(4216 1/8]3 10 5]12]7]|11]9]
6 (48210 1]12] 315|097
6 8 [4a]10 212111 3] 9|57
8/[6 10 (412211 [1]9]3 7]|5]
8 l[10][6 12 41129 1]7]3]5]

The "cost" is obtained by adding up the squares of all
displacements at all steps. Here: 12+10+12+42+10+12+10=108.
This is the "cost" to reach the final permutation in 7 steps. Notice
that step 4 costs a lot!
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Obviously, there is at least a solution leading to the
final permutation at the lowest possible cost, among
the... (12!)® ~ 10°2 possible candidates!

This is the discrete version of a minimizing geodesic
along the semi-group of all volume preserving maps.
Presumably, passing to the limit (in the number of
cubes and steps), we should recover the motion of
an incompressible fluid obeying the Euler equations.
This is what we will do in the second part of the
lecture, combining probability and convexity tools.
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Exercise: let us try to find a discrete geodesic
leading to permutation 12-11-10-9-8-7-6-5-4-3-2-1
using twelve steps

rll23 a5/ 6| 7] 8] 91011 [12]
| | s | — | o— o— — o— o— — — —
| e ] s | | | s s e | | s |
| | s | — | o— o— — o— o— — — —
| e ] s | | | s s e | | s |
| | s | — | o— o— — o— o— — — —

] | | | s s | ] | s |
12 (1 j[10][of[8] 7] 6543/ 2]1
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LET US TRY TO MOVE BY EXCHANGING
NEIGHBORS...

1023 /4/[5]6]7] 8] 91011 12
21 ]la] 3] 6][5] 8] 7] 10] 9]12]11]
241 ] e 3|[8]5]10]| 7]12] 9] 11]

I I I [ I J I I I [ I I I [
i i I i J i i I i i I
i i I i J i i I i i I
I I I [ I J I I I [ I I I [
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FINALLY ARRIVED...AFTER 12 STEPS.

1j[2/3/a/[5/] 6789|101 [12]
2 1/[4][3 6|58 /[7[10]9]12]|11
2 4/[1][6 3| 8|5]10]7]12]9]11
4l[21 6 1 [8][3]10[5]127]11]9]
4l[6 28 [1][10]3[12][5]117]9]|
6/[4a /8 210 1][12][3]11[59]7]

9
3

8 1410 | 2]12]1]1n]3

610 4 [12] 2] 11] 1] 9
10 [6 /12 ] 4 ][11] 291

6
8
8

10 /(81261 4927153

1012 811|694/ 7 | 2]5|1]3

12 /(10 (11 |[8][9/ 6|7 [4][5][2]3]1]

12 (1 f1of9f[sl7]6]5]4a]3]2]1]
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LET US FOLLOW THE TRAJECTORIES OF TWO

NEIGHBOURS: 4 AND 5
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Is it really the lowest possible cost?
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fort 120 ——

0.8 1

ANYWAY, IT IS EASY TO "PASS TO THE LIMIT"
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AS A MATTER OF FACT, THIS IS NOT THE BEST
SOLUTION. THE COST CAN BE REDUCED BY
FACTOR 72/12 ~ 0.8225
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CALCUL APPROCHE AVEC 144 CUBES ET 16 ETAPES

1 . T T
fort 10" ——

08 | R
06 |
04 R
02| R

o .

0 1 1.2 1.4

NUMERICS WITH 144 CUBES AND 16 STEPS
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SOME OF THE 4000 TRAJECTORIES (1 out of 40)
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0.8

0.6

0.4

0.2

ANOTHER MINIMIZING GEODESIC for 1-3-5-7-9-11-12-10-8-6-4-2

Yann Brenier (CNRS)
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Let us go back to the combinatorial setting. We
define a "discrete geodesic with L steps’ as a
sequence of L+1 permutations 0%, ¢1,02,...,0-1,0*
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of all squared displacements



Let us go back to the combinatorial setting. We
define a "discrete geodesic with L steps’ as a
sequence of L+1 permutations 0%, ¢1,02,...,0-1,0*
which, as ¢° and +" are fixed, minimizes the sum
of all squared displacements

> dist(A o, A_n)* + > dist(A o, A o)

i=1,N i=1,N

-+ Z dist(A )2

where we denote by A1, -- -, AN the centers of the
N sub-cells and by dist the Euclidean distance.
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By doing so, we have expressed the Euler model
for incompressible flows as a "combinatorial
optimization problem":



By doing so, we have expressed the Euler model
for incompressible flows as a "combinatorial
optimization problem":
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By doing so, we have expressed the Euler model
for incompressible flows as a "combinatorial
optimization problem":

0(1)7|r,]f Z Z dist(A -0, A0 v)?

k1LI1N

which, up to the discretization, is fully consistent
with the differential equations written by Euler!
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A necessary optimality condition:
for each k fixed from 1 to L-1,
o¥ must minimize among all permutations o

D dist(A o0, Ag) + Y dis?(Ag, A )
i=1,N i=1N '



A necessary optimality condition:
for each k fixed from 1 to L-1,
o¥ must minimize among all permutations o

D dist(A o0, Ag) + Y dis?(Ag, A )
i—1,N ' i=IN '

or, equivalently,
c(1,01) +¢(2,02) +¢(3,03) + - -+ ¢(N,on) ,
c(i,f) = dist*(Bi, Aj), Bi= (A _wn +A «1)/2
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This exactly means that + solves the so-called
"linear assignment problem™” (well known in both
combinatorial optimization theory and
Economics): minimize, among all permutations o,
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where c(i, ) is the "assignment cost matrix".



This exactly means that ¢ solves the so-called
"linear assignment problem™” (well known in both
combinatorial optimization theory and
Economics): minimize, among all permutations o,

c(1,01) +c(2,02) +¢c(3,03) + - - -+ ¢(N, on)

where c(i, ) is the "assignment cost matrix".
(Interpretation in Economics: we want to assign agentsi =1, - -, N to tasks

j=1,---,Nwith cost (i, j) in an optimal way.)
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The assighment problem (as well as its
continuous limit) was analyzed in 1942 by Leonid
KANTOROVICH (1912-1986) (who got the unique
Nobel prize of Economy obtained by former Soviet
Union!) and shown to be equivalent to a much
simpler convex optimization problem.
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Reduction to convexity is still a powerful
mathematical tool!
Kantorovich’ method is a good example.



The assighment problem (as well as its
continuous limit) was analyzed in 1942 by Leonid
KANTOROVICH (1912-1986) (who got the unique
Nobel prize of Economy obtained by former Soviet
Union!) and shown to be equivalent to a much
simpler convex optimization problem.

Reduction to convexity is still a powerful
mathematical tool!

Kantorovich’ method is a good example.

(Reduction to convexity is rather simple once we observe that permutations matrices
are just the extreme points of the convex set of all matrices with nonnegative

coefficients such that each line and each column add up to one.)
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Leonid Kantorovich (1912-1986)
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The "linear assighment problem" is a rather
simple combinatorial optimization problem -with
complexity O(N3)-, much simpler than the NP
"quadratic assignment problem":
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i,j=1N

where both c(i, j) and (i, j) are given matrices.



The "linear assighment problem" is a rather
simple combinatorial optimization problem -with
complexity O(N3)-, much simpler than the NP
"quadratic assignment problem":

Minimize, among all permutations o,

where both c(i,j) and A(i,j) are given matrices.
Interestingly enough, this more difficult problem
appears to be a discrete version of the problem of
finding stationary (i.e. time independent) solution
to the Euler equations.
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The continuous version of the linear assignment
problem goes back to 1780 with Gaspard MONGE
(1746-1818) and his "mémoire sur les déblais et
les remblais".



The continuous version of the linear assighment
problem goes back to 1780 with Gaspard MONGE
(1746-1818) and his "mémoire sur les déblais et
les remblais".

This was the prototype of what is howadays
known as "optimal transport theory", a very active
field of mathematics with many connections
(analysis, probability, geometry, partial differential
equations) and applications (image processing,
machine learning, economics, cosmology...).
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The loop is now closed between Euler and Monge through Kantorovich
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