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Introduction

Consider a nonlinear Schrödinger equation

hi
∂

∂t
Ψ = −h2 1

2
∆Ψ + ΨV (x) + Ψ

∫
Rd

W (x, y)|Ψ(y)|2dy .

I The unknown Ψ(t, x) is a complex function, x ∈ Rd, i =
√
−1, | · | is

the modulus of a complex number, h is a positive constant;

I V is a linear potential, W is a mean field interaction potential with
W (x, y) = W (y, x).

There are many important properties of the equation, e.g. conservation
of total mass, total energy, etc. It is a Hamiltonian system.
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History Remark

Optimal transport + Hamiltonian system
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Introduction

Optimal transport + Hamiltonian system:

I Related to Schrödinger equations (Nelson, Carlen);

I Related to Mean field games (Larsy, Lions, Gangbo);

I Related to weak KAM theory (Evans);

I Related to 2-Wasserstein metric (Brenier, Villani, Ambrosio);

I Related to Schrödinger bridge problems (Yause, Chen, Georgiou,
Pavon, Conforti, Leonard, Flavien).
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Motivation

Based on optimal transport (OT) and Nelson’s idea, we plan to propose
a discrete Schrödinger equation. Later, we shall show that the derived
equation has the following properties:

Method1 TSSP CNFD ReFD TSFD OT+Nelson
Time Reversible Yes Yes Yes Yes Yes
Time Transverse Invariant Yes No No Yes Yes
Mass Conservation Yes Yes Yes Yes Yes
Energy Conservation No Yes Yes No Yes
Dispersion Relation Yes No No Yes Yes

1Antoinea et al (2013), where TSSP: Time Splitting SPectral; CNFD:
Crank-Nicolson Finite Difference; ReFD: Relaxation Finite Difference; TSFD: Time
splitting Finite Difference.
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Optimal transport

The optimal transport problem was first introduced by Monge in 1781,
relaxed by Kantorovich by 1940.

It introduces a particular metric on probability set, which can be viewed
under various angles:

I Mapping: Monge-Ampére equation ;
I Linear programming ;
I Geometry: Fluid dynamics .

In this talk, we focus on its geometric formulation.
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Probability Manifold

The problem has an important variational formulation (Benamou-Briener
2000):

W (ρ0, ρ1)2 := inf
v

∫ 1

0

Ev2t dt ,

where E is the expectation operator and the infimum runs over all vector
field v, such that

Ẋt = vt , X0 ∼ ρ0 , X1 ∼ ρ1 .

Under this metric, the probability set has a Riemannian geometry
structure (Lafferty 1988).
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Brownian motion and Optimal transport

The gradient flow of (negative) Boltzmann-Shannon entropy∫
Rd

ρ(x) log ρ(x)dx

w.r.t. optimal transport distance is:

∂ρ

∂t
= ∇ ·

(
ρ∇ log ρ

)
= ∆ρ .

This geometric understanding will be the key for Schrödinger equation.
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Nelson’s approach

Nelson in 1966 proposed a slightly different problem of optimal transport
distance

inf
bt
{
∫ 1

0

1

2
EẊ2

t dt : Ẋt = bt +
√
hḂt, X(0) ∼ ρ0, X(1) ∼ ρ1} ,

where Bt is a standard Brownian motion in Rd and h is a small positive
constant.

Although Nelson’s problem and Schrödinger equation look very different
from each other, it can be shown that Schrödinger equation is a critical
point of the above variation problem.
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Nelson’s approach

Rewrite Nelson’s problem in terms of densities, i.e. represent Xt by its
density ρ:

Pr(Xt ∈ A) =

∫
A

ρ(t, x)dx .

Consider

inf
b

∫ 1

0

∫
1

2
[b2 − hb · ∇ log ρ]ρdx dt ,

where the infimum is among all drift vector fields b(t, x), such that

∂ρ

∂t
+∇ · (ρb) =

h

2
∆ρ , ρ(0) = ρ0 , ρ(1) = ρ1 .

10



Change of variable

The key of Nelson’s idea comes from the change of variables

v = b− h

2
∇ log ρ .

Substituting the v into Nelson’s problem, the problem is arrived at

inf
v
{
∫ 1

0

∫
Rd

1

2
v2ρdx− h2

8
I(ρ) dt :

∂ρ

∂t
+∇ · (ρv) = 0} ,

where the functional

I(ρ) =

∫
(∇ log ρ(x))2ρ(x)dx ,

is called Fisher information. It is worth noting that I is a key concept in
physics and modeling (Frieden 2004).
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Critical points

Following the Euler-Lagrange equation in probability set, the critical
point of Nelson problem satisfies a pair of equations

∂ρ

∂t
+∇ · (ρ∇S) = 0

∂S

∂t
+

1

2
(∇S)2 = − δ

δρ(x)
[
h2

8
I(ρ)]

where δ
δρ(x) is the L2 first variation, the first equation is a continuity

equation while the second one is a Hamilton-Jacobi equation. Define

Ψ(t, x) =
√
ρ(t, x)e

iS(t,x)
h ,

then Ψ satisfies the linear Schrödinger equation

ih
∂

∂t
Ψ = −h

2

2
∆Ψ .

This derivation is also true for other potential energies.
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Goals

Following the geometry introduced by optimal transport, we plan to
establish a Schrödinger equation on a graph.

Why on graphs?

I Numerics and modeling for nonlinear Schrödinger equations, Mean
Field Games;

I Population games;

I Computation of optimal transport metric.
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Basic settings

Graph with finite vertices

G = (V,E), V = {1, · · · , n}, E is the edge set;

Probability set

P(G) = {(ρi)ni=1 |
n∑
i=1

ρi = 1, ρi ≥ 0};

Linear and interaction potential energies:

V(ρ) =

n∑
i=1

Viρi, W(ρ) =
1

2

n∑
i=1

n∑
j=1

Wijρiρj ,

where Vi, Wij are constants with Wij = Wji.
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Definition I

We plan to find the discrete analog of Nelson’s problem.

First, it is natural to define a vector field on a graph

v = (vij)(i,j)∈E , satisfying vij = −vji.

Next, we define a divergence operator of a vector field v on a graph w.r.t
a probability measure ρ (Chow, Li, Huang, Zhou 2012):

∇ · (ρv).
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Definition II

Let

θij(ρ) =
ρi + ρj

2
.

We define an inner product of two vector fields v1, v2:

(v1, v2)ρ :=
1

2

∑
(i,j)∈E

v1ijv
2
ijθij(ρ);

and a divergence of a vector field v at ρ ∈ P(G):

divG(ρv) :=
(
−
∑

j∈N(i)

vijθij(ρ)
)n
i=1

.
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Optimal transport distance on a graph

For any ρ0, ρ1 ∈ Po(G), consider the optimal transport distance (also
named Wassersetin metric) by

W (ρ0, ρ1)2 := inf
v
{
∫ 1

0

(v, v)ρdt :
dρ

dt
+ divG(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1}.

(Po(G),W ) forms a Riemannian manifold.
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Fisher information on a graph

The gradient flow of the Shannon entropy S(ρ) =
∑n
i=1 ρilog ρi in

(P(G),W) is the diffusion process on a graph:

dρ

dt
= −gradWS(ρ) = divG(ρ∇Glog ρ) .

The dissipation of entropy defines the Fisher information on a graph:

I(ρ) = (gradWS(ρ), gradWS(ρ))ρ =
1

2

∑
(i,j)∈E

(log ρi − log ρj)
2θij(ρ) .

Many interesting topics have been extracted from this observation. E.g.
entropy dissipation, Log-Sobolev inequalities, Ricci curvature, Yano
formula (Annals of Mathematics, 1952, 7 pages).
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Discrete Nelson’s problem

We introduce Nelson’s problem on a graph:

inf
b

∫ 1

0

1

2
(b, b)ρ −

1

2
h(∇G log ρ, b)ρ − V(ρ)−W(ρ)dt,

where the infimum is taken among all vector fields b on G, such that

dρ

dt
+ divG(ρ(b− h

2
∇G log ρ)) = 0 , ρ(0) = ρ0, ρ(1) = ρ1 .
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Derivation

From the change of variables v = b− h
2∇G log ρ, Nelson’s problem on a

graph can be written as

inf
v

∫ 1

0

1

2
(v, v)ρ −

h2

8
I(ρ)− V(ρ)−W(ρ)dt

where the infimum is taken among all discrete vector fields v, such that

dρ

dt
+ divG(ρv) = 0 , ρ(0) = ρ0, ρ(1) = ρ1 .
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Hodge decomposition on graphs

Consider a Hodge decomposition on a graph

v = ∇GS + u

Gradient Divergence free

where the divergence free on a graph means divG(ρu) = 0.

Lemma
The discrete Nelson’s problem is equivalent to

inf
S

∫ 1

0

1

2
(∇GS,∇GS)ρ −

h2

8
I(ρ)− V(ρ)−W(ρ)dt,

where the critical point is taken among all discrete potential vector fields
∇GS, such that

dρ

dt
+ divG(ρ∇GS) = 0 , ρ(0) = ρ0, ρ(1) = ρ1 .
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Critical points

Applying Euler-Lagrange equation, the solution of Nelson’s problem on a
graph satisfies an ODE system:

dρi
dt

+
∑

j∈N(i)

(Sj − Si)θij(ρ) = 0

dSi
dt

+
1

2

∑
j∈N(i)

(Si − Sj)2
∂

∂ρi
θij(ρ) = − ∂

∂ρi
[
h2

8
I(ρ) + V(ρ) +W(ρ)]

where the first equation is the continuity equation on a graph while the
second one is the Hamilton-Jacobi equation on a graph.
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Schrödinger equation on a graph

Denote two real value functions ρ(t), S(t) by

Ψ(t) =
√
ρ(t)e

√
−1S(t)

h .

Theorem
Given a graph G = (V,E), a real constant vector (Vi)

n
i=1 and symmetric

matrix (Wij)1≤i,j≤n. Then every critical point of Nelson problem on the
graph satisfies

h
√
−1

dΨi

dt
=
h2

2
Ψi{

∑
j∈N(i)

(log Ψi − log Ψj)
θij
|Ψi|2

+
∑

j∈N(i)

| log Ψi − log Ψj |2
∂θij
∂|Ψi|2

}

+ ΨiVi + Ψi

n∑
i=1

Wij |Ψj |2.

23



Discrete Laplacian with Hamiltonian structure

We propose a new interpolation of Laplacian operator on a graph

∆GΨ|i := −Ψi{
∑

j∈N(i)

(log Ψi − log Ψj)
θij
|Ψi|2

+
∑

j∈N(i)

| log Ψi − log Ψj |2
∂θij
∂|Ψi|2

} .

In fact, it is not hard to show that this is consistent with the Laplacian in
continuous setting:

∆Ψ = Ψ(
1

|Ψ|2
∇ · (|Ψ|2∇ log Ψ)− |∇ log Ψ|2) .

What are the benefits from this nonlinear interpolation?
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Properties

Theorem
Given a graph (V,E) and an initial condition Ψ0 (complex vector) with
positive modulus. There exists a unique solution of Schrödinger equation
on the graph for all t > 0. Moreover, the solution Ψ(t)

(i) conserves the total mass;

(ii) conserves the total energy;

(iii) matches the stationary solution (Ground state);

(iv) is time reversible;

(v) is time transverse invariant.
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Proof of (i) and (ii)

We obtain a Hamiltonian system on the probability space P(G) w.r.t the
discrete optimal transport metric.

d

dt

(
ρ
S

)
=

(
0 −I
I 0

)( ∂
∂ρH
∂
∂SH

)
,

where I ∈ Rn×n is the identity matrix and H is the Hamiltonian:

H(ρ, S) =
1

2
(∇GS,∇GS)ρ +

h2

8
I(ρ) + V(ρ) +W(ρ) .
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Two points Schrödinger equation
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Example: Ground state

Compute the ground state via

min
ρ∈P(G)

h2

8
I(ρ) + V(ρ) +W(ρ) .
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Figure: The plot of ground state’s density function. The blue, black, red curves
represents h = 1, 0.1, 0.01, respectively.
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Discussion

In this talk, we introduce a Schrödinger equation on a graph, which has
many dynamical properties. Here the discrete Fisher information plays
the main effect. From it, we show that the equation

I exists a unique solution for all time;

I matches the stationary solution.

The discrete Fisher information has been successfully used in Schrödinger
equations, computation of optimal transport metric, population games
and elsewhere.
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