A o o

dullah University of
Science and Technology

Monotonicity methods




Monotone operators in MFGs

Monotone operators

Let H be a Hilbert space. A: D ¢ H — H is a monotone
operator if

(A(w) — A(z),w — 2) > 0, vw,z e D.
A variational inequality is the problem: find w € D such that

(A(w),z—w) >0, Vz e D.
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Monotone operators in MFGs

Examples of monotone operators

» For H = R, monotone operators are increasing functions
» Gradients of convex functions are monotone operators
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Stationary MFGs

Then, if H(x, p) is convex in p and g is increasing, the operator

[t

monotone in its domain D C L2 x 2.
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Time-dependent MFGs

Then, if H(x, p) is convex in p and g is increasing, the operator

m us — H(x, Du) + g(m)
A M - [r;vt—div(DpHm) —1

monotone in its domain D C L2 x 2.
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Monotone operators in MFGs

L Lasry-Lions uniqueness method

Uniqueness

Often, monotonicity gives uniqueness. Given two solutions
(m,u) and (m, u), we have
) =0
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Monotone operators in MFGs

L Lasry-Lions uniqueness method

Example
For
A
A - 2 ,
u m; — (muy)x
we get

OZ/OT/(mer"n)MJr(m—ﬁv)QZO.

This implies m = m and then, uniqueness of solution of
2
uX
— - = m
us + 5

gives u =

=2
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Weak solutions for monotone MFGs

Variational inequalities

If A: H— His monotone, then A(w) = 0 if and only if w
satisfies
(A(w),z—w) >0, Vz e H.
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Weak solutions for monotone MFGs

Weak solutions to variational inequalities

w is a weak solution of the variational inequality if
(A(z),z—w)>0

forallz € D.

Solutions of the variational inequality are weak solutions.
Under continuity assumptions and if D is large enough, weak
solutions are solutions.
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Weak solutions for monotone MFGs

Weak solutions - an example

If H =R, a monotone operator, A, is an increasing function. If A

is continuous,
A(0)=0

if and only if
A(z)(z-0)=A(2)z>0

for all z.
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Weak solutions for monotone MFGs

MFGs and variational inequalities

Consider the MFG

u— Au+ H(x,Du) = g(m)
m — Am — div(D,Hm) = 1.

Then, if H(x, p) is convex in p and g is increasing, the operator

Alm _ —u+ Au — H(x, Du) + g(m)
[u] o [ m — Am — div(D,Hm) — 1

is monotone in its domain D c L2 x L2,
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Weak solutions for monotone MFGs

Weak solutions

A weak solution of the MFG is a pair (m, u), m > 0, such that

(-2 A1) >0
v u Y]/ pr(1ay s (19),Co (T9) x Coo (T)

for all (n, v) € C=(T%;R¥) x C>(T9).
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Weak solutions for monotone MFGs

Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m, u) € D'(TY) x D'(T9), m > 0, to the MFG

m 0
A2 -[a]
Moreover, (m, u) € Macx W' for some~ > 1and [, max =
1.



Weak solutions for monotone MFGs

Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m, u) € D'(TY) x D'(T9), m > 0, to the MFG

m 0
A2 -[a]
Moreover, (m, u) € Macx W' for some~ > 1and [, max =
1.

Scope

First-order, second-order, degenerate elliptic, and conges-
tion problems satisfying monotonicity conditions.



Weak solutions for monotone MFGs

Example

Theorem (Ferreira, G.)

Let x be a standard mollifier, « > 0. Then, there exists a
weak solution u e H', me L', m>0to

u+@+V(X):ma+n*m
m — div(mDu) = 1.

That is, for all (n, v) € C*°, n > 0, we have
D 2
Jo+ B v~ — e my - m)

+ /(n —div(nDv) —1)(v —u) > 0.
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Example - further properties
Theorem (Ferreira, G.)
There exists a weak solution (u, m) such that

2
—u-— |D2| +VX)+m*+kxm>0, in D’
m —div(mDu) —1 =0, a.e..

Moreover, if a > max (95%,0)

(_u_ |Du?

5 +V(x)+ma+n*m)m:0

almost everywhere.
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Numerical methods
Stationary problems

The contracting flow

If Aiis a monotone operator in a Hilbert space, then the flow
w=—A(w)

is a contraction in H.
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Numerical methods

L Stationary problems

Monotone flow

We introduced the dynamic approximation

m:“§+ V(x)—Inm
U: (mUX)X

If (u, m) and (&, M) are solutions of the previous flow, then
d 512 ~ 12
— [ Im—m u—ulc<o
G [ 1m= /e - ae <o,

provided m, m > 0.

((((0\*‘_—_
e



L Numerical methods
Stationary problems

u and m evolution by monotone flow. V(x) = sin(2xx).
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Stationary problems
The congestion problem

m —lﬁf/'z —sin(2rx) +Inm
U = div(m'/2uy).

Figure: m error evolution.
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Stationary problems
A two-dimensional example

u and m error - monotone flow. V(x,y) = sin(2rx) + sin(2ry).
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