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Monotone operators in MFGs

Monotone operators

Let H be a Hilbert space. A : D ⊂ H → H is a monotone
operator if

(A(w)− A(z),w − z) ≥ 0, ∀w , z ∈ D.

A variational inequality is the problem: find w ∈ D such that

(A(w), z − w) ≥ 0, ∀z ∈ D.



Monotone operators in MFGs

Examples of monotone operators

I For H = R, monotone operators are increasing functions
I Gradients of convex functions are monotone operators



Monotone operators in MFGs

Stationary MFGs

Then, if H(x ,p) is convex in p and g is increasing, the operator

A
[
m
u

]
=

[
−u − H(x ,Du) + g(m)

m − div(DpHm)− 1

]
monotone in its domain D ⊂ L2 × L2.



Monotone operators in MFGs

Time-dependent MFGs

Then, if H(x ,p) is convex in p and g is increasing, the operator

A
[
m
u

]
=

[
ut − H(x ,Du) + g(m)
mt − div(DpHm)− 1

]
monotone in its domain D ⊂ L2 × L2.



Monotone operators in MFGs

Lasry-Lions uniqueness method

Uniqueness

Often, monotonicity gives uniqueness. Given two solutions
(m,u) and (m̃, ũ), we have

0 =

(
A
[
m
u

]
− A

[
m̃
ũ

]
,

[
m
u

]
−
[
m̃
ũ

])
≥ 0.



Monotone operators in MFGs

Lasry-Lions uniqueness method

Example

For

A
[
m
u

]
=

[
ut − u2

x
2 + m

mt − (mux )x

]
,

we get

0 =

∫ T

0

∫
(m + m̃)

(ux − ũx )2

2
+ (m − m̃)2 ≥ 0.

This implies m = m̃ and then, uniqueness of solution of

−ut +
u2

x
2

= m

gives u = ũ.



Weak solutions for monotone MFGs

Variational inequalities

If A : H → H is monotone, then A(w) = 0 if and only if w
satisfies

(A(w), z − w) ≥ 0, ∀z ∈ H.



Weak solutions for monotone MFGs

Weak solutions to variational inequalities

w is a weak solution of the variational inequality if

(A(z), z − w) ≥ 0

for all z ∈ D.
Solutions of the variational inequality are weak solutions.
Under continuity assumptions and if D is large enough, weak
solutions are solutions.



Weak solutions for monotone MFGs

Weak solutions - an example

If H = R, a monotone operator, A, is an increasing function. If A
is continuous,

A(0) = 0

if and only if
A(z)(z − 0) = A(z)z ≥ 0

for all z.



Weak solutions for monotone MFGs

MFGs and variational inequalities

Consider the MFG{
u −∆u + H(x ,Du) = g(m)

m −∆m − div(DpHm) = 1.

Then, if H(x ,p) is convex in p and g is increasing, the operator

A
[
m
u

]
=

[
−u + ∆u − H(x ,Du) + g(m)
m −∆m − div(DpHm)− 1

]
is monotone in its domain D ⊂ L2 × L2.



Weak solutions for monotone MFGs

Weak solutions

A weak solution of the MFG is a pair (m,u), m ≥ 0, such that〈[
η
v

]
−
[
m
u

]
,A
[
η
v

]〉
D′(Td )×D′(Td ),C∞(Td )×C∞(Td )

≥ 0

for all (η, v) ∈ C∞(Td ;R+)× C∞(Td ).



Weak solutions for monotone MFGs

Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m,u) ∈ D′(Td )×D′(Td ), m ≥ 0, to the MFG

A
[
m
u

]
=

[
0
0

]
.

Moreover, (m,u) ∈Mac×W 1,γ for some γ > 1 and
∫
Td m dx =

1.

Scope

First-order, second-order, degenerate elliptic, and conges-
tion problems satisfying monotonicity conditions.
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Weak solutions for monotone MFGs

Example

Theorem (Ferreira, G.)

Let κ be a standard mollifier, α > 0. Then, there exists a
weak solution u ∈ H1, m ∈ Lα+1, m ≥ 0 to{

u + |Du|2
2 + V (x) = mα + κ ∗m

m − div(mDu) = 1.

That is, for all (η, v) ∈ C∞, η > 0, we have∫
(v +

|Dv |2

2
+ V (x)− ηα − κ ∗m)(η −m)

+

∫
(η − div(ηDv)− 1)(v − u) ≥ 0.



Weak solutions for monotone MFGs

Example - further properties

Theorem (Ferreira, G.)

There exists a weak solution (u,m) such that−u − |Du|2

2
+ V (x) + mα + κ ∗m ≥ 0, in D′

m − div(mDu)− 1 = 0,a.e..

Moreover, if α > max
(d−4

2 ,0
)

(
− u − |Du|2

2
+ V (x) + mα + κ ∗m

)
m = 0

almost everywhere.



Numerical methods

Stationary problems

The contracting flow

If A is a monotone operator in a Hilbert space, then the flow

ẇ = −A(w)

is a contraction in H.



Numerical methods

Stationary problems

Monotone flow

We introduced the dynamic approximation{
ṁ = u2

x
2 + V (x)− ln m

u̇ = (mux )x .

If (u,m) and (ũ, m̃) are solutions of the previous flow, then

d
dt

∫
|m − m̃|2 + |u − ũ|2 ≤ 0,

provided m, m̃ ≥ 0.



Numerical methods

Stationary problems

u and m evolution by monotone flow. V (x) = sin(2πx).
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Numerical methods

Stationary problems

The congestion problem

{
ṁ = − |ux |2

m1/2 − sin(2πx) + ln m
u̇ = div(m1/2ux ).

Figure: m error evolution.
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Numerical methods

Stationary problems

A two-dimensional example

u and m error - monotone flow. V (x , y) = sin(2πx) + sin(2πy).
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